Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (301)

Search Parameters:
Keywords = transient electric field

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 19896 KiB  
Article
A Novel Polysilicon-Fill-Strengthened Etch-Through 3D Trench Electrode Detector: Fabrication Methods and Electrical Property Simulations
by Xuran Zhu, Zheng Li, Zhiyu Liu, Tao Long, Jun Zhao, Xinqing Li, Manwen Liu and Meishan Wang
Micromachines 2025, 16(8), 912; https://doi.org/10.3390/mi16080912 (registering DOI) - 6 Aug 2025
Abstract
Three-dimensional trench electrode silicon detectors play an important role in particle physics research, nuclear radiation detection, and other fields. A novel polysilicon-fill-strengthened etch-through 3D trench electrode detector is proposed to address the shortcomings of traditional 3D trench electrode silicon detectors; for example, the [...] Read more.
Three-dimensional trench electrode silicon detectors play an important role in particle physics research, nuclear radiation detection, and other fields. A novel polysilicon-fill-strengthened etch-through 3D trench electrode detector is proposed to address the shortcomings of traditional 3D trench electrode silicon detectors; for example, the distribution of non-uniform electric fields, asymmetric electric potential, and dead zone. The physical properties of the detector have been extensively and systematically studied. This study simulated the electric field, potential, electron concentration distribution, complete depletion voltage, leakage current, capacitance, transient current induced by incident particles, and weighting field distribution of the detector. It also systematically studied and analyzed the electrical characteristics of the detector. Compared to traditional 3D trench electrode silicon detectors, this new detector adopts a manufacturing process of double-side etching technology and double-side filling technology, which results in a more sensitive detector volume and higher electric field uniformity. In addition, the size of the detector unit is 120 µm × 120 µm × 340 µm; the structure has a small fully depleted voltage, reaching a fully depleted state at around 1.4 V, with a saturation leakage current of approximately 4.8×1010A, and a geometric capacitance of about 99 fF. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
19 pages, 8002 KiB  
Article
3D Forward Simulation of Borehole-Surface Transient Electromagnetic Based on Unstructured Finite Element Method
by Jiayi Liu, Tianjun Cheng, Lei Zhou, Xinyu Wang and Xingbing Xie
Minerals 2025, 15(8), 785; https://doi.org/10.3390/min15080785 - 26 Jul 2025
Viewed by 155
Abstract
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study [...] Read more.
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study starts from the time-domain electric field diffusion equation and discretizes the calculation area in space using tetrahedral meshes. The Galerkin method is used to derive the finite element equation of the electric field, and the vector interpolation basis function is used to approximate the electric field in any arbitrary tetrahedral mesh in the free space, thus achieving the three-dimensional forward simulation of the BSTEM field based on the finite element method. Following validation of the numerical simulation method, we further analyze the electromagnetic field response excited by vertical line sources.. Through comparison, it is concluded that measuring the radial electric field is the most intuitive and effective layout method for BSTEM, with a focus on the propagation characteristics of the electromagnetic field in both low-resistance and high-resistance anomalies at different positions. Numerical simulations reveal that BSTEM demonstrates superior resolution capability for low-resistivity anomalies, while showing limited detectability for high-resistivity anomalies Numerical simulation results of BSTEM with realistic orebody models, the correctness of this rule is further verified. This has important implications for our understanding of the propagation laws of BSTEM as well as for subsequent data processing and interpretation. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

