Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine
Abstract
1. Introduction
2. The Biology of Platelet Aging
3. Mechanisms and Drivers of Senescence
4. Clinical and Functional Implications in PRP Therapy
5. Strategies for Optimization and Platelet Quality Enhancement
6. Future Directions and Clinical Translation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- dos Santos, R.G.; Santos, G.S.; Alkass, N.; Chiesa, T.L.; Azzini, G.O.; da Fonseca, L.F.; dos Santos, A.F.; Rodrigues, B.L.; Mosaner, T.; Lana, J.F. The Regenerative Mechanisms of Platelet-Rich Plasma: A Review. Cytokine 2021, 144, 155560. [Google Scholar] [CrossRef] [PubMed]
- Everts, P.A.; Lana, J.F.; Alexander, R.W.; Dallo, I.; Kon, E.; Ambach, M.A.; van Zundert, A.; Podesta, L. Profound Properties of Protein-Rich, Platelet-Rich Plasma Matrices as Novel, Multi-Purpose Biological Platforms in Tissue Repair, Regeneration, and Wound Healing. Int. J. Mol. Sci. 2024, 25, 7914. [Google Scholar] [CrossRef] [PubMed]
- DeLong, J.M.; Russell, R.P.; Mazzocca, A.D. Platelet-Rich Plasma: The PAW Classification System. Arthrosc. J. Arthrosc. Relat. Surg. 2012, 28, 998–1009. [Google Scholar] [CrossRef]
- Lana, J.F.S.D.; Purita, J.; Paulus, C.; Huber, S.C.; Rodrigues, B.L.; Rodrigues, A.A.; Santana, M.H.; Madureira, J.L.; Luzo, Â.C.M.; Belangero, W.D.; et al. Contributions for Classification of Platelet Rich Plasma—Proposal of a New Classification: MARSPILL. Regen. Med. 2017, 12, 565–574. [Google Scholar] [CrossRef]
- Allan, H.E.; Vadgama, A.; Armstrong, P.C.; Warner, T.D. What Can We Learn from Senescent Platelets, Their Transcriptomes and Proteomes? Platelets 2023, 34, 2200838. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xie, R.; Fan, Z.; Yang, J.; Liang, W.; Wu, Q.; Wu, M.X.; Wang, Z.; Lu, Y. The Contribution of Oxidative Stress to Platelet Senescence during Storage. Transfusion 2019, 59, 2389–2402. [Google Scholar] [CrossRef]
- Iyer, K.S.; Dayal, S. Modulators of Platelet Function in Aging. Platelets 2020, 31, 474–482. [Google Scholar] [CrossRef]
- Patel, H.; Pundkar, A.; Shrivastava, S.; Chandanwale, R.; Jaiswal, A.M. A Comprehensive Review on Platelet-Rich Plasma Activation: A Key Player in Accelerating Skin Wound Healing. Cureus 2023, 15, e48943. [Google Scholar] [CrossRef]
- Josefsson, E.C.; Vainchenker, W.; James, C. Regulation of Platelet Production and Life Span: Role of Bcl-xL and Potential Implications for Human Platelet Diseases. Int. J. Mol. Sci. 2020, 21, 7591. [Google Scholar] [CrossRef]
- Anjum, A.; Mader, M.; Mahameed, S.; Muraly, A.; Denorme, F.; Kliem, F.P.; Rossaro, D.; Agköl, S.; Di Fina, L.; Mulkers, M.; et al. Aging Platelets Shift Their Hemostatic Properties to Inflammatory Functions. Blood 2025, 145, 1568–1582. [Google Scholar] [CrossRef]
- Jones, C.I. Platelet Function and Ageing. Mamm. Genome 2016, 27, 358–366. [Google Scholar] [CrossRef]
- Allan, H.E.; Vadgama, A.; Armstrong, P.C.; Warner, T.D. Platelet Ageing: A Review. Thromb. Res. 2023, 231, 214–222. [Google Scholar] [CrossRef]
- Hamad, M.A.; Krauel, K.; Schanze, N.; Gauchel, N.; Stachon, P.; Nuehrenberg, T.; Zurek, M.; Duerschmied, D. Platelet Subtypes in Inflammatory Settings. Front. Cardiovasc. Med. 2022, 9, 823549. [Google Scholar] [CrossRef]
