Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (462)

Search Parameters:
Keywords = torsion measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5492 KiB  
Article
A Novel Variable Stiffness Torque Sensor with Adjustable Resolution
by Zhongyuan Mao, Yuanchang Zhong, Xuehui Zhao, Tengfei He and Sike Duan
Micromachines 2025, 16(8), 868; https://doi.org/10.3390/mi16080868 - 27 Jul 2025
Viewed by 227
Abstract
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement [...] Read more.
In rotating machinery, the demands for torque sensor resolution and range in various torque measurements are becoming increasingly stringent. This paper presents a novel variable stiffness torque sensor designed to meet the demands for high resolution or a large range under varying measurement conditions. Unlike traditional strain gauge-based torque sensors, this sensor combines the advantages of torsion springs and magnetorheological fluid (MRF) to achieve dynamic adjustments in both resolution and range. Specifically, the stiffness of the elastic element is adjusted by altering the shear stress of the MRF via an applied magnetic field while simultaneously harnessing the high sensitivity of the torsion spring. The stiffness model is established and validated for accuracy through finite element analysis. A screw modulation-based angle measurement method is proposed for the first time, offering high non-contact angle measurement accuracy and resolving eccentricity issues. The performance of the sensor prototype is evaluated using a self-developed power-closed torque test bench. The experimental results demonstrate that the sensor exhibits excellent linearity, hysteresis, and repeatability while effectively achieving dynamic continuous adjustment of resolution and range. Full article
Show Figures

Figure 1

32 pages, 6134 KiB  
Article
Nonlinear Dynamic Modeling and Analysis of Drill Strings Under Stick–Slip Vibrations in Rotary Drilling Systems
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(14), 3860; https://doi.org/10.3390/en18143860 - 20 Jul 2025
Viewed by 317
Abstract
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical [...] Read more.
This paper presents a comprehensive study of torsional stick–slip vibrations in rotary drilling systems through a comparison between two lumped parameter models with differing complexity: a simple two-degree-of-freedom (2-DOF) model and a complex high-degree-of-freedom (high-DOF) model. The two models are developed under identical boundary conditions and consider an identical nonlinear friction torque dynamic involving the Stribeck effect and dry friction phenomena. The high-DOF model is calculated with the Finite Element Method (FEM) to enable accurate simulation of the dynamic behavior of the drill string and accurate representation of wave propagation, energy build-up, and torque response. Field data obtained from an Algerian oil well with Measurement While Drilling (MWD) equipment are used to guide modeling and determine simulations. According to the findings, the FEM-based high-DOF model demonstrates better performance in simulating basic stick–slip dynamics, such as drill bit velocity oscillation, nonlinear friction torque formation, and transient bit-to-surface contacts. On the other hand, the 2-DOF model is not able to represent these effects accurately and can lead to inappropriate control actions and mitigation of vibration severity. This study highlights the importance of robust model fidelity in building reliable real-time rotary drilling control systems. From the performance difference measurement between low-resolution and high-resolution models, the findings offer valuable insights to optimize drilling efficiency further, minimize non-productive time (NPT), and improve the rate of penetration (ROP). This contribution points to the need for using high-fidelity models, such as FEM-based models, in facilitating smart and adaptive well control strategies in modern petroleum drilling engineering. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

