Petrophysics Parameter Inversion and Its Application Based on the Transient Electromagnetic Method
Abstract
1. Introduction
2. Theory
2.1. Forward Modeling
2.2. Inversion Algorithm
3. Numerical Simulation
3.1. Geoelectric Model
3.2. Response Characteristics of the Geoelectric Model
3.3. Inversion of Rock Physical Properties
4. Field Application
5. Conclusions
- (1)
- To enhance the geological interpretability of transient electromagnetic (TEM) inversion results, this study proposes a method for directly inverting rock physical parameters based on Archie’s equation. By incorporating porosity and water saturation into the inversion objective function, the formation of petrophysical parameters can be directly retrieved from the TEM data. To verify the validity and feasibility of the proposed method, a series of geoelectric models with varying porosities and water saturation values were constructed and tested using numerical simulations.
- (2)
- The proposed method was applied to surface transient electromagnetic (TEM) surveys at the 8311 working face of the Tongxin Coal Mine. The spatial distribution of water saturation and porosity was determined by integrating subsurface electromagnetic responses with geological data. These results provide a scientific basis for the fine-scale characterization of coal and rock physical properties and for understanding the development patterns of pores and fractures in underground strata.
- (3)
- Due to the inherent non-uniqueness of inversion results and the limited applicability of Archie’s equation, errors may be introduced into the inversion of petrophysical parameters. To improve the accuracy of geological interpretation, it is recommended to establish a site-specific petrophysical constitutive relationship for the target exploration area prior to the inversion. This approach reduces the number of unknown parameters and enhances the model constraints, thereby improving the reliability of the inversion results.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, G.Q.; Yu, J.C. New development of TEM research and application in coal mine exploration. Prog. Geophys. 2017, 32, 319–326. [Google Scholar]
- Yue, J.H.; Xue, G.Q. Review on the development of Chinese coal electric and electromagnetic prospecting during past 36 years. Prog. Geophys. 2016, 31, 1716–1724. [Google Scholar]
- Glover, P.W.J. A generalized Archie’s law for n phases. Geophysics 2010, 75, E247–E265. [Google Scholar] [CrossRef]
- Cai, J.C.; Wei, W.; Hu, X.Y.; Wood, D.A. Electrical conductivity models in saturated porous media: A review. Earth-Sci. Rev. 2017, 171, 419–433. [Google Scholar] [CrossRef]
- Zhang, Z.S. Theoretical roots of Archie formulas. Prog. Geophys. 2020, 35, 1514–1522. [Google Scholar]
- Sun, D.M.; Chu, R.J. A theoretical and experimental study for saturation exponent, n. Acta Petrolei Sinica 1994, 15, 66. [Google Scholar]
- Nakamura, M.; Kusumi, H. An estimation method of in-situ rock masses by characteristic of electric resistivity for jointed rock mass model. Zairyo 2006, 55, 458. [Google Scholar]
- Nakamura, M.; Kusumi, H.; Kondo, E. Application of several electric resistivities of rock masses for tunnel supporting design. In Modern Tunneling Science and Technology; Routledge: London, UK, 2017; pp. 273–276. [Google Scholar]
- Coli, N.; Pranzini, G.; Alfi, A.; Boerio, V. Evaluation of rock-mass permeability tensor and prediction of tunnel inflows by means of geostructural surveys and finite element seepage analysis. Eng. Geol. 2008, 101, 174–184. [Google Scholar] [CrossRef]
- Montaron, B. Connectivity theory—A new approach to modeling non-Archie rocks. Petrophysics 2009, 50, SPWLA-2009-v50n2a2. [Google Scholar]
- Yang, Q.S.; Torres-Verdín, C. Joint interpretation and uncertainty analysis of petrophysical properties in unconventional shale reservoirs. Interpretation 2015, 3, SA33–SA49. [Google Scholar] [CrossRef]
- Jin, Y.R.; Li, S.X.; Yang, D.Y. Experimental and theoretical quantification of the relationship between electrical resistivity and hydrate saturation in porous media. Fuel 2020, 269, 117378. [Google Scholar] [CrossRef]
- Li, H.; Xue, G.Q.; Zhou, N.N.; Chen, W.Y. Appraisal of an array TEM method in detecting a mined-out area beneath a conductive layer. Pure Appl. Geophys. 2015, 172, 2917–2929. [Google Scholar] [CrossRef]
- Fan, T.; Qi, Z.P.; Yan, B.; Zhao, Z.; Wang, B.; Shi, X.; Liu, L.; Zhao, R.; Wang, J.; Li, B.; et al. Full waveform inversions of borehole transient electromagnetic virtual wave fields and potential applications. J. Environ. Eng. Geoph. 2020, 25, 211–222. [Google Scholar]
- Wang, P.; Yao, W.H.; Guo, J.L.; Su, C.; Wang, Q.; Wang, Y.; Zhang, B.; Wang, C. Detection of shallow buried water-filled goafs using the fixed-loop transient electromagnetic method: A case study in Shaanxi, China. Pure Appl. Geophys. 2021, 178, 529–544. [Google Scholar] [CrossRef]
- Kafri, U.; Goldman, M. The use of the time domain electromagnetic method to delineate saline groundwater in granular and carbonate aquifers and to evaluate their porosity. J. Appl. Geophys. 2005, 57, 167–178. [Google Scholar] [CrossRef]