16 pages, 2849 KiB  
Article
A Simulation Model for the Transient Characteristics of No-Insulation Superconducting Coils Based on T–A Formulation
by Zhihao He, Yingzhen Liu, Chenyi Yang, Jiannan Yang, Jing Ou, Chengming Zhang, Ming Yan and Liyi Li
Energies 2025, 18(14), 3669; https://doi.org/10.3390/en18143669 - 11 Jul 2025
Viewed by 343
Abstract
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. [...] Read more.
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. However, the presence of turn-to-turn contact resistance makes current distribution uneven, rendering traditional simulation methods unsuitable. To address this, a finite element method (FEM) based on the T–A formulation is proposed. This model solves coupled equations for the magnetic vector potential (A) and current vector potential (T), incorporating turn-to-turn contact resistance and anisotropic conductivity. The thin-strip approximation simplifies second-generation HTS materials as one-dimensional conductors, and a homogenization technique further reduces computational time by averaging the properties between turns, although it may limit the resolution of localized inter-turn effects. To verify the model’s accuracy, simulation results are compared against the H formulation, distributed circuit network (DCN) model, and experimental data. The proposed T–A model accurately reproduces key transient characteristics, including magnetic field evolution and radial current distribution, in both circular and racetrack NI coils. These results confirm the model’s potential as an efficient and reliable tool for transient electromagnetic analysis of NI–HTS coils. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

14 pages, 2726 KiB  
Article
Streamer Discharge Modeling for Plasma-Assisted Combustion
by Stuart Reyes and Shirshak Kumar Dhali
Plasma 2025, 8(3), 28; https://doi.org/10.3390/plasma8030028 - 10 Jul 2025
Viewed by 308
Abstract
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the [...] Read more.
Some of the popular and successful atmospheric pressure fuel/air plasma-assisted combustion methods use repetitive ns pulsed discharges and dielectric-barrier discharges. The transient phase in such discharges is dominated by transport under strong space charge from ionization fronts, which is best characterized by the streamer model. The role of the nonthermal plasma in such discharges is to produce radicals, which accelerates the chemical conversion reaction leading to temperature rise and ignition. Therefore, the characterization of the streamer and its energy partitioning is essential to develop a predictive model. We examine the important characteristics of streamers that influence combustion and develop some macroscopic parameters. Our results show that the radicals’ production efficiency at an applied field is nearly independent of time and the radical density generated depends only on the electrical energy density coupled to the plasma. We compare the results of the streamer model to the zero-dimensional uniform field Townsend-like discharge, and our results show a significant difference. The results concerning the influence of energy density and repetition rate on the ignition of a hydrogen/air fuel mixture are presented. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

21 pages, 1200 KiB  
Article
On the Role of Abrupt Solar Wind Pressure Changes in Forbidden Energetic Electron Enhancements
by Alla V. Suvorova and Alexei V. Dmitriev
Universe 2025, 11(7), 226; https://doi.org/10.3390/universe11070226 - 9 Jul 2025
Viewed by 156
Abstract
The sudden increase of fluxes of quasi-trapped energetic electrons under the Earth’s radiation belt (ERB) has remained a puzzling phenomenon for decades. It is known as enhancements of forbidden energetic electrons (FEEs). The FEE enhancements are occasionally observed by low-Earth orbit NOAA/POES satellites. [...] Read more.
The sudden increase of fluxes of quasi-trapped energetic electrons under the Earth’s radiation belt (ERB) has remained a puzzling phenomenon for decades. It is known as enhancements of forbidden energetic electrons (FEEs). The FEE enhancements are occasionally observed by low-Earth orbit NOAA/POES satellites. Previously, no strong correlation was established between FEEs and geomagnetic activity, while external control of FEE occurrence by solar activity and interplanetary parameters was revealed on a long time-scale. Two important questions are still open: (1) key parameters of the mechanism and (2) solar wind drivers or triggers. In the present study we conducted detailed analysis of three FEE events that occurred during the greatest geomagnetic storms, which dramatically affected space weather. The FEE enhancements occurred under northward IMF and, thus, Bz and convection electric fields could have been neither driver nor trigger. We found that an abrupt and significant change in solar wind pressure is a key solar wind driver of the FEE enhancements observed. The characteristic time of FEE injection from the inner edge of the ERB at L-shell 1.2 to the forbidden zone at L < 1.1 was estimated to be 10–20 min. In the mechanism of ExB drift, this characteristic time corresponds to the radial inward transport of electrons caused by a transient electric field with the magnitude ~10 mV/m. Full article
Show Figures