20 pages, 7660 KiB  
Article
Influences of the Stiffness and Damping Parameters on the Torsional Vibrations’ Severity in Petroleum Drilling Systems
by Mohamed Zinelabidine Doghmane
Energies 2025, 18(14), 3701; https://doi.org/10.3390/en18143701 - 14 Jul 2025
Viewed by 307
Abstract
The torsional, lateral, and axial vibrations that occur during drilling operations have negative effects on the drilling equipment. These negative effects can cause huge economic impacts, as the failure of drilling tools results in wasted materials, non-productive time, and substantial expenses for equipment [...] Read more.
The torsional, lateral, and axial vibrations that occur during drilling operations have negative effects on the drilling equipment. These negative effects can cause huge economic impacts, as the failure of drilling tools results in wasted materials, non-productive time, and substantial expenses for equipment repairs. Many researchers have tried to reduce these vibrations and have tested several models in their studies. In most of these models, the drill string used in oil wells behaves like a rotating torsion pendulum (mass spring), represented by different discs. The top drive (with the rotary table) and the BHA (with the drill pipes) have been considered together as a linear spring with constant torsional stiffness and torsional damping coefficients. In this article, three models with different degrees of freedom are considered, with the aim of analyzing the effect of variations in the stiffness and damping coefficients on the severity of torsional vibrations. A comparative study has been conducted between the three models for dynamic responses to parametric variation effects. To ensure the relevance of the considered models, the field data of torsional vibrations while drilling were used to support the modeling assumption and the designed simulation scenarios. The main novelty of this work is its rigorous comparative analysis of how the stiffness and damping coefficients influence the severity of torsional vibrations based on field measurements, which has a direct application in operational energy efficiency and equipment reliability. The results demonstrated that the variation of the damping coefficient does not significantly affect the severity of the torsional vibrations. However, it is highly recommended to consider all existing frictions in the tool string to obtain a reliable torsional vibration model that can reproduce the physical phenomenon of stick–slip. Furthermore, this study contributes to the improvement of operational energy efficiency and equipment reliability in fossil energy extraction processes. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

17 pages, 4414 KiB  
Article
Mechanical Characteristics of 26H2MF and St12T Steels Under Torsion at Elevated Temperatures
by Waldemar Dudda
Materials 2025, 18(13), 3204; https://doi.org/10.3390/ma18133204 - 7 Jul 2025
Viewed by 273
Abstract
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical [...] Read more.
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical structures appear and new previously unused physical features of the continuum are activated. The literature is dominated by a simplified way of thinking, which assumes that all these states can be characterized and described by one and the same measure of effort—for metals it is the Huber–Mises–Hencky equivalent stress. Quantitatively, perhaps 90% of the literature is dedicated to this equivalent stress. The remaining authors, as well as the author of this paper, assume that there is no single universal measure of effort that would “fit” all operating conditions of materials. Each state of the structure’s operation may have its own autonomous measure of effort, which expresses the degree of threat from a specific destruction mechanism. In the current energy sector, we are increasingly dealing with “low-cycle thermal fatigue states”. This is related to the fact that large, difficult-to-predict renewable energy sources have been added. Professional energy based on coal and gas units must perform many (even about 100 per year) starts and stops, and this applies not only to the hot state, but often also to the cold state. The question arises as to the allowable shortening of start and stop times that would not to lead to dangerous material effort, and whether there are necessary data and strength characteristics for heat-resistant steels that allow their effort to be determined not only in simple states, but also in complex stress states. Do these data allow for the description of the material’s yield surface? In a previous publication, the author presented the results of tension and compression tests at elevated temperatures for two heat-resistant steels: St12T and 26H2MF. The aim of the current work is to determine the properties and strength characteristics of these steels in a pure torsion test at elevated temperatures. This allows for the analysis of the strength of power turbine components operating primarily on torsion and for determining which of the two tested steels is more resistant to high temperatures. In addition, the properties determined in all three tests (tension, compression, torsion) will allow the determination of the yield surface of these steels at elevated temperatures. They are necessary for the strength analysis of turbine elements in start-up and shutdown cycles, in states changing from cold to hot and vice versa. A modified testing machine was used for pure torsion tests. It allowed for the determination of the sample’s torsion moment as a function of its torsion angle. The experiments were carried out at temperatures of 20 °C, 200 °C, 400 °C, 600 °C, and 800 °C for St12T steel and at temperatures of 20 °C, 200 °C, 400 °C, 550 °C, and 800 °C for 26H2MF steel. Characteristics were drawn up for each sample and compared on a common graph corresponding to the given steel. Based on the methods and relationships from the theory of strength, the yield stress and torsional strength were determined. The yield stress of St12T steel at 600 °C was 319.3 MPa and the torsional strength was 394.4 MPa. For 26H2MH steel at 550 °C, the yield stress was 311.4 and the torsional strength was 382.8 MPa. St12T steel was therefore more resistant to high temperatures than 26H2MF. The combined data from the tension, compression, and torsion tests allowed us to determine the asymmetry and plasticity coefficients, which allowed us to model the yield surface according to the Burzyński criterion as a function of temperature. The obtained results also allowed us to determine the parameters of the Drucker-Prager model and two of the three parameters of the Willam-Warnke and Menetrey-Willam models. The research results are a valuable contribution to the design and diagnostics of power turbine components. Full article
Show Figures