- Choi, J.S.; Ryu, H.H.; Lee, I.M.; Cho, G.C. Rock mass classification using electrical resistivity-An analytical study. KEM 2006, 321, 1411–1414. [Google Scholar] [CrossRef]
- Chen, K.; Xue, G.Q.; Chen, W.Y.; Zhou, N.N.; Li, H. Fine and quantitative evaluations of the water volumes in an aquifer above the coal seam roof, based on TEM. Mine Water Environ. 2019, 38, 49–59. [Google Scholar] [CrossRef]
- Killingbeck, S.F.; Booth, A.D.; Livermore, P.W.; Bates, C.R.; West, L.J. Characterisation of subglacial water using a constrained transdimensional Bayesian transient electromagnetic inversion. Solid Earth 2020, 11, 75–94. [Google Scholar] [CrossRef]
- Killingbeck, S.F.; Dow, C.F.; Unsworth, M.J. A quantitative method for deriving salinity of subglacial water using ground-based transient electromagnetics. J. Glaciol. 2022, 68, 319–336. [Google Scholar] [CrossRef]
- Cheng, J.L.; Wang, H.J.; Xu, Z.Z.; Huang, Q.S.; Jiang, G.Q. Research on aquifer water abundance evaluation by borehole transient electromagnetic method based on FCNN. Coal Geol. Explor. 2023, 51, 26. [Google Scholar]
- Rajab, J.A.; El-Kaliouby, H.; Tarazi, E.A.; Al-Amoush, H. Multiscale geoelectrical characteristics of seawater intrusion along the eastern coast of the Gulf of Aqaba, Jordan. J. Appl. Geophys. 2023, 208, 104868. [Google Scholar] [CrossRef]
- Faghih, Z.; Haroon, A.; Jegen, M.; Gehrmann, R.; Schwalenberg, K.; Micallef, A.; Dettmer, J.; Berndt, C.; Mountjoy, J.; Weymer, B.A. Characterizing offshore freshened groundwater salinity patterns using trans-dimensional Bayesian inversion of controlled source electromagnetic data: A case study from the Canterbury Bight, New Zealand. Water Resour. Res. 2024, 60, e2023WR035714. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, B.Q.; Liu, X.G.; Wei, J.; Ding, R.; Zhao, Y.; Liang, L.; Jia, Z. Study on the Relationship between Lithological Differences and Electromagnetic Changes during Mine Water Inrush. Lithosphere 2025, 2025, lithosphere_2024_184. [Google Scholar] [CrossRef]
- Rupesh, R.; Tiwari, P.; Sharma, S.P. Estimation of geotechnical parameters for coal exploration from Quasi-3D electrical resistivity measurements. Minerals 2024, 14, 102. [Google Scholar] [CrossRef]
- Fasihi, R.; Tizro, A.T.; Marofi, S.; Voudouris, K. Comparative studies of electromagnetic and geoelectrical methods to estimate the porosity and specific yield of karst aquifer, West of Iran. Environ. Earth Sci. 2024, 83, 469. [Google Scholar] [CrossRef]
- Ahmed, A.; Deleersnyder, W.; Dudal, D.; Hermans, T. Stochastic inversion of the fresh-/saltwater interface from electromagnetic data. In Proceedings of the Geologica Belgica–Luxemburga International Meeting, Liège, Belgium, 11–13 September 2024. [Google Scholar]
- Ahmed, A.; Aigner, L.; Michel, H.; Deleersnyder, W.; Dudal, D.; Flores Orozco, A.; Hermans, T. Assessing and improving the robustness of bayesian evidential learning in one dimension for inverting TDEM data: Introducing a new threshold procedure. Water 2024, 16, 1056. [Google Scholar] [CrossRef]
- Bou-Rabee, F.; Yogeshwar, P.; Burberg, S.; Tezkan, B.; Duane, M.; Ibraheem, I.M. Imaging of groundwater salinity and seawater intrusion in Subiya Peninsula, Northern Kuwait, using transient electromagnetics. Water 2025, 17, 652. [Google Scholar] [CrossRef]
- Xie, H.J.; Guo, Y.F.; Li, G.Y.; Li, J.R.; Liu, R.Q.; Liang, Y.Q. Laterally constrained inversion of time-domain transient electromagnetic data and using it for detecting water-rich zones in coal mines. Mine Water Environ. 2025, 1–11. [Google Scholar] [CrossRef]
- Xue, G.Q.; Li, X.; Di, Q.Y. The progress of TEM in theory and application. Prog. Geophys. 2007, 22, 1195–1200. [Google Scholar]
- Zhdanov, M.S. Foundations of Geophysical Electromagnetic Theory and Methods; Elsevier Science: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Zhdanov, M.S. Geophysical Inverse Theory and Regularization Problems; Elsevier Science: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Archie, G.E. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942, 146, 54–62. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teng, X.; Yue, J.; Lu, K.; Xi, D.; Zhang, H.; Wang, K. Petrophysics Parameter Inversion and Its Application Based on the Transient Electromagnetic Method. Appl. Sci. 2025, 15, 6256. https://doi.org/10.3390/app15116256
Teng X, Yue J, Lu K, Xi D, Zhang H, Wang K. Petrophysics Parameter Inversion and Its Application Based on the Transient Electromagnetic Method. Applied Sciences. 2025; 15(11):6256. https://doi.org/10.3390/app15116256
Chicago/Turabian StyleTeng, Xiaozhen, Jianhua Yue, Kailiang Lu, Danyang Xi, Herui Zhang, and Kua Wang. 2025. "Petrophysics Parameter Inversion and Its Application Based on the Transient Electromagnetic Method" Applied Sciences 15, no. 11: 6256. https://doi.org/10.3390/app15116256
APA StyleTeng, X., Yue, J., Lu, K., Xi, D., Zhang, H., & Wang, K. (2025). Petrophysics Parameter Inversion and Its Application Based on the Transient Electromagnetic Method. Applied Sciences, 15(11), 6256. https://doi.org/10.3390/app15116256