Figure 1

20 pages, 2705 KiB  
Article
Joule Heating in Grounding Electrodes Under Fault Conditions: Effects on System Potentials and Electrode Efficiency
by Gabriel Asensio, Eduardo Faleiro, Jorge Moreno, Daniel García and Gregorio Denche
Appl. Sci. 2025, 15(13), 7504; https://doi.org/10.3390/app15137504 - 3 Jul 2025
Viewed by 300
Abstract
This paper presents a numerical study of the thermal behavior of grounding electrodes subjected to fault currents, focusing on Joule heating within both the electrode and the surrounding soil. A one-dimensional transient model is developed, accounting for heat generation due to both internal [...] Read more.
This paper presents a numerical study of the thermal behavior of grounding electrodes subjected to fault currents, focusing on Joule heating within both the electrode and the surrounding soil. A one-dimensional transient model is developed, accounting for heat generation due to both internal resistance in the electrode and current leakage into the soil. The model incorporates the temperature dependence of electrical resistivity, particularly emphasizing the nonlinear and material-specific behavior observed in soils, as captured by three different resistivity models. The temperature–resistivity coupling induces a feedback mechanism that dynamically alters the current distribution and the resulting temperature profiles. A numerical procedure was implemented to simulate this process, following a computational flowchart that captures the interaction between thermal and electrical fields over time. The model was applied to synthetic test cases involving different soil types, segmentation strategies, and resistivity behaviors. The results reveal significant differences between resistivity models, affecting both the magnitude and distribution of grounding potential and temperature fields. In particular, elevated temperatures were observed in regions where current density concentrates—such as corners and exposed ends of the electrode—highlighting the need for targeted reinforcement to prevent thermal degradation. The proposed model provides a practical tool for evaluating the thermal performance of grounding systems under extreme conditions, offering insight into design optimization and material selection. Full article
Show Figures

Figure 1

11 pages, 1606 KiB  
Article
Doping Tuned the Carrier Dynamics in Li-Doped Bi2Se3 Crystals Revealed by Femtosecond Transient Optical Spectroscopy
by Qiya Liu, Min Zhang, Xinsheng Yang, Tixian Zeng and Minghu Pan
Nanomaterials 2025, 15(13), 1010; https://doi.org/10.3390/nano15131010 - 30 Jun 2025
Viewed by 288
Abstract
Topological insulators (TIs) can be widely applied in the fields of ultrafast optical and spintronic devices owing to the existence of topologically protected gapless Dirac surface states. However, the study of ultrafast dynamics of carriers in TIs remains elusive. In this work, the [...] Read more.
Topological insulators (TIs) can be widely applied in the fields of ultrafast optical and spintronic devices owing to the existence of topologically protected gapless Dirac surface states. However, the study of ultrafast dynamics of carriers in TIs remains elusive. In this work, the carrier dynamics of Li-doped Bi2−xSe3 single crystals were investigated by femtosecond (fs) transient optical spectroscopy (ΔR/R(t) signals). The temperature dependence for the relaxation rates of the electron–electron interaction and electron–phonon coupling is consistent with the results of electrical transport, which indicates the carrier dynamics of TI is highly related with carrier concentrations. We find that the carrier type and concentration of Bi2Se3 can be tuned by Li doping, leading to a metal-insulation transition at low temperatures (T ≤ 55 K), indicating that electron–electron interactions are dominant at low temperature. For T > 55 K, electron–phonon coupling in the bulk carriers becomes the main electric transport mechanism. Full article
Show Figures