- Angénieux, C.; Couvidou, A.; Brouard, N.; Eckly, A.; Dupuis, A.; Mangin, P.H.; Maître, B. Discriminating Young Platelets on Human Leukocyte Antigen-I Expression Highlights Their Extremely High Reactivity Potential. Res. Pract. Thromb. Haemost. 2023, 7, 100006. [Google Scholar] [CrossRef]
- Gutiérrez, L. “When I’m 64”: Functional Shift of Aging Platelets. Blood 2025, 145, 1447–1449. [Google Scholar] [CrossRef]
- Cheah, L.T.; Hindle, M.S.; Khalil, J.S.; Duval, C.; Unsworth, A.J.; Naseem, K.M. Platelet Reactive Oxygen Species, Oxidised Lipid Stress, Current Perspectives, and an Update on Future Directions. Cells 2025, 14, 500. [Google Scholar] [CrossRef]
- Allan, H.E.; Hayman, M.A.; Marcone, S.; Chan, M.V.; Edin, M.L.; Maffucci, T.; Joshi, A.; Menke, L.; Crescente, M.; Mayr, M.; et al. Proteome and Functional Decline as Platelets Age in the Circulation. J. Thromb. Haemost. 2021, 19, 3095–3112. [Google Scholar] [CrossRef]
- Masselli, E.; Pozzi, G.; Vaccarezza, M.; Mirandola, P.; Galli, D.; Vitale, M.; Carubbi, C.; Gobbi, G. ROS in Platelet Biology: Functional Aspects and Methodological Insights. Int. J. Mol. Sci. 2020, 21, 4866. [Google Scholar] [CrossRef] [PubMed]
- Manasa, K.; Vani, R. Influence of Oxidative Stress on Stored Platelets. Adv. Hematol. 2016, 2016, 4091461. [Google Scholar] [CrossRef] [PubMed]
- Tey, R.V.; Haldankar, P.; Joshi, V.R.; Raj, R.; Maradi, R. Variability in Platelet-Rich Plasma Preparations Used in Regenerative Medicine: A Comparative Analysis. Stem Cells Int. 2022, 2022, 3852898. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Kandwal, A.; Negi, G.; Chandra, H. Factors Affecting the Quantity and Quality of Platelet-Rich Plasma and Platelet-Derived Growth Factor-BB: An Observational Study. J. Bio-X Res. 2021, 04, 67–70. [Google Scholar] [CrossRef]
- Dayal, S.; Wilson, K.M.; Motto, D.G.; Miller, F.J.; Chauhan, A.K.; Lentz, S.R. Hydrogen Peroxide Promotes Aging-Related Platelet Hyperactivation and Thrombosis. Circulation 2013, 127, 1308–1316. [Google Scholar] [CrossRef]
- Di Marzo, N.; Chisci, E.; Giovannoni, R. The Role of Hydrogen Peroxide in Redox-Dependent Signaling: Homeostatic and Pathological Responses in Mammalian Cells. Cells 2018, 7, 156. [Google Scholar] [CrossRef]
- Ehinger, J.K.; Westerlund, E.; Frostner, E.Å.; Karlsson, M.; Paul, G.; Sjövall, F.; Elmér, E. Mitochondrial Function in Peripheral Blood Cells across the Human Lifespan. npj Aging 2024, 10, 10. [Google Scholar] [CrossRef] [PubMed]
- Santilli, F.; Vazzana, N.; Liani, R.; Guagnano, M.T.; Davì, G. Platelet Activation in Obesity and Metabolic Syndrome. Obes. Rev. 2012, 13, 27–42. [Google Scholar] [CrossRef]
- Gu, S.X.; Dayal, S. Inflammation Mediated Platelet Hyperactivity in Aging. Ann. Blood 2020, 5, 10. [Google Scholar] [CrossRef]
- Davizon-Castillo, P.; McMahon, B.; Aguila, S.; Bark, D.; Ashworth, K.; Allawzi, A.; Campbell, R.A.; Montenont, E.; Nemkov, T.; D’Alessandro, A.; et al. TNF-α–Driven Inflammation and Mitochondrial Dysfunction Define the Platelet Hyperreactivity of Aging. Blood 2019, 134, 727–740. [Google Scholar] [CrossRef]
- Webb, C.E.; Vautrinot, J.; Hers, I. IL-6 as a Mediator of Platelet Hyper-Responsiveness. Cells 2025, 14, 766. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, C.A.; Quintanilla, R.; Moore-Carrasco, R.; Brown, N.E. The Potential Role of Senescence As a Modulator of Platelets and Tumorigenesis. Front. Oncol. 2017, 7, 188. [Google Scholar] [CrossRef]