Figure 1

10 pages, 3895 KiB  
Article
Experimental Investigation on Heat Generation of Tread Rubber Materials Under Tensile-Compression Cyclic Conditions
by Pengtao Cao, Jian Wu, Tenglong She, Juqiao Su, Naichi Weng, Benlong Su and Youshan Wang
J. Compos. Sci. 2025, 9(7), 346; https://doi.org/10.3390/jcs9070346 - 3 Jul 2025
Viewed by 289
Abstract
Aiming at the heat generation behavior of rubber products such as tires under complex loads, the thermal behavior of tread rubber materials under tensile and compressive loads is investigated by using a torsional fatigue testing machine to comparatively analyze the temperature difference between [...] Read more.
Aiming at the heat generation behavior of rubber products such as tires under complex loads, the thermal behavior of tread rubber materials under tensile and compressive loads is investigated by using a torsional fatigue testing machine to comparatively analyze the temperature difference between the inside and outside of the rubber cylinders and the heating history under different torsion angles and rotational speeds. Results demonstrate that during the initial rotation phase under cyclic loading, the external surface temperature of the rubber material exceeds internal measurements. However, with the continuation of cyclic loading, the internal temperature progressively escalates beyond surface temperatures. Furthermore, the temperature rise exhibited significant correlations with both imposed torsional angles and operational rotational speeds. This study provides valuable insights into heat generation patterns of rubber materials under complex working conditions. Full article
(This article belongs to the Section Composites Manufacturing and Processing)
Show Figures

Figure 1

34 pages, 10462 KiB  
Article
Inter-Laboratory Characterisation of a Low-Power Channel-Less Hall-Effect Thruster: Performance Comparisons and Lessons Learnt
by Thomas F. Munro-O’Brien, Mohamed Ahmed, Andrea Lucca Fabris and Charles N. Ryan
Aerospace 2025, 12(7), 601; https://doi.org/10.3390/aerospace12070601 - 1 Jul 2025
Viewed by 371
Abstract
A collaborative inter-laboratory study was conducted to characterise the performance of the novel 250 W External Discharge Plasma Thruster (XPT) with a channel-less Hall effect-type thruster designed to address lifetime limitations and lower-power efficiency challenges in conventional Hall effect thrusters. This study aimed [...] Read more.
A collaborative inter-laboratory study was conducted to characterise the performance of the novel 250 W External Discharge Plasma Thruster (XPT) with a channel-less Hall effect-type thruster designed to address lifetime limitations and lower-power efficiency challenges in conventional Hall effect thrusters. This study aimed to validate performance measurements across different facilities and thrust stands, investigating potential facility effects on thrust characterisation. Performance testing was conducted both at the University of Surrey using a torsional thrust balance and at the University of Southampton with a double inverted pendulum thrust stand, providing independent verification of the thrust and efficiency metrics. The comparison highlighted the importance of cross-facility testing with differing background pressures, calibration methods, and thrust balance types. These differences provide valuable insights, ensuring more robust and reliable low-power thruster characterisation. The XPT thruster demonstrated consistent performance across both the University of Surrey and University of Southampton facilities, with thrust levels ranging from 1.60 mN to 11.8 mN, specific impulses from 327 s to 1067 s, and anode efficiencies up to 11%. Higher anode voltages and mass fluxes at Southampton enabled extended operational envelopes, revealing performance plateaus at elevated powers, particularly for flow rates above 8 sccm. Cross-facility testing highlighted facility-dependent influences, with Southampton achieving a higher thrust and specific impulse at lower flow rates (5–6 sccm) due to increased anode currents, while discrepancies between test sites of up to 25% were observed at higher flow rates (8–10 sccm) and powers above 200 W. Characterisation identified an optimal operating range at 200 W of anode power with a mass flux below 8 sccm. This work underscores the importance of inter-laboratory validation in electric propulsion testing and provides insights into the best practices for assessing next-generation Hall effect-type thrusters. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

