Biosensing Applications for Cell Monitoring

A special issue of Biosensors (ISSN 2079-6374). This special issue belongs to the section "Biosensors and Healthcare".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 5276

Special Issue Editor


E-Mail Website
Guest Editor
Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
Interests: bioreporter; biosensor; chemistry; pleckstrin homology domain; arsenic

Special Issue Information

Dear Colleague,

Biosensing technology has matured enormously owing to its simplicity and speed compared to traditional sensing methods. Diverse biosensors have been developed from various research fields based on the use of biochemical, nano- and electrochemical technology to monitor targets. When biosensors were first developed, they were used to focus on environmental toxicants and harmful materials. Due to the advantageous aspects of biosensing, the targets of biosensing have been enlarged to include chemicals, toxins, metabolites and cells. In particular, cell monitoring has been highlighted in various clinical fields for the rapid and early detection of abnormal cells and pathogens. In this Special Issue, we aim to explore the recent techniques, methodologies and applications of biosensing techniques for cell monitoring, as well as its prospective uses going forward.

We welcome authors to submit papers to this Special Issue, entitled “Biosensing Applications for Cell Monitoring.” To be considered for inclusion, articles should help to advance the field of cell monitoring based on biosensing technologies.

Dr. Youngdae Yoon
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biosensors is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biosensors
  • cell monitoring
  • point-of-care
  • pathogen
  • biosensing devices
  • rapid detection
  • diagnosis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2301 KiB  
Article
Engineered TtgR-Based Whole-Cell Biosensors for Quantitative and Selective Monitoring of Bioactive Compounds
by Kyeongseok Song, Haekang Ji, Jiwon Lee, Geupil Jang and Youngdae Yoon
Biosensors 2025, 15(8), 554; https://doi.org/10.3390/bios15080554 - 21 Aug 2025
Abstract
TtgR, a transcriptional repressor from Pseudomonas putida, plays a key role in regulating multidrug resistance by controlling the expression of genes in response to various ligands. Despite its broad specificity, TtgR represents a promising candidate for the development of transcription factor (TF)-based [...] Read more.
TtgR, a transcriptional repressor from Pseudomonas putida, plays a key role in regulating multidrug resistance by controlling the expression of genes in response to various ligands. Despite its broad specificity, TtgR represents a promising candidate for the development of transcription factor (TF)-based biosensors. In this study, we utilized TtgR and its native promoter region (PttgABC) as genetic components to construct TF-based biosensors in Escherichia coli. By coupling TtgR and PttgABC with egfp, we developed a biosensor responsive to diverse flavonoids. To enhance the selectivity and specificity of the biosensor, we genetically engineered a TtgR-binding pocket. Engineered TtgR variants exhibited altered sensing profiles, enabling the development of biosensors with tailored ligand responses. Computational structural analysis and ligand docking provided insights into the interaction mechanisms between TtgR variants and flavonoids. Notably, biosensors based on wild-type TtgR and its N110F mutant were capable of quantifying resveratrol and quercetin at 0.01 mM with >90% accuracy. Although the precise molecular mechanisms involved remain unclear and further optimization is needed, the biosensors developed herein demonstrate strong potential for applications in numerous fields. This study lays the foundation for future research that could extend the utility of TtgR-based biosensors to synthetic biology, metabolic engineering, and beyond. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring)
Show Figures

Figure 1

15 pages, 2906 KiB  
Article
Cell Observation and Analysis with a Three-Dimensional Optical Wave Field Microscope
by Shimon Matsumoto, Shoko Itakura, Junta Minato, Masahiro Hashimoto, Shu Obana, Mai Kanai, Masaki Kobayashi, Makiya Nishikawa and Kosuke Kusamori
Biosensors 2025, 15(8), 515; https://doi.org/10.3390/bios15080515 - 8 Aug 2025
Viewed by 403
Abstract
Cell observation is crucial in life science research, and advancements in microscopy are essential for deciphering biological phenomena. These technological developments have significantly enhanced our understanding of cellular mechanisms and processes. Light, characterized by its wave-like properties, is fundamental to scientific observation. Recently, [...] Read more.
Cell observation is crucial in life science research, and advancements in microscopy are essential for deciphering biological phenomena. These technological developments have significantly enhanced our understanding of cellular mechanisms and processes. Light, characterized by its wave-like properties, is fundamental to scientific observation. Recently, new technologies have been developed to detect changes in light wavelengths upon illumination, using them as signals for visualization. Three-dimensional optical wave field microscopy (3D-OWFM), a recent innovation in optimal imaging, leverages the wave properties of light to capture objects without labels, invasive procedures, or direct contact, thus facilitating non-invasive observation. In this study, we observed and analyzed mammalian cell structure and behaviors using 3D-OWFM. The 3D-OWFM revealed the intrinsic structure of the cells, including the cytoplasm and nucleus, with high clarity. The optical path difference (OPD) intensity effectively highlighted nuclear complexity. Furthermore, time-lapse imaging captured cell division process through variations in OPD signal intensity. These findings indicate that 3D-OWFM has significant potential for cell observation, offering insights not attainable with conventional microscopes. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring)
Show Figures