Graphical abstract

22 pages, 7169 KiB  
Article
Thermodielectric Properties of Polyurethane Composites with Aluminium Nitride and Wurtzite Boron Nitride Microfillers: Analysis Below and near Percolation Threshold
by Alexey Gunya, Jozef Kúdelčík, Štefan Hardoň and Marián Janek
Sensors 2025, 25(13), 4055; https://doi.org/10.3390/s25134055 - 29 Jun 2025
Viewed by 278
Abstract
This study explores microcomposites’ thermodielectric properties—thermal conductivity (keff) and dielectric permittivity (εr)—across filler concentrations from 1 wt% (φ0.0035) to 60 wt% (φ0.45) spanning the pre- (φ<0.16 [...] Read more.
This study explores microcomposites’ thermodielectric properties—thermal conductivity (keff) and dielectric permittivity (εr)—across filler concentrations from 1 wt% (φ0.0035) to 60 wt% (φ0.45) spanning the pre- (φ<0.16) and within-percolation threshold (0.16φ0.29). Thermal measurements were conducted using a newly designed, cost-effective thermal measurement setup. The setup utilised a transient heat pulse methodology with a heater and NTC thermistors, with a precision better than ±0.01m1·K1. Dielectric properties were measured using a three-electrode system over a broad frequency and temperature range. The measurements demonstrate an effective thermal conductivity keff of 0.72 W·m1·K1 for AlN at φ=0.36 and 0.65 W·m1·K1 for wBN already at φ=0.12. Although theoretical models suggest that, considering interfacial Kapitza resistance, it can yield a keff corresponding to approximately 1–3% of the conductivity of pure material filler, the experimental measurements indicate a maximum of around 0.5%. Dielectric measurements show that in comparison to pure polyurethane, the presence of 60% AlN or 40% wBN at 60 °C decreased the loss tangent by 20 times in the condition of a quasistatic electric field. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

17 pages, 3166 KiB  
Article
Power Converter Design for Pulsed Electric Field-Based Milk Processing: A Proof of Concept
by Julieta Domínguez-Soberanes, Omar F. Ruiz-Martinez and Fernando Davalos Hernandez
Foods 2025, 14(13), 2177; https://doi.org/10.3390/foods14132177 - 21 Jun 2025
Viewed by 323
Abstract
The microbiological safety of milk can be ensured through heat processing; however, this method has a negative effect on the sensory profile of this food product. Emerging technologies could be used as an alternative process for guaranteeing innocuity and maintaining sensory changes. An [...] Read more.
The microbiological safety of milk can be ensured through heat processing; however, this method has a negative effect on the sensory profile of this food product. Emerging technologies could be used as an alternative process for guaranteeing innocuity and maintaining sensory changes. An alternative is to evaluate pulsed electric field (PEF) electroporation, which is a method of processing cells using short pulses of a strong electric field. PEF has the potential to be a type of alternative low-temperature pasteurization process that consists of high-frequency voltage pulsations. Specifically, the presented work is a proof of concept for the design of a converter capable of generating a PEF to feed a load that meets the impedance characteristics of milk. The proposed converter is simulated using PLECS software (4.9.6 version) under impedance change scenarios that emulate variations in milk throughout the entire process. This research proposes the modification of a classic Vienna rectifier (adding an MBC—Multilevel Boost Converter structure) to supply a pulsating signal that could be used for low-temperature processes of milk to guarantee proper pasteurization. The characteristics of the generated high-voltage pulse make it feasible to quickly process the real sample. The control law design considers a regulation loop to achieve a voltage in the range of kV and a switching-type control law that activates switches in MMC arrays. These switches are activated randomly to avoid transients that cause significant stress on them. Full article
(This article belongs to the Special Issue Dairy Science: Emerging Trends in Research for Dairy Products)
Show Figures