27 pages, 8932 KiB  
Article
Strategies for Mitigating Runout Interference in Torsional Vibration Measurement of Diesel Engine Crankshafts
by Chenghao Qi and Zhongxu Tian
Appl. Sci. 2025, 15(13), 7355; https://doi.org/10.3390/app15137355 - 30 Jun 2025
Viewed by 210
Abstract
The precise measurement of crankshaft torsional vibration is critical for diesel engine reliability, yet it is often compromised by systematic errors from toothed disc runout. To address this challenge, this paper elucidates the dual mechanism of these errors, which manifest as micro-level voltage [...] Read more.
The precise measurement of crankshaft torsional vibration is critical for diesel engine reliability, yet it is often compromised by systematic errors from toothed disc runout. To address this challenge, this paper elucidates the dual mechanism of these errors, which manifest as micro-level voltage fluctuations in signal and macro-level time-domain deviations. Based on this understanding, a composite compensation method is proposed. First, a dual-line approximation method is presented for preprocessing the raw sensor signals, aiming to eliminate the distortion in rotational speed calculations caused by anomalous voltages. Second, a synchronous sampling scheme based on the differential measurement principle is developed. This scheme utilizes a symmetrically arranged dual-sensor structure to suppress runout errors and is combined with a time-domain feature reconstruction technique to restore the true rotational speed signal. Validation on a custom-built universal joint torsional vibration test rig demonstrates that the proposed method can effectively eliminate systematic deviations arising from toothed disc runout, thereby significantly enhancing the accuracy of torsional vibration measurements. The measurement method presented in this paper offers a valuable reference for the high-precision measurement of engine torsional vibration characteristics. Full article
Show Figures

Figure 1

21 pages, 5352 KiB  
Article
Hydrodynamic and Vibroacoustic Simulation Analysis of the Main Float in an Acoustic Submerged Buoy System
by Jie Liu, Zixuan Jiang, Libin Du, Zhichao Lv, Hanbing Cui, Xinyu Li and Guangxin Liang
J. Mar. Sci. Eng. 2025, 13(7), 1254; https://doi.org/10.3390/jmse13071254 - 28 Jun 2025
Viewed by 251
Abstract
During prolonged deployment, deep-sea acoustic submerged buoys may undergo displacement and torsional deformation of their main floating body under turbulent flows, which degrades the quality of acquired sensor data and introduces vibration-induced noise that interferes with acoustic measurements. This paper presents a novel [...] Read more.
During prolonged deployment, deep-sea acoustic submerged buoys may undergo displacement and torsional deformation of their main floating body under turbulent flows, which degrades the quality of acquired sensor data and introduces vibration-induced noise that interferes with acoustic measurements. This paper presents a novel structural design for acoustic buoy main bodies based on hydrodynamic principles. We performed fluid-structure interaction (FSI) simulations to evaluate the dynamic response characteristics of the structure in deep-sea conditions, including computational analysis of velocity and pressure field distributions surrounding the buoy. Leveraging pressure data derived from computational fluid dynamics (CFD) simulations, we developed an innovative vibration noise quantification methodology. This approach employs plane wave excitation with equivalent pressure magnitude to simulate hydrodynamic loading effects while incorporating tripartite coupling mechanisms among fluid, structural, and acoustic domains. The simulated vibration noise profiles establish environmental baseline noise levels for onboard acoustic monitoring instruments, thereby enhancing measurement fidelity. Full article
(This article belongs to the Special Issue Hydrodynamic Research of Marine Structures (2nd Edition))
Show Figures