Figure 1

28 pages, 6652 KiB  
Article
White Light Spectroscopy for Sampling-Free Bacterial Contamination Detection During CAR T-Cells Production: Towards an On-Line and Real-Time System
by Bruno Wacogne, Naïs Vaccari, Claudia Koubevi, Charles-Louis Azzopardi, Bilal Karib, Alain Rouleau and Annie Frelet-Barrand
Biosensors 2025, 15(8), 512; https://doi.org/10.3390/bios15080512 - 6 Aug 2025
Viewed by 264
Abstract
Advanced therapy medicinal products (ATMPs), especially effective against cancer, remain costly due to their reliance on genetically modified T cells. Contamination during production is a major concern, as traditional quality control methods involve samplings, which can themselves introduce contaminants. It is therefore necessary [...] Read more.
Advanced therapy medicinal products (ATMPs), especially effective against cancer, remain costly due to their reliance on genetically modified T cells. Contamination during production is a major concern, as traditional quality control methods involve samplings, which can themselves introduce contaminants. It is therefore necessary to develop methods for detecting contamination without sampling and, if possible, in real time. In this article, we present a white light spectroscopy method that makes this possible. It is based on shape analysis of the absorption spectrum, which evolves from an approximately Gaussian shape to a shape modified by the 1/λ component of bacterial absorption spectra when contamination develops. A warning value based on this shape descriptor is proposed. It is demonstrated that a few hours are sufficient to detect contamination and trigger an alarm to quickly stop the production. This time-saving should reduce the cost of these new drugs, making them accessible to as many people as possible. This method can be used regardless of the type of contaminants, provided that the shape of their absorption spectrum is sufficiently different from that of pure T cells so that the shape descriptor is efficient. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring)
Show Figures

Figure 1

17 pages, 5301 KiB  
Article
Combined Dielectric-Optical Characterization of Single Cells Using Dielectrophoresis-Imaging Flow Cytometry
by Behnam Arzhang, Justyna Lee, Emerich Kovacs, Michael Butler, Elham Salimi, Douglas J. Thomson and Greg E. Bridges
Biosensors 2024, 14(12), 577; https://doi.org/10.3390/bios14120577 - 27 Nov 2024
Cited by 4 | Viewed by 1768
Abstract
In this paper, we present a microfluidic flow cytometer for simultaneous imaging and dielectric characterization of individual biological cells within a flow. Utilizing a combination of dielectrophoresis (DEP) and high-speed imaging, this system offers a dual-modality approach to analyze both cell morphology and [...] Read more.
In this paper, we present a microfluidic flow cytometer for simultaneous imaging and dielectric characterization of individual biological cells within a flow. Utilizing a combination of dielectrophoresis (DEP) and high-speed imaging, this system offers a dual-modality approach to analyze both cell morphology and dielectric properties, enhancing the ability to analyze, characterize, and discriminate cells in a heterogeneous population. A high-speed camera is used to capture images of and track multiple cells in real-time as they flow through a microfluidic channel. A wide channel is used, enabling analysis of many cells in parallel. A coplanar electrode array perpendicular to cell flow is incorporated at the bottom of the channel to perform dielectrophoresis-based dielectric characterization. A frequency-dependent voltage applied to the array produces a non-uniform electric field, translating cells to higher or lower velocity depending on their dielectric polarizability. In this paper, we demonstrate how cell size, obtained by optical imaging, and DEP response, obtained by particle tracking, can be used to discriminate viable and non-viable Chinese hamster ovary cells in a heterogeneous cell culture. Multiphysics electrostatic-fluid dynamics simulation is used to develop a relationship between cell incoming velocity, differential velocity, size, and the cell’s polarizability, which can subsequently be used to evaluate its physiological state. Measurement of a mixture of polystyrene microspheres is used to evaluate the accuracy of the cytometer. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring)
Show Figures

Figure 1

18 pages, 7913 KiB  
Article
Utilizing a Disposable Sensor with Polyaniline-Doped Multi-Walled Carbon Nanotubes to Enable Dopamine Detection in Ex Vivo Mouse Brain Tissue Homogenates
by Thenmozhi Rajarathinam, Sivaguru Jayaraman, Jaeheon Seol, Jaewon Lee and Seung-Cheol Chang
Biosensors 2024, 14(6), 262; https://doi.org/10.3390/bios14060262 - 21 May 2024
Cited by 7 | Viewed by 2082
Abstract
Disposable sensors are inexpensive, user-friendly sensing tools designed for rapid single-point measurements of a target. Disposable sensors have become more and more essential as diagnostic tools due to the growing demand for quick, easy-to-access, and reliable information related to the target. Dopamine (DA), [...] Read more.
Disposable sensors are inexpensive, user-friendly sensing tools designed for rapid single-point measurements of a target. Disposable sensors have become more and more essential as diagnostic tools due to the growing demand for quick, easy-to-access, and reliable information related to the target. Dopamine (DA), a prevalent catecholamine neurotransmitter in the human brain, is associated with central nervous system activities and directly promotes neuronal communication. For the sensitive and selective estimation of DA, an enzyme-free amperometric sensor based on polyaniline-doped multi-walled carbon nanotubes (PANI-MWCNTs) drop-coated disposable screen-printed carbon electrodes (SPCEs) was fabricated. This PANI-MWCNTs-2/SPCE sensor boasts exceptional accuracy and sensitivity when working directly with ex vivo mouse brain homogenates. The sensor exhibited a detection limit of 0.05 μM (S/N = 3), and a wide linear range from 1.0 to 200 μM. The sensor’s high selectivity to DA amidst other endogenous interferents was recognized. Since the constructed sensor is enzyme-free yet biocompatible, it exhibited high stability in DA detection using ex vivo mouse brain homogenates extracted from both Parkinson’s disease and control mice models. This research thus presents new insights into understanding DA release dynamics at the tissue level in both of these models. Full article
(This article belongs to the Special Issue Biosensing Applications for Cell Monitoring)
Show Figures

Figure 1

Back to TopTop