Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,654)

Search Parameters:
Keywords = traditional She medicine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7011 KiB  
Article
Monitoring Chrysanthemum Cultivation Areas Using Remote Sensing Technology
by Yin Ye, Meng-Ting Wu, Chun-Juan Pu, Jing-Mei Chen, Zhi-Xian Jing, Ting-Ting Shi, Xiao-Bo Zhang and Hui Yan
Horticulturae 2025, 11(8), 933; https://doi.org/10.3390/horticulturae11080933 (registering DOI) - 7 Aug 2025
Abstract
Chrysanthemum has a long history of medicinal use with rich germplasm resources and extensive cultivation. Traditional chrysanthemum cultivation involves complex patterns and long flowering periods, with the ongoing expansion of planting areas complicating statistical surveys. Currently, reliable, timely, and universally applicable standardized monitoring [...] Read more.
Chrysanthemum has a long history of medicinal use with rich germplasm resources and extensive cultivation. Traditional chrysanthemum cultivation involves complex patterns and long flowering periods, with the ongoing expansion of planting areas complicating statistical surveys. Currently, reliable, timely, and universally applicable standardized monitoring methods for chrysanthemum cultivation areas remain underdeveloped. This research employed 16 m resolution satellite imagery spanning 2021 to 2023 alongside 2 m resolution data acquired in 2022 to quantify chrysanthemum cultivation extent across Sheyang County, Jiangsu Province, China. After evaluating multiple classifiers, Maximum Likelihood Classification was selected as the optimal method. Subsequently, time-series-based post-classification processing was implemented: initial cultivation information extraction was performed through feature comparison, supervised classification, and temporal analysis. Accuracy validation via Overall Accuracy, Kappa coefficient, Producer’s Accuracy, and User’s Accuracy identified critical issues, followed by targeted refinement of spectrally confused features to obtain precise area estimates. The chrysanthemum cultivation area in 2022 was quantified as 46,950,343 m2 for 2 m resolution and 46,332,538 m2 for 16 m resolution. Finally, the conversion ratio characteristics between resolutions were analyzed, yielding adjusted results of 38,466,192 m2 for 2021 and 47,546,718 m2 for 2023, respectively. These outcomes demonstrate strong alignment with local agricultural statistics, confirming method viability for chrysanthemum cultivation area computation. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

17 pages, 3578 KiB  
Article
Space Medicine Meets Serious Games: Boosting Engagement with the Medimon Creature Collector
by Martin Hundrup, Jessi Holte, Ciara Bordeaux, Emma Ferguson, Joscelyn Coad, Terence Soule and Tyler Bland
Multimodal Technol. Interact. 2025, 9(8), 80; https://doi.org/10.3390/mti9080080 - 7 Aug 2025
Abstract
Serious games that integrate educational content with engaging gameplay mechanics hold promise for reducing cognitive load and increasing student motivation in STEM and health science education. This preliminary study presents the development and evaluation of the Medimon NASA Demo, a game-based learning prototype [...] Read more.
Serious games that integrate educational content with engaging gameplay mechanics hold promise for reducing cognitive load and increasing student motivation in STEM and health science education. This preliminary study presents the development and evaluation of the Medimon NASA Demo, a game-based learning prototype designed to teach undergraduate students about the musculoskeletal and visual systems—two critical domains in space medicine. Participants (n = 23) engaged with the game over a two-week self-regulated learning period. The game employed mnemonic-based characters, visual storytelling, and turn-based battle mechanics to reinforce medical concepts. Quantitative results demonstrated significant learning gains, with posttest scores increasing by an average of 23% and a normalized change of c = 0.4. Engagement levels were high across multiple dimensions of situational interest, and 74% of participants preferred the game over traditional formats. Qualitative analysis of open-ended responses revealed themes related to intrinsic appeal, perceived learning efficacy, interaction design, and cognitive resource management. While the game had minimal impact on short-term STEM career interest, its educational potential was clearly supported. These findings suggest that mnemonic-driven serious games like Medimon can effectively enhance engagement and learning in health science education, especially when aligned with real-world contexts such as space medicine. Full article
(This article belongs to the Special Issue Video Games: Learning, Emotions, and Motivation)
Show Figures