Figure 1

11 pages, 1459 KiB  
Article
The Bimalleolar Method Shows the Most Reliable Results for Measuring Tibial Torsion in Rotational MRI
by Klemens Vertesich, Catharina Chiari, Martin Zalaudek, Karin Hebenstreit, Eleonora Schneider, Reinhard Windhager and Madeleine Willegger
J. Clin. Med. 2025, 14(13), 4523; https://doi.org/10.3390/jcm14134523 - 26 Jun 2025
Viewed by 358
Abstract
Background: The reproducible measurement of tibial torsion (TT) is essential for the diagnosis and evaluation of rotational deformities of the tibia, particularly in the planning of tibial derotational osteotomy. While various CT-based methods for determining the distal tibial axis have been described [...] Read more.
Background: The reproducible measurement of tibial torsion (TT) is essential for the diagnosis and evaluation of rotational deformities of the tibia, particularly in the planning of tibial derotational osteotomy. While various CT-based methods for determining the distal tibial axis have been described for adult patients, rotational Magnetic Resonance Imaging (MRI) represents a radiation-free alternative, especially for assessing lower limb rotation in pediatric patients. The aim of this study was to analyze the reliability of TT measurements as well as to investigate potential differences in the application of rotational MRI within a pediatric orthopedic cohort. Methods: In this retrospective study, 78 lower legs from 39 patients aged 4 to 18 years who underwent rotational MRI were included. Measurements for TT were performed using the Jend method, the Waidelich method, and the bimalleolar method. Reliability assessments were conducted by three different examiners, and the results were determined using the intraclass correlation coefficient (ICC). Results: All three methods demonstrated excellent interobserver reliability. The highest intraobserver reliability was achieved using the bimalleolar method (ICC: 0.947). When comparing the assessment of TT, the Jend method showed the highest mean values (34°, standard deviation (SD) 11.0°) followed by the Waidelich method (29°, SD 10.2°) and the bimalleolar method (26°, SD 9.9°). Measurement methods showed a mean difference of up to 8° (p < 0.001). Conclusions: Rotational MRI is a feasible radiation-free option to assess tibial torsion in pediatric and adolescent patients. All tested methods show excellent inter- and intraobserver reliability. Notably, significant differences were found between the measurement methods, with the bimalleolar method showing lower mean values. This has to be taken into account for preoperative planning of rotational and derotational tibial and supramalleolar osteotomies. Full article
(This article belongs to the Special Issue Recent Research Progress in Pediatric Orthopedic Surgery)
Show Figures

Figure 1

23 pages, 4668 KiB  
Article
Dynamic Modeling and Analysis of Industrial Robots for Enhanced Manufacturing Precision
by Claudius Birk, Martin Kipfmüller and Jan Kotschenreuther
Actuators 2025, 14(7), 311; https://doi.org/10.3390/act14070311 - 24 Jun 2025
Viewed by 587
Abstract
This study addresses the challenge of accurately modeling the dynamic behavior of industrial robots for precision manufacturing applications. Using a comprehensive experimental approach with modal impulse hammer testing and triaxial acceleration measurements, 360 frequency response functions were recorded along orthogonal measurement paths for [...] Read more.
This study addresses the challenge of accurately modeling the dynamic behavior of industrial robots for precision manufacturing applications. Using a comprehensive experimental approach with modal impulse hammer testing and triaxial acceleration measurements, 360 frequency response functions were recorded along orthogonal measurement paths for a KUKA KR10 robot. Two dynamic models with different parameter dimensions (12-parameter and 24-parameter) were developed in Matlab/Simscape, and their parameters were identified using genetic algorithm optimization. The KUKA KR10 features Harmonic Drives at each joint, whose high transmission ratio and zero backlash characteristics significantly influence rotational dynamics and allow for meaningful static structural measurements. Objective functions based on the Frequency Response Assurance Criterion (FRAC) and Root Mean Square Error (RMSE) metrics were employed, utilizing a frequency-dependent weighting function. The performance of the models was evaluated across different robot configurations and frequency ranges. The 24-parameter model demonstrated significantly superior performance, achieving 70% overall average Global FRAC in the limited frequency range (≤200 Hz) compared to 41% for the 12-parameter model when optimized using a representative subset of 9 measurement points. Both models showed substantially better performance in the limited frequency range than in the full spectrum. This research provides a validated methodology for dynamic characterization of industrial robots and demonstrates that higher-dimensional models, incorporating transverse joint compliance, can accurately represent robot dynamics up to approximately 200 Hz. Future work will investigate nonlinear effects such as torsional stiffness hysteresis, particularly relevant for Harmonic Drive systems. Full article
(This article belongs to the Special Issue Actuation and Sensing of Intelligent Soft Robots)
Show Figures