- Kakouros, N.; Rade, J.J.; Kourliouros, A.; Resar, J.R. Platelet Function in Patients with Diabetes Mellitus: From a Theoretical to a Practical Perspective. Int. J. Endocrinol. 2011, 2011, 742719. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.; Huang, R.J.; Stevens, M.V.; Aponte, A.M.; Tripodi, D.; Kim, K.Y.; Sack, M.N. Platelet Mitochondrial Dysfunction Is Evident in Type 2 Diabetes in Association with Modifications of Mitochondrial Anti-Oxidant Stress Proteins. Exp. Clin. Endocrinol. Diabetes 2012, 120, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Karina; Wahyuningsih, K.A.; Sobariah, S.; Rosliana, I.; Rosadi, I.; Widyastuti, T.; Afini, I.; Wanandi, S.I.; Soewondo, P.; Wibowo, H.; et al. Evaluation of Platelet-Rich Plasma from Diabetic Donors Shows Increased Platelet Vascular Endothelial Growth Factor Release. Stem Cell Investig. 2019, 6, 43. [Google Scholar] [CrossRef] [PubMed]
- Arnoldussen, I.A.C.; Witkamp, R.F. Effects of Nutrients on Platelet Function: A Modifiable Link between Metabolic Syndrome and Neurodegeneration? Biomolecules 2021, 11, 1455. [Google Scholar] [CrossRef]
- Lana, J.V.; Lana, J.F.; Melo, G.; Azzini, G.O.M.; Santos, G.S.; Mosaner, T.; Jorge, D.d.M.F.; da Fonseca, L.F.; Kruel, A.; Costa, F.R.; et al. SDIMMMER: A Proposed Clinical Approach to Optimize Cellular Physiology in Regenerative Medicine. Life 2024, 14, 1287. [Google Scholar] [CrossRef]
- da Fonseca, L.F.; Santos, G.S.; Azzini, G.; Mosaner, T.; Jorge, D.D.; de Macedo, A.P.; Huber, S.C.; Sobreiro, P.; Dallo, I.; Jeyaraman, M.; et al. Preparing the Soil: Adjusting the Metabolic Health of Patients with Chronic Wounds and Musculoskeletal Diseases. Int. Wound J. 2024, 21, e70056. [Google Scholar] [CrossRef]
- Zhang, B.; Zehnder, J.L. Oxidative Stress and Immune Thrombocytopenia. Semin. Hematol. 2013, 50, e1–e4. [Google Scholar] [CrossRef]
- Arauna, D.; Navarrete, S.; Albala, C.; Wehinger, S.; Pizarro-Mena, R.; Palomo, I.; Fuentes, E. Understanding the Role of Oxidative Stress in Platelet Alterations and Thrombosis Risk among Frail Older Adults. Biomedicines 2024, 12, 2004. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Law, S.F.; Pignolo, R.J. Changing Landscape of Hematopoietic and Mesenchymal Cells and Their Interactions during Aging and in Age-Related Skeletal Pathologies. Mech. Ageing Dev. 2025, 225, 112059. [Google Scholar] [CrossRef]
- Faria, A.V.S.; Andrade, S.S.; Peppelenbosch, M.P.; Ferreira-Halder, C.V.; Fuhler, G.M. Platelets in Aging and Cancer—“Double-Edged Sword”. Cancer Metastasis Rev. 2020, 39, 1205–1221. [Google Scholar] [CrossRef]
- Vostatek, R.; Ay, C. Biological Aging and Venous Thromboembolism: A Review of Telomeres and Beyond. Biomedicines 2025, 13, 15. [Google Scholar] [CrossRef]
- Kao, D.S.; Zhang, S.W.; Vap, A.R. A Systematic Review on the Effect of Common Medications on Platelet Count and Function: Which Medications Should Be Stopped Before Getting a Platelet-Rich Plasma Injection? Orthop. J. Sports Med. 2022, 10, 23259671221088820. [Google Scholar] [CrossRef]
- Le Blanc, J.; Lordkipanidzé, M. Platelet Function in Aging. Front. Cardiovasc. Med. 2019, 6, 109. [Google Scholar] [CrossRef] [PubMed]