Figure 1

26 pages, 3951 KiB  
Article
Exploring the Bioactive Potential and Chemical Profile of Schinus molle Essential Oil: An Integrated In Silico and In Vitro Evaluation
by Rómulo Oses, Matías Ferrando, Flavia Bruna, Patricio Retamales, Myriam Navarro, Katia Fernández, Waleska Vera, María José Larrazábal, Iván Neira, Adrián Paredes, Manuel Osorio, Osvaldo Yáñez, Martina Jacobs and Jessica Bravo
Plants 2025, 14(15), 2449; https://doi.org/10.3390/plants14152449 - 7 Aug 2025
Abstract
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract [...] Read more.
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract (SM_EO) through in vitro and in silico approaches. In vitro, the antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and human epithelial tumor cell lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the SM_EO was analyzed using gas chromatography–mass spectrometry. The oil contained four major monoterpenes: α-phellandrene (34%), β-myrcene (23%), limonene (13%), and β-phellandrene (7%). Based on quantum mechanical calculations, the reactivity of the molecules present in the SM_EO was estimated. The results indicated that α- phellandrene, β-phellandrene, and β-myrcene showed the highest nucleophilic activity. In addition, the compounds following these as candidates for antioxidant and antiproliferative activities were α-phellandrene, β-phellandrene, ρ-cymene, sabinene, caryophyllene, l-limonene, and α-pinene, highlighting β-myrcene. Based on ADME-Tox properties, it is feasible to use these compounds as new drug candidates. Moreover, the antibacterial activity MIC value obtained for B. cereus was equivalent to 2 μg/mL, and for Y. enterocolitica, S. enteritidis, and S. typhimurium, the MIC value was 32.5 μg/μL. SM_EO could selectively inhibit the proliferation of human epithelial mammary tumor MCF7 cells treated with SM_EOs at 64 and 16 ug/mL—a significant increase in BCL-2 in a dose-dependent manner—and showed low toxicity against Caenorhabditis elegans (from 10 to 0.078 mg·mL−1). These findings suggest that SM_EO may be a potential source of bioactive compounds, encouraging further investigation for applications in veterinary medicine, cosmetics, and sanitation. Full article
Show Figures

Graphical abstract

25 pages, 1054 KiB  
Review
Gut Feeling: Biomarkers and Biosensors’ Potential in Revolutionizing Inflammatory Bowel Disease (IBD) Diagnosis and Prognosis—A Comprehensive Review
by Beatriz Teixeira, Helena M. R. Gonçalves and Paula Martins-Lopes
Biosensors 2025, 15(8), 513; https://doi.org/10.3390/bios15080513 - 7 Aug 2025
Abstract
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on [...] Read more.
Inflammatory Bowel Diseases (IBDs) are complex, multifactorial disorders with no known cure, necessitating lifelong care and often leading to surgical interventions. This ongoing healthcare requirement, coupled with the increased use of biological drugs and rising disease prevalence, significantly increases the financial burden on the healthcare systems. Thus, a number of novel technological approaches have emerged in order to face some of the pivotal questions still associated with IBD. In navigating the intricate landscape of IBD, biosensors act as indispensable allies, bridging the gap between traditional diagnostic methods and the evolving demands of precision medicine. Continuous progress in biosensor technology holds the key to transformative breakthroughs in IBD management, offering more effective and patient-centric healthcare solutions considering the One Health Approach. Here, we will delve into the landscape of biomarkers utilized in the diagnosis, monitoring, and management of IBD. From well-established serological and fecal markers to emerging genetic and epigenetic markers, we will explore the role of these biomarkers in aiding clinical decision-making and predicting treatment response. Additionally, we will discuss the potential of novel biomarkers currently under investigation to further refine disease stratification and personalized therapeutic approaches in IBD. By elucidating the utility of biosensors across the spectrum of IBD care, we aim to highlight their importance as valuable tools in optimizing patient outcomes and reducing healthcare costs. Full article
(This article belongs to the Special Issue Feature Papers of Biosensors)
Show Figures