Figure 1

19 pages, 6101 KiB  
Article
Modern Capabilities of Semi-Airborne UAV-TEM Technology on the Example of Studying the Geological Structure of the Uranium Paleovalley
by Ayur Bashkeev, Alexander Parshin, Ilya Trofimov, Sergey Bukhalov, Danila Prokhorov and Nikolay Grebenkin
Minerals 2025, 15(6), 630; https://doi.org/10.3390/min15060630 - 10 Jun 2025
Cited by 1 | Viewed by 420
Abstract
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as [...] Read more.
Unmanned systems provide significant prospects for improving the efficiency of electromagnetic geophysical exploration in mineral prospecting and geological mapping, as they can significantly increase the productivity of field surveys by accelerating the movement of the measuring system along the site, as well as minimizing problems in cases where the pedestrian walkability of the site is a challenge. Lightweight and cheap UAV systems with a take-off weight in the low tens of kilograms are unable to carry a powerful current source; therefore, semi-airborne systems with a ground transmitter (an ungrounded loop or grounded at the ends of the line) and a measuring system towed on a UAV are becoming more and more widespread. This paper presents the results for a new generation of semi-airborne technology SibGIS UAV-TEMs belonging to the “line-loop” type and capable of realizing the transient/time-domain (TEM) electromagnetics method used for studying a uranium object of the paleovalley type. Objects of this type are characterized by a low resistivity of the ore zone located in relatively high-resistivity host rocks and, from the position of the geoelectric structure, can be considered a good benchmark for assessing the capabilities of different electrical exploration technologies in general. The aeromobile part of the geophysical system created is implemented on the basis of a hexacopter carrying a measuring system with an inductive sensor, an analog of a 50 × 50 m loop, an 18-bit ADC with satellite synchronization, and a transmitter. The ground part consists of a galvanically grounded supply line and a current source with a transmitter creating multipolar pulses of quasi-DC current in the line. The survey is carried out with a terrain drape based on a satellite digital terrain model. The article presents the results obtained from the electromagnetic soundings in comparison with the reference (drilled) profile, convincingly proving the high efficiency of UAV-TEM. This approach to pre-processing UAV–electrospecting data is described with the aim of improving data quality by taking into account the movement and swaying of the measuring system’s sensor. On the basis of the real data obtained, the sensitivity of the created semi-airborne system was modeled by solving a direct problem in the class of 3D models, which allowed us to evaluate the effectiveness of the method in relation to other geological cases. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

16 pages, 5360 KiB  
Article
Petrophysics Parameter Inversion and Its Application Based on the Transient Electromagnetic Method
by Xiaozhen Teng, Jianhua Yue, Kailiang Lu, Danyang Xi, Herui Zhang and Kua Wang
Appl. Sci. 2025, 15(11), 6256; https://doi.org/10.3390/app15116256 - 2 Jun 2025
Viewed by 430
Abstract
The transient electromagnetic (TEM) method is a widely used geophysical technique for detecting subsurface electrical structures. However, its inversion results are typically limited to resistivity parameters, making it challenging to directly infer key petrophysical properties, such as water saturation and porosity. This study [...] Read more.
The transient electromagnetic (TEM) method is a widely used geophysical technique for detecting subsurface electrical structures. However, its inversion results are typically limited to resistivity parameters, making it challenging to directly infer key petrophysical properties, such as water saturation and porosity. This study proposes a petrophysics parameter inversion approach based on TEM data. By constructing multiple geoelectric models with varying porosities and water saturation values for numerical simulations, the results demonstrated that both the forward and inversion responses of the TEM field maintained errors within 5%. The inversion procedure begins with the reconstruction of the subsurface resistivity distribution, which reliably reflects the true geoelectric model. Based on the inverted resistivity, the water saturation and porosity parameters are subsequently estimated. The inversion results closely match the overall trend of the actual model and exhibit a clear response at the target layer. Finally, the proposed method is applied to a field test at the Tongxin Coal Mine. By integrating subsurface electrical responses with geological data, the spatial distributions of water saturation and porosity within the coal-bearing strata were delineated. This provides a scientific basis for the detailed characterization of the physical properties of coal and surrounding rock, as well as for understanding the development of pores and fractures in underground strata. Full article
Show Figures