- Venturini, W.; Olate-Briones, A.; Valenzuela, C.; Méndez, D.; Fuentes, E.; Cayo, A.; Mancilla, D.; Segovia, R.; Brown, N.E.; Moore-Carrasco, R. Platelet Activation Is Triggered by Factors Secreted by Senescent Endothelial HMEC-1 Cells In Vitro. Int. J. Mol. Sci. 2020, 21, 3287. [Google Scholar] [CrossRef]
- Angénieux, C.; Dupuis, A.; Gachet, C.; de la Salle, H.; Maître, B. Cell Surface Expression of HLA I Molecules as a Marker of Young Platelets. J. Thromb. Haemost. 2019, 17, 1511–1521. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Z.; Xiang, L.; Zhao, Z.; Cui, W. Functional Biomaterials for Tendon/Ligament Repair and Regeneration. Regen. Biomater. 2022, 9, rbac062. [Google Scholar] [CrossRef]
- Etulain, J. Platelets in Wound Healing and Regenerative Medicine. Platelets 2018, 29, 556–568. [Google Scholar] [CrossRef]
- Sánchez, M.; Garate, A.; Delgado, D.; Padilla, S. Platelet-Rich Plasma, an Adjuvant Biological Therapy to Assist Peripheral Nerve Repair. Neural Regen. Res. 2017, 12, 47–52. [Google Scholar] [CrossRef]
- Roy, S.; Paul, K. Nourishing the Clot: A Comprehensive Review of Dietary Habits and Their Implications for Platelet Function. Bull. Fac. Phys. Ther. 2024, 29, 7. [Google Scholar] [CrossRef]
- Méndez López, L.F.; González Llerena, J.L.; Vázquez Rodríguez, J.A.; Medellín Guerrero, A.B.; González Martínez, B.E.; Solís Pérez, E.; López-Cabanillas Lomelí, M. Dietary Modulation of the Immune System. Nutrients 2024, 16, 4363. [Google Scholar] [CrossRef] [PubMed]
- da Fonseca, L.F.; Lana, J.F.; Visoni, S.B.C.; Lana, A.V.S.; Irlandini, E.; Azzini, G.O.M. “Preparing the Soil”: Optimizing Metabolic Management in Regenerative Medicine Procedures. In Joint Function Preservation: A Focus on the Osteochondral Unit; Gobbi, A., Lane, J.G., Longo, U.G., Dallo, I., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; pp. 63–74. ISBN 978-3-030-82958-2. [Google Scholar]
- Oneto, P.; Zubiry, P.R.; Schattner, M.; Etulain, J. Anticoagulants Interfere with the Angiogenic and Regenerative Responses Mediated by Platelets. Front. Bioeng. Biotechnol. 2020, 8, 223. [Google Scholar] [CrossRef] [PubMed]
- Cavallo, C.; Roffi, A.; Grigolo, B.; Mariani, E.; Pratelli, L.; Merli, G.; Kon, E.; Marcacci, M.; Filardo, G. Platelet-Rich Plasma: The Choice of Activation Method Affects the Release of Bioactive Molecules. Biomed. Res. Int. 2016, 2016, 6591717. [Google Scholar] [CrossRef]
- Carvalho, A.; Ferreira, A.F.; Soares, M.; Santos, S.; Tomé, P.; Machado-Simões, J.; Pais, A.S.; Sousa, A.P.; Paiva, A.; Almeida-Santos, T. Optimization of Platelet-Rich Plasma Preparation for Regenerative Medicine: Comparison of Different Anticoagulants and Resuspension Media. Bioengineering 2024, 11, 209. [Google Scholar] [CrossRef]
- Schmuckenschlager, A.; Pirabe, A.; Assinger, A.; Schrottmaier, W.C. Platelet Count, Temperature and pH Value Differentially Affect Hemostatic and Immunomodulatory Functions of Platelets. Thromb. Res. 2023, 223, 111–122. [Google Scholar] [CrossRef]
- Toyoda, T.; Isobe, K.; Tsujino, T.; Koyata, Y.; Ohyagi, F.; Watanabe, T.; Nakamura, M.; Kitamura, Y.; Okudera, H.; Nakata, K.; et al. Direct Activation of Platelets by Addition of CaCl2 Leads Coagulation of Platelet-Rich Plasma. Int. J. Implant. Dent. 2018, 4, 23. [Google Scholar] [CrossRef]