Figure 1

18 pages, 5124 KiB  
Article
Effects of Different Drying Methods on the Quality of Forest Ginseng Revealed Based on Metabolomics and Enzyme Activity
by Junjia Xing, Xue Li, Wenyu Dang, Limin Yang, Lianxue Zhang, Wei Li, Yan Zhao, Jiahong Han and Enbo Cai
Foods 2025, 14(15), 2753; https://doi.org/10.3390/foods14152753 - 7 Aug 2025
Abstract
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) [...] Read more.
Forest ginseng (FG) is a rare medicinal and culinary plant in China, and its drying quality is heavily dependent on the drying method. This study investigated the effects of traditional hot air drying (HAD) and the self-developed negative-pressure circulating airflow-assisted desiccator drying (PCAD) method on the quality of FG using metabolomics and enzyme activity. The results revealed that the enzyme activities of dried FG were reduced considerably. PCAD preserved higher enzyme activity than HAD. Metabolomics data demonstrate that HAD promotes the formation of primary metabolites (amino acids, lipids, nucleotides, etc.), whereas PCAD promotes the formation of secondary metabolites (terpenoids, phenolic acids, etc.). A change-transformation network was built by combining the metabolites listed above and their biosynthetic pathways, and it was discovered that these biosynthetic pathways were primarily associated with the mevalonate (MVA) pathway, lipid metabolism, phenylpropane biosynthesis, and nucleotide metabolism. It is also believed that these findings are related to the chemical stimulation induced by thermal degradation and the ongoing catalysis of enzyme responses to drought stress. The facts presented above will give a scientific basis for the selection of FG drying processes, as well as helpful references for increasing the nutritional quality of processed FG. Full article
Show Figures

Figure 1

102 pages, 29310 KiB  
Article
“We Begin in Water, and We Return to Water”: Track Rock Tradition Petroglyphs of Northern Georgia and Western North Carolina
by Johannes H. Loubser
Arts 2025, 14(4), 89; https://doi.org/10.3390/arts14040089 - 6 Aug 2025
Abstract
Petroglyph motifs from 23 sites and 37 panels in northern Georgia and western North Carolina foothills and mountains are analyzed within their archaeological, ethnographic, and landscape contexts. The Track Rock Tradition comprises 10 chronologically sequenced marking categories: (1) Cupules/Meanders/Open Circles; (2) Soapstone Extraction [...] Read more.
Petroglyph motifs from 23 sites and 37 panels in northern Georgia and western North Carolina foothills and mountains are analyzed within their archaeological, ethnographic, and landscape contexts. The Track Rock Tradition comprises 10 chronologically sequenced marking categories: (1) Cupules/Meanders/Open Circles; (2) Soapstone Extraction cars; (3) Vulva Shapes; (4) Figures; (5) Feet/Hands/Tracks; (6) Nested Circles; (7) Cross-in-Circles; (8) Spirals; (9) Straight Lines; and (10) Thin Incised Lines. Dating spans approximately 3800 years. Early cupules and meanders predate 3000 years ago, truncated by Late Archaic soapstone extraction. Woodland period (3000–1050 years ago) motifs include vulva shapes, figures, feet, tracks, and hands. Early Mississippian concentric circles date to 1050–600 years ago, while Middle Mississippian cross-in-circles span 600–350 years ago. Late Mississippian spirals (350–200 years ago) and post-contact metal tool incisions represent the most recent phases. The Track Rock Tradition differs from western Trapp and eastern Hagood Mill traditions. Given the spatial overlap with Iroquoian-speaking Cherokee territory, motifs are interpreted through Cherokee beliefs, supplemented by related Muskogean Creek ethnography. In Cherokee cosmology, the matrilocal Thunderers hierarchy includes the Female Sun/Male Moon, Selu (Corn Mother)/Kanati (Lucky Hunter), Medicine Woman/Judaculla (Master of Game), and Little People families. Ritual practitioners served as intermediaries between physical and spirit realms through purification, fasting, body scratching, and rock pecking. Meanders represent trails, rivers, and lightning. Cupules and lines emphasize the turtle appearance of certain rocks. Vulva shapes relate to fertility, while tracks connect to life-giving abilities. Concentric circles denote townhouses; cross-in-circles and spirals represent central fires. The tradition shows continuity in core beliefs despite shifting emphases from hunting (Woodland) to corn cultivation (Mississippian), with petroglyphs serving as necessary waypoints for spiritual supplicants. Full article
(This article belongs to the Special Issue Advances in Rock Art Studies)
Show Figures