Figure 1

19 pages, 5211 KiB  
Article
Alterations in the Temporal Variation and Spatial Distribution of Blood–Brain Barrier Permeability Following Electromagnetic Pulse Radiation: A Study Based on Dynamic Contrast-Enhanced MRI
by Kexian Wang, Haoyu Wang, Ji Dong, Li Zhao, Hui Wang, Jing Zhang, Xinping Xu, Binwei Yao, Yunfei Lai and Ruiyun Peng
Brain Sci. 2025, 15(6), 577; https://doi.org/10.3390/brainsci15060577 - 27 May 2025
Viewed by 448
Abstract
Background: Previous studies have suggested that electromagnetic pulse (EMP) can induce openings in the blood–brain barrier (BBB). However, the temporal variation and spatial distribution of BBB permeability after EMP radiation are difficult to assess using conventional histopathological approaches. Dynamic contrast-enhanced magnetic resonance imaging [...] Read more.
Background: Previous studies have suggested that electromagnetic pulse (EMP) can induce openings in the blood–brain barrier (BBB). However, the temporal variation and spatial distribution of BBB permeability after EMP radiation are difficult to assess using conventional histopathological approaches. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a valuable tool for the in vivo evaluation of BBB permeability. The main purpose of this study was to investigate the temporal variation and spatial distribution of BBB permeability after EMP radiation in rats using DCE-MRI. Methods: The dose of EMP was estimated through simulations utilizing a digital rat model comprising 16 distinct brain regions. Then, the changes in BBB permeability of the different rat brain regions at different time points (3 h and 24 h) after EMP radiation were evaluated using quantitative DCE-MRI. Furthermore, the spatial difference in BBB permeability was assessed 3 h after exposure. Finally, the dose–effect relationship between the electric field strength and the BBB permeability was also investigated. Results: The results demonstrated that the changes in the values of volume transfer constant (ΔKtrans) significantly increased in several rat brain regions at 3 h after 400 kV/m EMP radiation. These changes vanished 24 h after exposure. Meanwhile, no significant spatial differences in BBB permeability were observed after EMP radiation. Moreover, Pearson’s correlation analysis showed that there was a significant positive linear relationship between BBB permeability and the electric field strength within an external electric field strength range of 0 to 400 kV/m at 3 h after EMP radiation. Conclusions: EMP radiation can induce a reversible increase in BBB permeability in rats. Moreover, no significant differences in BBB permeability were found across different brain regions. Additionally, the degree of BBB permeability was positively correlated with the regional electric field strength of EMP radiation within an external electric field strength range of 0 to 400 kV/m at 3 h after EMP radiation. These results indicate the promising potential of employing EMP for transient openings in the BBB, which could facilitate clinical pharmacological interventions via drug delivery into the brain. Full article
(This article belongs to the Special Issue Application of MRI in Brain Diseases)
Show Figures

Figure 1

12 pages, 592 KiB  
Article
Twenty-Five Years After the Chi-Chi Earthquake in the Light of Natural Time Analysis
by Panayiotis A. Varotsos, Nicholas V. Sarlis, Efthimios S. Skordas, Qinghua Huang, Jann-Yenq Liu, Masashi Kamogawa and Toshiyasu Nagao
Geosciences 2025, 15(6), 198; https://doi.org/10.3390/geosciences15060198 - 24 May 2025
Viewed by 423
Abstract
Almost two years after the devastating 1999 MW7.6 Chi-Chi earthquake, a new concept of time termed natural time (NT) was introduced in 2001 that reveals unique dynamic features hidden behind the time series of complex systems. In particular, NT analysis enables [...] Read more.
Almost two years after the devastating 1999 MW7.6 Chi-Chi earthquake, a new concept of time termed natural time (NT) was introduced in 2001 that reveals unique dynamic features hidden behind the time series of complex systems. In particular, NT analysis enables the study of the dynamical evolution of a complex system and identifies when the system enters a critical stage. Since the observed earthquake scaling laws indicate the existence of phenomena closely associated with the proximity of the system to a critical point, here we apply NT analysis to seismicity that preceded the 3 April 2024 MW7.4 Hualien earthquake. We find that in the beginning of September 2023 the order parameter of seismicity exhibited a clearly detectable minimum. Such a minimum demonstrates that seismic electric signal (SES) activity initiated which comprises several low-frequency transient changes of the electric field of the Earth preceding major earthquakes. Full article
Show Figures