Figure 1

23 pages, 5213 KiB  
Article
Fire Test on Insulated Steel Beams with Fire-Protection Coating and Fiber Cement Board
by Weihua Wang, Tao Zhu, Xian Gao, Jingjie Yang, Xilong Chen and Weiyong Wang
Buildings 2025, 15(12), 2121; https://doi.org/10.3390/buildings15122121 - 18 Jun 2025
Viewed by 294
Abstract
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel [...] Read more.
Fire safety design for steel beams is crucial in the construction of steel structures. However, there remains a significant gap in the fire resistance testing of insulated steel beams. This study focuses on full-scale experimental research examining the fire resistance performance of steel beams with varying fire protection methods, cross-sectional dimensions, and heating curves. During the tests, the furnace temperature, specimen temperature, and deflection at mid-span were measured. The test results indicated that specimens mainly failed in lateral–torsional buckling. Additionally, a markedly non-uniform temperature distribution was observed across the cross-section, and the predictions made by GB 51249-2017 were found to be unsafe. The use of fiber cement board for fire protection may be ineffective, as it tends to become brittle at elevated temperatures, making it susceptible to breakage and detachment when the beams begin to bend. Furthermore, due to potential creep deformation, specimens subjected to longer heating durations exhibited lower critical temperatures compared to those with shorter heating durations. Finally, the design method outlined in BS EN 1993-1-2 and ANSI/AISC 360-22 was evaluated against the test results, indicating an accurate prediction of these methods for specimens with shorter heating durations, but an unconservative prediction for specimens with longer heating durations due to ignorance of creep deformation. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 2266 KiB  
Article
Solid-State Transformation (Stotal = 0, 1, and 2) in a Ni2+ Chelate with Two tert-Butyl 5-(p-Biphenylyl)-2-pyridyl Nitroxides
by Masataka Mitsui and Takayuki Ishida
Materials 2025, 18(12), 2793; https://doi.org/10.3390/ma18122793 - 13 Jun 2025
Viewed by 472
Abstract
A novel S = 1/2 paramagnetic chelating ligand tert-butyl 5-(p-biphenylyl)-2-pyridyl nitroxide (bppyNO) and its S = 1 nickel(II) ion complex [Ni(bppyNO)2Br2] were synthesized. X-ray crystallography revealed a 2p–3d–2p heterospin triad, with half of the molecule being [...] Read more.
A novel S = 1/2 paramagnetic chelating ligand tert-butyl 5-(p-biphenylyl)-2-pyridyl nitroxide (bppyNO) and its S = 1 nickel(II) ion complex [Ni(bppyNO)2Br2] were synthesized. X-ray crystallography revealed a 2p–3d–2p heterospin triad, with half of the molecule being crystallographically independent. A relatively planar chelate geometry with the torsion angle ϕ(Ni-O-N-C2py) = −10.6(5)° at 300 K becomes significantly out-of-plane distorted with ϕ = −46.9(8) and 26.1(11)° at 90 K accompanied by disorder at the oxygen site. The torsion angle changes, Δϕ = 36° and 37°, are among the largest reported for related compounds. Magnetic measurements indicate gradual and incomplete spin transition-like behavior around 143(2) K. A three-state model involving an intermediate-spin (Stotal = 1) state is proposed to explain non-zero χmT plateau in a low-temperature region. Density functional theory calculations using the determined structures support the proposed mechanism. Furthermore, geometry optimizations assuming Stotal = 0, 1, and 2 are in good agreement with the present model. Full article
(This article belongs to the Special Issue From Molecular to Supramolecular Materials)
Show Figures