Figure 1

28 pages, 6652 KiB  
Article
White Light Spectroscopy for Sampling-Free Bacterial Contamination Detection During CAR T-Cells Production: Towards an On-Line and Real-Time System
by Bruno Wacogne, Naïs Vaccari, Claudia Koubevi, Charles-Louis Azzopardi, Bilal Karib, Alain Rouleau and Annie Frelet-Barrand
Biosensors 2025, 15(8), 512; https://doi.org/10.3390/bios15080512 (registering DOI) - 6 Aug 2025
Abstract
Advanced therapy medicinal products (ATMPs), especially effective against cancer, remain costly due to their reliance on genetically modified T cells. Contamination during production is a major concern, as traditional quality control methods involve samplings, which can themselves introduce contaminants. It is therefore necessary [...] Read more.
Advanced therapy medicinal products (ATMPs), especially effective against cancer, remain costly due to their reliance on genetically modified T cells. Contamination during production is a major concern, as traditional quality control methods involve samplings, which can themselves introduce contaminants. It is therefore necessary to develop methods for detecting contamination without sampling and, if possible, in real time. In this article, we present a white light spectroscopy method that makes this possible. It is based on shape analysis of the absorption spectrum, which evolves from an approximately Gaussian shape to a shape modified by the 1/λ component of bacterial absorption spectra when contamination develops. A warning value based on this shape descriptor is proposed. It is demonstrated that a few hours are sufficient to detect contamination and trigger an alarm to quickly stop the production. This time-saving should reduce the cost of these new drugs, making them accessible to as many people as possible. This method can be used regardless of the type of contaminants, provided that the shape of their absorption spectrum is sufficiently different from that of pure T cells so that the shape descriptor is efficient. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring)
Show Figures

Figure 1

17 pages, 3354 KiB  
Article
Quantitative Analysis of Adulteration in Anoectochilus roxburghii Powder Using Hyperspectral Imaging and Multi-Channel Convolutional Neural Network
by Ziyuan Liu, Tingsong Zhang, Haoyuan Ding, Zhangting Wang, Hongzhen Wang, Lu Zhou, Yujia Dai and Yiqing Xu
Agronomy 2025, 15(8), 1894; https://doi.org/10.3390/agronomy15081894 - 6 Aug 2025
Abstract
Adulteration detection in medicinal plant powders remains a critical challenge in quality control. In this study, we propose a hyperspectral imaging (HSI)-based method combined with deep learning models to quantitatively analyze adulteration levels in Anoectochilus roxburghii powder. After preprocessing the spectral data using [...] Read more.
Adulteration detection in medicinal plant powders remains a critical challenge in quality control. In this study, we propose a hyperspectral imaging (HSI)-based method combined with deep learning models to quantitatively analyze adulteration levels in Anoectochilus roxburghii powder. After preprocessing the spectral data using raw, first-order, and second-order Savitzky–Golay derivatives, we systematically evaluated the performance of traditional machine learning models (Random Forest, Support Vector Regression, Partial Least Squares Regression) and deep learning architectures. While traditional models achieved reasonable accuracy (R2 up to 0.885), their performance was limited by feature extraction and generalization ability. A single-channel convolutional neural network (CNN) utilizing individual spectral representations improved performance marginally (maximum R2 = 0.882), but still failed to fully capture the multi-scale spectral features. To overcome this, we developed a multi-channel CNN that simultaneously integrates raw, SG-1, and SG-2 spectra, effectively leveraging complementary spectral information. This architecture achieved a significantly higher prediction accuracy (R2 = 0.964, MSE = 0.005), demonstrating superior robustness and generalization. The findings highlight the potential of multi-channel deep learning models in enhancing quantitative adulteration detection and ensuring the authenticity of herbal products. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