Figure 1

14 pages, 8981 KiB  
Article
Embankment Project Monitoring Using the Time-Lapse Transient Electromagnetic Method: Numerical Simulation and Field Applications
by Ying Wang, Bo Wang, Lunwei Chai and Wangping Qian
Water 2025, 17(9), 1341; https://doi.org/10.3390/w17091341 - 29 Apr 2025
Viewed by 442
Abstract
To preserve flood control infrastructure, it is essential to quickly detect and accurately identify concealed leakage hazards within embankment projects. In this paper, we propose a novel embankment monitoring method based on the time-lapse transient electromagnetic method and complemented by a theoretical framework [...] Read more.
To preserve flood control infrastructure, it is essential to quickly detect and accurately identify concealed leakage hazards within embankment projects. In this paper, we propose a novel embankment monitoring method based on the time-lapse transient electromagnetic method and complemented by a theoretical framework for analyzing time-lapse data through the lens of resistivity change rates. A time-lapse model that scrutinizes dynamic response patterns associated with leakage anomalies is constructed, while the efficacy of this methodology is verified through rigorous field experiments. Our research findings reveal a well-defined negative correlation between the resistivity variation rate and the development stage of anomalies. Our proposed method demonstrates enhanced sensitivity in the detection of dynamic evolutionary patterns in latent seepage defects, particularly in low-resistivity environments. Moreover, it successfully delineates both the spatial expansions and electrical property alterations of anomalies, providing a novel technical approach for latent seepage defect monitoring and risk management in embankments. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 16833 KiB  
Article
Evaluation of the Capabilities of Grounded-Wire Source Surface-Borehole Transient Electromagnetic Detection in Complex Geological Settings
by Xianxiang Wang and Wanting Ma
Minerals 2025, 15(4), 429; https://doi.org/10.3390/min15040429 - 20 Apr 2025
Viewed by 292
Abstract
The surface-borehole transient electromagnetic method exhibits significant advantages in identifying deep targets, as its closer distance to subsurface targets results in more pronounced effective anomalies when compared to surface-based techniques. The grounded-wire source TEM demonstrates enhanced capabilities for deep exploration, featuring increased penetration [...] Read more.
The surface-borehole transient electromagnetic method exhibits significant advantages in identifying deep targets, as its closer distance to subsurface targets results in more pronounced effective anomalies when compared to surface-based techniques. The grounded-wire source TEM demonstrates enhanced capabilities for deep exploration, featuring increased penetration depth, enhanced signal response, superior resolution, and minimized volume effects, which render it especially effective for examining intricate deep reservoirs. This study utilizes a time-domain finite-element method with unstructured tetrahedral grids to conduct three-dimensional numerical simulations of grounded-wire source SBTEM in complex terrains, capitalizing on the flexibility and precision of this method for modeling detailed geological structures. A comparative analysis of electromagnetic field responses between conductive and high-resistivity targets indicates that the detection capability of magnetic field components decreases more markedly than that of the vertical electric field Ez as the burial depth of the target increases. The grounded-wire source SBTEM exhibits enhanced sensitivity and better identification capabilities for conductive targets when compared to high-resistivity alternatives. The present research represents a detailed analysis of the impact of complex terrain on the detection capabilities of grounded-wire source SBTEM, utilizing electromagnetic response simulations of typical three-dimensional complex geological models. The results provide robust theoretical backing and empirical evidence for an enhanced understanding of subsurface resource exploration. Full article
Show Figures

Figure 1

Back to TopTop