Graphical abstract

15 pages, 3488 KiB  
Article
Prediction of Large Springback in the Forming of Long Profiles Implementing Reverse Stretch and Bending
by Mohammad Reza Vaziri Sereshk and Hamed Mohamadi Bidhendi
J. Exp. Theor. Anal. 2025, 3(2), 16; https://doi.org/10.3390/jeta3020016 - 6 Jun 2025
Viewed by 317
Abstract
Springback represents the deflection of a workpiece after releasing the forming tools or dies, which influences the quality and precision of the final products. It is basically governed by the elastic strain recovery of the material after unloading. Most approaches only implement reverse [...] Read more.
Springback represents the deflection of a workpiece after releasing the forming tools or dies, which influences the quality and precision of the final products. It is basically governed by the elastic strain recovery of the material after unloading. Most approaches only implement reverse bending to determine the final shape of the formed product. However, stretch plays significant role whe the blank is held by a blank holder. In this paper, an algorithm is presented to calculate the contributions of both stretch loads and bending moments to elastic deformation during springback for each element, and to combine them mathematically and geometrically to achieve the final shape of the product. Comparing the results of this algorithm for different sheet metal forming processes with experimental measurements demonstrates that this technique successfully predicts a wide range of springback with reasonable accuracy. The advantage of this approach is its accuracy, which is not sensitive to hardening and softening mechanisms, the magnitude of plastic deformation during the forming process, or the size of the object. The application of the proposed formulation is limited to long profiles (plane-strain cases). However, it can be extended to more general applications by adding the effect of torsion and developing equations in 3D space. Due to the explicit nature of the calculations, data-processing time would be reduced significantly compared to the sophisticated algorithms used in commercial software. Full article
Show Figures

Figure 1

17 pages, 3625 KiB  
Article
Nonlinear Response of a Polycarbonate in Post-Yield Cyclic Tests
by David Trejo Carrillo and Alberto Díaz Díaz
Polymers 2025, 17(11), 1535; https://doi.org/10.3390/polym17111535 - 31 May 2025
Viewed by 463
Abstract
This paper aims to investigate the mechanical behavior of a polycarbonate through cyclic tensile, compression, and torsiontests atstrain rates that reduce viscous effects for this material. Measurements included axial and transverse strains for uniaxial tests and shear strains for torsion. Tensile tests exhibited [...] Read more.
This paper aims to investigate the mechanical behavior of a polycarbonate through cyclic tensile, compression, and torsiontests atstrain rates that reduce viscous effects for this material. Measurements included axial and transverse strains for uniaxial tests and shear strains for torsion. Tensile tests exhibited nonlinear elasticity, ratcheting, and plasticity, accompanied by an increase in volumetric strain. Compression tests revealed nonlinear elasticity, with the surprising result of positive plastic axial and volumetric strains, accompanied by marginal transverse strains. Torsional tests showed an elastic but nonlinear relationship between shear stress and strain. In these latter tests, positive plastic volumetric strains were observed, which suggests that deviatoric stress can also induce volumetric plastic strains. These findings are of great importance for developing mathematical models of glassy amorphous polymers, and the observations contribute to understanding the complex behavior of such materials. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

24 pages, 6857 KiB  
Article
Modal Identification and Finite Element Model Updating of Flexible Photovoltaic Support Structures Using Multi-Sensor Data
by Mingfeng Huang, Chen Yang, Kang Cai and Xianzhe Li
Appl. Sci. 2025, 15(11), 5919; https://doi.org/10.3390/app15115919 - 24 May 2025
Viewed by 412
Abstract
Flexible photovoltaic (PV) support structures are widely used due to their large span, high land-use efficiency, low construction cost, and short construction periods. However, they exhibit low stiffness, light weight, and low damping, making them wind-sensitive and prone to wind-induced vibrations. Evaluating their [...] Read more.
Flexible photovoltaic (PV) support structures are widely used due to their large span, high land-use efficiency, low construction cost, and short construction periods. However, they exhibit low stiffness, light weight, and low damping, making them wind-sensitive and prone to wind-induced vibrations. Evaluating their dynamic performance remains challenging due to two critical limitations: the lack of field-measured modal properties and the absence of reliably validated finite element (FE) models. In this study, field modal testing of a flexible PV support structure was conducted, and high-order modal properties were identified from multi-sensor data. Subsequently, a response surface model was constructed, and the optimal combination of metal frame mass, cable initial tension, and column modeling was obtained through particle swarm optimization (PSO), leading to an updated FE model. The results show that the damping ratios of the first and second torsional modes is only 0.7% and 0.4%, respectively, highlighting the need to consider low damping properties. Besides, the deviation between the design and actual values of structural parameters cannot be ignored. Full article
Show Figures

Figure 1

Back to TopTop