31 pages, 3977 KiB  
Article
Exploring the Cytokinin Profile of Doliocarpus dentatus (Aubl.) Standl. From Guyana and Its Relationship with Secondary Metabolites: Insights into Potential Therapeutic Benefits
by Ewart A. Smith, Ainsely Lewis, Erin N. Morrison, Kimberly Molina-Bean, Suresh S. Narine and R. J. Neil Emery
Metabolites 2025, 15(8), 533; https://doi.org/10.3390/metabo15080533 - 6 Aug 2025
Abstract
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, [...] Read more.
Background/Objectives: Possessing red and white ecotypes, and utilized in traditional Guyanese medicine, Doliocarpus dentatus’ red ecotype is preferred locally for its purported superior therapeutic efficacy. Although therapeutic metabolites were detected in D. dentatus previously, phytohormones remain largely unexplored, until now. Cytokinins, phytohormones responsible for plant cell division, growth and differentiation, are gaining traction for their therapeutic potential in human health. This study screened and quantified endogenous cytokinins and correlated detected cytokinins with selected secondary metabolites. Methods: Liquid chromatography–mass spectrometry was used to acquire phytohormone and metabolite data. Bioinformatics tools were used to assess untargeted metabolomics datasets via statistical and pathway analyses, and chemical groupings of putative metabolites. Results: In total, 20 of the 35 phytohormones were detected and quantified in both ecotypes, with the red ecotype displaying higher free base and glucoside cytokinin concentrations and exhibited 6.2 times the total CK content when compared to the white ecotype. Pathway analysis revealed flavonoid and monoterpenoid biosynthesis in red and white ecotypes, respectively. Positive correlations between specific cytokinins and alkaloids, and between trans-Zeatin and isopentenyladenosine riboside with phenolic compounds were observed. Conclusions: These results suggest that the red ecotype’s elevated cytokinin levels coupled with flavonoid biosynthesis enrichment support its preference in Guyanese traditional medicine. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

13 pages, 286 KiB  
Review
Drug Repurposing and Artificial Intelligence in Multiple Sclerosis: Emerging Strategies for Precision Therapy
by Pedro Henrique Villar-Delfino, Paulo Pereira Christo and Caroline Maria Oliveira Volpe
Sclerosis 2025, 3(3), 28; https://doi.org/10.3390/sclerosis3030028 - 6 Aug 2025
Abstract
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional [...] Read more.
Multiple sclerosis (MS) is a chronic, immune-mediated disorder of the central nervous system (CNS) characterized by inflammation, demyelination, axonal degeneration, and gliosis. Its pathophysiology involves a complex interplay of genetic susceptibility, environmental triggers, and immune dysregulation, ultimately leading to progressive neurodegeneration and functional decline. Although significant advances have been made in disease-modifying therapies (DMTs), many patients continue to experience disease progression and unmet therapeutic needs. Drug repurposing—the identification of new indications for existing drugs—has emerged as a promising strategy in MS research, offering a cost-effective and time-efficient alternative to traditional drug development. Several compounds originally developed for other diseases, including immunomodulatory, anti-inflammatory, and neuroprotective agents, are currently under investigation for their efficacy in MS. Repurposed agents, such as selective sphingosine-1-phosphate (S1P) receptor modulators, kinase inhibitors, and metabolic regulators, have demonstrated potential in promoting neuroprotection, modulating immune responses, and supporting remyelination in both preclinical and clinical settings. Simultaneously, artificial intelligence (AI) is transforming drug discovery and precision medicine in MS. Machine learning and deep learning models are being employed to analyze high-dimensional biomedical data, predict drug–target interactions, streamline drug repurposing workflows, and enhance therapeutic candidate selection. By integrating multiomics and neuroimaging data, AI tools facilitate the identification of novel targets and support patient stratification for individualized treatment. This review highlights recent advances in drug repurposing and discovery for MS, with a particular emphasis on the emerging role of AI in accelerating therapeutic innovation and optimizing treatment strategies. Full article
Show Figures