- Scarano, A.; Bugea, C.; Leo, L.; Santos de Oliveira, P.; Lorusso, F. Autologous Platelet Gel (APG): A Preliminary Evaluation of the Mechanical Properties after Activation with Autologous Thrombin and Calcium Chloride. Materials 2021, 14, 3941. [Google Scholar] [CrossRef]
- Kim, S.; Kim, J.M.; Jeon, E.J.; Kim, J.W.; Choi, M.E.; Park, J.-M.; Choi, J.-S. Supernatant of Activated Platelet-Rich Plasma Rejuvenated Aging-Induced Hyposalivation in Mouse. Sci. Rep. 2023, 13, 21242. [Google Scholar] [CrossRef]
- Vauclard, A.; Bellio, M.; Valet, C.; Borret, M.; Payrastre, B.; Severin, S. Obesity: Effects on Bone Marrow Homeostasis and Platelet Activation. Thromb. Res. 2023, 231, 195–205. [Google Scholar] [CrossRef]
- Machlus, K.R.; Italiano, J.E. The Incredible Journey: From Megakaryocyte Development to Platelet Formation. J. Cell Biol. 2013, 201, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.J.; Nievelstein, R.A.; Kwee, T.C. Opportunities and Limitations of Bone Marrow Biopsy and Bone Marrow FDG-PET in Lymphoma. Blood Rev. 2015, 29, 417–425. [Google Scholar] [CrossRef]
- Shehadi, J.A.; Elzein, S.M.; Beery, P.; Spalding, M.C.; Pershing, M. Combined Administration of Platelet Rich Plasma and Autologous Bone Marrow Aspirate Concentrate for Spinal Cord Injury: A Descriptive Case Series. Neural Regen. Res. 2020, 16, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Lana, J.F.S.D.; da Fonseca, L.F.; Macedo, R.D.R.; Mosaner, T.; Murrell, W.; Kumar, A.; Purita, J.; de sAndrade, M.A.P. Platelet-Rich Plasma vs Bone Marrow Aspirate Concentrate: An Overview of Mechanisms of Action and Orthobiologic Synergistic Effects. World J. Stem Cells 2021, 13, 155–167. [Google Scholar] [CrossRef]
- Wang, Q.; Chang, H.; Shen, Q.; Li, Y.; Xing, D. Photobiomodulation Therapy for Thrombocytopenia by Upregulating Thrombopoietin Expression via the ROS-dependent Src/ERK/STAT3 Signaling Pathway. J. Thromb. Haemost. 2021, 19, 2029–2043. [Google Scholar] [CrossRef]
- Cordero, L.; Domingo, J.C.; Mengual, E.S.-V.; Pinto, H. Autologous Platelet-Rich Plasma Exosome Quantification after Two Thermo-Photobiomodulation Protocols with Different Fluences. J. Photochem. Photobiol. 2025, 29, 100267. [Google Scholar] [CrossRef]
- Giolo, F.P.; Santos, G.S.; Pacheco, V.F.; Huber, S.C.; Malange, K.F.; Rodrigues, B.L.; Bassora, F.; Mosaner, T.; Azzini, G.; Ribeiro, L.L.; et al. Photobiomodulation Therapy for Osteoarthritis: Mechanisms of Action. World J. Transl. Med. 2022, 10, 29–42. [Google Scholar] [CrossRef]
- Trajano, L.A.d.S.N.; Siqueira, P.B.; Rodrigues, M.M.d.S.; Pires, B.R.B.; da Fonseca, A.d.S.; Mencalha, A.L. Does Photobiomodulation Alter Mitochondrial Dynamics? Photochem. Photobiol. 2025, 101, 21–37. [Google Scholar] [CrossRef]
- Walski, T.; Grzeszczuk-Kuć, K.; Gałecka, K.; Trochanowska-Pauk, N.; Bohara, R.; Czerski, A.; Szułdrzyński, K.; Królikowski, W.; Detyna, J.; Komorowska, M. Near-Infrared Photobiomodulation of Blood Reversibly Inhibits Platelet Reactivity and Reduces Hemolysis. Sci. Rep. 2022, 12, 4042. [Google Scholar] [CrossRef]