Graphical abstract

14 pages, 650 KiB  
Review
Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine
by Fábio Ramos Costa, Joseph Purita, Rubens Martins, Bruno Costa, Lucas Villasboas de Oliveira, Stephany Cares Huber, Gabriel Silva Santos, Luyddy Pires, Gabriel Azzini, André Kruel and José Fábio Lana
Cells 2025, 14(15), 1206; https://doi.org/10.3390/cells14151206 - 6 Aug 2025
Abstract
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked [...] Read more.
Platelet-rich plasma (PRP) is widely used in regenerative medicine, yet clinical outcomes remain inconsistent. While traditional strategies have focused on platelet concentration and activation methods, emerging evidence suggests that the biological age of platelets, especially platelet senescence, may be a critical but overlooked factor influencing therapeutic efficacy. Senescent platelets display reduced granule content, impaired responsiveness, and heightened pro-inflammatory behavior, all of which can compromise tissue repair and regeneration. This review explores the mechanisms underlying platelet aging, including oxidative stress, mitochondrial dysfunction, and systemic inflammation, and examines how these factors influence PRP performance across diverse clinical contexts. We discuss the functional consequences of platelet senescence, the impact of comorbidities and aging on PRP quality, and current tools to assess platelet functionality, such as HLA-I–based flow cytometry. In addition, we present strategies for pre-procedural optimization, advanced processing techniques, and adjunctive therapies aimed at enhancing platelet quality. Finally, we challenge the prevailing emphasis on high-volume blood collection, highlighting the limitations of quantity-focused protocols and advocating for a shift toward biologically precise, function-driven regenerative interventions. Recognizing and addressing platelet senescence is a key step toward unlocking the full therapeutic potential of PRP-based interventions. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

33 pages, 5098 KiB  
Review
Medicinal Plants for Skin Disorders: Phytochemistry and Pharmacological Insights
by Nazerke Bolatkyzy, Daniil Shepilov, Rakhymzhan Turmanov, Dmitriy Berillo, Tursunay Vassilina, Nailya Ibragimova, Gulzat Berganayeva and Moldyr Dyusebaeva
Molecules 2025, 30(15), 3281; https://doi.org/10.3390/molecules30153281 - 6 Aug 2025
Abstract
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally [...] Read more.
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally used in the treatment of skin diseases, including Rubus vulgaris, Plantago major, Artemisia terrae-albae, and Eryngium planum. Based on an analysis of scientific literature, the presence of bioactive compounds—including flavonoids, anthocyanins, phenolic acids, tannins, and sesquiterpenes—is summarized, along with their antioxidant, anti-inflammatory, and antimicrobial effects. Emphasis is placed on the correlation between traditional ethnomedicinal applications and pharmacological mechanisms. The findings support the potential of these species as sources for dermatological phytotherapeutics. Further research is needed to standardize active constituents, assess safety, and conduct clinical validation. Full article
(This article belongs to the Special Issue Bioactive Molecules in Medicinal Plants)
Show Figures

Figure 1

23 pages, 2394 KiB  
Article
Functional, Antioxidant, and Antimicrobial Profile of Medicinal Leaves from the Amazon
by Gabriela Méndez, Elena Coyago-Cruz, Paola Lomas, Marco Cerna and Jorge Heredia-Moya
Antioxidants 2025, 14(8), 965; https://doi.org/10.3390/antiox14080965 - 5 Aug 2025
Abstract
The Amazon region is home to a remarkable diversity of plant species that are used in traditional medicine and cuisine. This study aimed to evaluate the functional, antioxidant, and antimicrobial properties of the leaves of Allium schoenoprasum, Brugmansia candida (white and pink), [...] Read more.
The Amazon region is home to a remarkable diversity of plant species that are used in traditional medicine and cuisine. This study aimed to evaluate the functional, antioxidant, and antimicrobial properties of the leaves of Allium schoenoprasum, Brugmansia candida (white and pink), and Cyclanthemum bipartitum. Bioactive compounds (L-ascorbic acid, organic acids, carotenoids, phenolic compounds, and chlorophylls) were quantified using liquid chromatography. The ABTS and DPPH methods were used to assess the antioxidant capacity. Additionally, the antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans, Candida albicans, and Candida tropicalis was evaluated. The results revealed a high content of L-ascorbic acid (7.6 mg/100 g dry weight) and total carotenoids (509.0 mg/100 g dry weight), as well as high antioxidant capacity (4.5 mmol TE/100 g dry weight) and broad antimicrobial activity in Brugmansia candida ‘pink’. The White variety had the highest concentration of total chlorophylls (1742.8 mg/100 g DW), Cyclanthemum bipartitum had the highest total organic acid content (2814.5 mg/100 g DW), and Allium schoenoprasum had the highest concentration of total phenolic compounds (11,351.6 mg/100 g DW). These results constitute a starting point for future research, emphasizing the potential health risks that certain species may pose. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential, 2nd Edition)
Show Figures

Figure 1

15 pages, 1302 KiB  
Article
Screening of Medicinal Herbs Identifies Cimicifuga foetida and Its Bioactive Component Caffeic Acid as SARS-CoV-2 Entry Inhibitors
by Ching-Hsuan Liu, Yu-Ting Kuo, Chien-Ju Lin, Feng-Lin Yen, Shu-Jing Wu and Liang-Tzung Lin
Viruses 2025, 17(8), 1086; https://doi.org/10.3390/v17081086 - 5 Aug 2025
Abstract
The emergence of SARS-CoV-2 variants highlights the urgent need for novel therapeutic strategies, particularly entry inhibitors that could efficiently prevent viral infection. Medicinal herbs and herbal combination formulas have long been recognized for their effects in treating infectious diseases and their antiviral properties, [...] Read more.
The emergence of SARS-CoV-2 variants highlights the urgent need for novel therapeutic strategies, particularly entry inhibitors that could efficiently prevent viral infection. Medicinal herbs and herbal combination formulas have long been recognized for their effects in treating infectious diseases and their antiviral properties, thus providing abundant resources for the discovery of antiviral candidates. While many candidates have been suggested to have antiviral activity against SARS-CoV-2 infection, few have been validated for their mechanisms, including possible effects on viral entry. This study aimed to identify SARS-CoV-2 entry inhibitors from medicinal herbs and herbal formulas that are known for heat-clearing and detoxifying properties and/or antiviral activities. A SARS-CoV-2 pseudoparticle (SARS-CoV-2pp) system was used to assess mechanism-specific entry inhibition. Our results showed that the methanol extract of Anemarrhena asphodeloides rhizome, as well as the water extracts of Cimicifuga foetida rhizome, Xiao Chai Hu Tang (XCHT), and Sheng Ma Ge Gen Tang (SMGGT), have substantial inhibitory effects on the entry of SARS-CoV-2pps into host cells. Given the observation that Cimicifuga foetida exhibited the most potent inhibition and is a constituent of SMGGT, we further investigated the major compounds of the herb and identified caffeic acid as a bioactive component for blocking SARS-CoV-2pp entry. Entry inhibition of Cimicifuga foetida and caffeic acid was validated on both wild-type and the currently dominant JN.1 strain SARS-CoV-2pp systems. Moreover, caffeic acid was able to both inactivate the pseudoparticles and prevent their entry into pretreated host cells. The results support the traditional use of these herbal medicines and underscore their potential as valuable resources for identifying active compounds and developing therapeutic entry inhibitors for the management of COVID-19. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

25 pages, 723 KiB  
Review
Quantitative Variables Derived from the Electroencephalographic Signal to Assess Depth of Anaesthesia in Animals: A Narrative Review
by Susanne Figueroa, Olivier L. Levionnois and Alessandro Mirra
Animals 2025, 15(15), 2285; https://doi.org/10.3390/ani15152285 - 5 Aug 2025
Viewed by 18
Abstract
Accurately assessing the depth of anaesthesia in animals remains a challenge, as traditional monitoring methods fail to capture subtle changes in brain activity. This review aimed to systematically map and critically evaluate the range of quantitative variables derived from electroencephalography (EEG) used to [...] Read more.
Accurately assessing the depth of anaesthesia in animals remains a challenge, as traditional monitoring methods fail to capture subtle changes in brain activity. This review aimed to systematically map and critically evaluate the range of quantitative variables derived from electroencephalography (EEG) used to monitor sedation or anaesthesia in live animals, excluding laboratory rodents, over the past 35 years. Studies were identified through comprehensive searches in major biomedical databases (PubMed, Embase, CAB Abstract). To be included, studies had to report EEG use in relation to anaesthesia or sedation in living animals. A total of 169 studies were selected after screening and data extraction. Information was charted by animal species and reported EEG-derived variables. The most frequently reported variables were spectral edge frequencies, spectral power metrics, suppression ratio, and proprietary indices, such as the Bispectral Index. Methodological variability was high, and no consensus emerged on optimal EEG measures across species. While EEG-derived quantitative variables provide valuable insights, their interpretation remains highly context-dependent. Further research is necessary to refine these methods, explore variable combinations, and improve their clinical relevance in veterinary medicine. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

Back to TopTop