- Hindle, M.S.; Cheah, L.T.; Yates, D.M.; Naseem, K.M. Preanalytical Conditions for Multiparameter Platelet Flow Cytometry. Res. Pract. Thromb. Haemost. 2023, 7, 102205. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.-L.; Wu, Y.-F. Flow Cytometry for Evaluating Platelet Immunophenotyping and Function in Patients with Thrombocytopenia. Tzu Chi Med. J. 2022, 34, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.; Araya-Maturana, R.; Palomo, I.; Fuentes, E. Platelet Mitochondrial Dysfunction and Mitochondria-Targeted Quinone-and Hydroquinone-Derivatives: Review on New Strategy of Antiplatelet Activity. Biochem. Pharmacol. 2018, 156, 215–222. [Google Scholar] [CrossRef]
- Bhatti, G.K.; Gupta, A.; Pahwa, P.; Khullar, N.; Singh, S.; Navik, U.; Kumar, S.; Mastana, S.S.; Reddy, A.P.; Reddy, P.H.; et al. Targeting Mitochondrial Bioenergetics as a Promising Therapeutic Strategy in Metabolic and Neurodegenerative Diseases. Biomed. J. 2022, 45, 733–748. [Google Scholar] [CrossRef] [PubMed]
- Sivandzade, F.; Bhalerao, A.; Cucullo, L. Analysis of the Mitochondrial Membrane Potential Using the Cationic JC-1 Dyeas a Sensitive Fluorescent Probe. Bio Protoc. 2019, 9, e3128. [Google Scholar] [CrossRef] [PubMed]
Parameter | Functional Platelets | Senescent Platelets |
---|---|---|
Granule Content | Intact α and dense granules | Depleted granules |
Mitochondrial Function | Efficient ATP production | Dysfunctional, ROS accumulation |
Responsiveness | High reactivity to stimuli | Reduced responsiveness |
Surface Markers | Normal CD62P, HLA-I | Increased phosphatidylserine, HLA-I loss |
Cytokine Profile | Balanced, context-specific | Pro-inflammatory, dysregulated |
Lifespan | ~7–10 days | Shortened due to stress |
Regenerative Potential | Supports repair | May inhibit or delay healing |
Strategy | Target | Mechanism |
---|---|---|
Nutritional Optimization | Systemic biology | Reduces oxidative stress and systemic inflammation |
Antioxidant Supplementation | ROS balance | Protects cells |
Moderate Exercise | Mitochondrial resilience | Improves cellular bioenergetics and metabolism |
Minimizing Blood Draw Volume | Yield and quality | Reduces anticoagulant load |
Precision in Processing | Cellular preservation | Maintains pH, temperature, stability |
Photobiomodulation | Cellular function | Modulates mitochondrial function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, F.R.; Purita, J.; Martins, R.; Costa, B.; de Oliveira, L.V.; Huber, S.C.; Santos, G.S.; Pires, L.; Azzini, G.; Kruel, A.; et al. Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine. Cells 2025, 14, 1206. https://doi.org/10.3390/cells14151206
Costa FR, Purita J, Martins R, Costa B, de Oliveira LV, Huber SC, Santos GS, Pires L, Azzini G, Kruel A, et al. Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine. Cells. 2025; 14(15):1206. https://doi.org/10.3390/cells14151206
Chicago/Turabian StyleCosta, Fábio Ramos, Joseph Purita, Rubens Martins, Bruno Costa, Lucas Villasboas de Oliveira, Stephany Cares Huber, Gabriel Silva Santos, Luyddy Pires, Gabriel Azzini, André Kruel, and et al. 2025. "Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine" Cells 14, no. 15: 1206. https://doi.org/10.3390/cells14151206
APA StyleCosta, F. R., Purita, J., Martins, R., Costa, B., de Oliveira, L. V., Huber, S. C., Santos, G. S., Pires, L., Azzini, G., Kruel, A., & Lana, J. F. (2025). Not All Platelets Are Created Equal: A Review on Platelet Aging and Functional Quality in Regenerative Medicine. Cells, 14(15), 1206. https://doi.org/10.3390/cells14151206