Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (235)

Search Parameters:
Keywords = time-series InSAR analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 40609 KB  
Article
High-Resolution Monitoring and Driving Factor Analysis of Long-Term Surface Deformation in the Linfen-Yuncheng Basin
by Yuting Wu, Longyong Chen, Tao Jiang, Yihao Xu, Yan Li and Zhe Jiang
Remote Sens. 2025, 17(21), 3536; https://doi.org/10.3390/rs17213536 - 25 Oct 2025
Viewed by 115
Abstract
The comprehensive, accurate, and rapid acquisition of large-scale surface deformation using Interferometric Synthetic Aperture Radar (InSAR) technology provides crucial information support for regional eco-geological safety assessments and the rational development and utilization of groundwater resources. The Linfen-Yuncheng Basin in Shanxi Province is one [...] Read more.
The comprehensive, accurate, and rapid acquisition of large-scale surface deformation using Interferometric Synthetic Aperture Radar (InSAR) technology provides crucial information support for regional eco-geological safety assessments and the rational development and utilization of groundwater resources. The Linfen-Yuncheng Basin in Shanxi Province is one of China’s historically most frequented regions for geological hazards in plain areas, such as land subsidence and ground fissures. This study employed the coherent point targets based Small Baseline Subset (SBAS) time-series InSAR technique to interpret a dataset of 224 scenes of 5 m resolution RADARSAT-2 satellite SAR images acquired from January 2017 to May 2024. This enabled the acquisition of high-resolution spatiotemporal characteristics of surface deformation in the Linfen-Yuncheng Basin during the monitoring period. The results show that the area with a deformation rate exceeding 5 mm/a in the study area accounts for 12.3% of the total area, among which the subsidence area accounts for 11.1% and the uplift area accounts for 1.2%, indicating that the overall surface is relatively stable. There are four relatively significant local subsidence areas in the study area. The total area with a rate exceeding 30 mm/a is 41.12 km2, and the maximum cumulative subsidence is close to 810 mm. By combining high-resolution satellite images and field survey data, it is found that the causes of the four subsidence areas are all the extraction of groundwater for production, living, and agricultural irrigation. This conclusion is further confirmed by comparing the InSAR monitoring results with the groundwater level data of monitoring wells. In addition, on-site investigations reveal that there is a mutually promoting and spatially symbiotic relationship between land subsidence and ground fissures in the study area. The non-uniform subsidence areas monitored by InSAR show significant ground fissure activity characteristics. The InSAR monitoring results can be used to guide the identification and analysis of ground fissure disasters. This study also finds that due to the implementation of surface water supply projects, the demand for groundwater in the study area has been continuously decreasing. The problem of ground water over-extraction has been gradually alleviated, which in turn promotes the continuous recovery of the groundwater level and reduces the development intensity of land subsidence and ground fissures. Full article
(This article belongs to the Special Issue Applications of Radar Remote Sensing in Earth Observation)
Show Figures

Figure 1

25 pages, 8062 KB  
Article
Time-Series Surface Velocity and Backscattering Coefficients from Sentinel-1 SAR Images Document Glacier Seasonal Dynamics and Surges on the Puruogangri Ice Field in the Central Tibetan Plateau
by Qingxin Wen and Teng Wang
Remote Sens. 2025, 17(20), 3490; https://doi.org/10.3390/rs17203490 - 20 Oct 2025
Viewed by 237
Abstract
The Puruogangri Ice Field (PIF) in the central Tibetan Plateau, known as the world’s Third Pole, is the largest modern ice field in the Tibetan Plateau and a crucial indicator of climate change. Although it was thought to be quiet, recent studies identified [...] Read more.
The Puruogangri Ice Field (PIF) in the central Tibetan Plateau, known as the world’s Third Pole, is the largest modern ice field in the Tibetan Plateau and a crucial indicator of climate change. Although it was thought to be quiet, recent studies identified possible surging behaviors. But comprehensive velocity fields remain largely unknown. Here we present the first comprehensive and high spatiotemporal resolution 3D displacement field of the PIF from 2017 to 2024 using synthetic aperture radar (SAR) imaging geodesy. Using time-series InSAR and time-series pixel offset tracking and integrating ascending and descending Sentinel-1 SAR images, we invert the time-series 3D displacement over eight years. Our results reveal significant seasonal variations and three surging glaciers, with peak displacements exceeding 110 m in 12 days. Combined with ERA5 reanalysis and SAR backscatter coefficients analysis, we demonstrate that these surges are hydrologically controlled, likely initiated by damaged subglacial drainage systems. This study enhances our understanding of glacier dynamics in the central Tibetan Plateau and highlights the potential of using SAR imaging geodesy to monitor glacial hazards in High Mountain Asia. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

33 pages, 55463 KB  
Article
A Unified Fusion Framework with Robust LSA for Multi-Source InSAR Displacement Monitoring
by Kui Yang, Li Yan, Jun Liang and Xiaoye Wang
Remote Sens. 2025, 17(20), 3469; https://doi.org/10.3390/rs17203469 - 17 Oct 2025
Viewed by 247
Abstract
Time-series Interferometric Synthetic Aperture Radar (InSAR) techniques encounter substantial reliability challenges, primarily due to the presence of gross errors arising from phase unwrapping failures. These errors propagate through the processing chain and adversely affect displacement estimation accuracy, particularly in the case of a [...] Read more.
Time-series Interferometric Synthetic Aperture Radar (InSAR) techniques encounter substantial reliability challenges, primarily due to the presence of gross errors arising from phase unwrapping failures. These errors propagate through the processing chain and adversely affect displacement estimation accuracy, particularly in the case of a small number of SAR datasets. This study presents a unified data fusion framework designed to enhance the detection of gross errors in multi-source InSAR observations, incorporating a robust Least Squares Adjustment (LSA) methodology. The proposed framework develops a comprehensive mathematical model that integrates the fusion of multi-source InSAR data with robust LSA analysis, thereby establishing a theoretical foundation for the integration of heterogeneous datasets. Then, a systematic, reliability-driven data fusion workflow with robust LSA is developed, which synergistically combines Multi-Temporal InSAR (MT-InSAR) processing, homonymous Persistent Scatterer (PS) set generation, and iterative Baarda’s data snooping based on statistical hypothesis testing. This workflow facilitates the concurrent localization of gross errors and optimization of displacement parameters within the fusion process. Finally, the framework is rigorously evaluated using datasets from Radarsat-2 and two Sentinel-1 acquisition campaigns over the Tianjin Binhai New Area, China. Experimental results indicate that gross errors were successfully identified and removed from 11.1% of the homonymous PS sets. Following the robust LSA application, vertical displacement estimates exhibited a Root Mean Square Error (RMSE) of 5.7 mm/yr when compared to high-precision leveling data. Furthermore, a localized analysis incorporating both leveling validation and time series comparison was conducted in the Airport Economic Zone, revealing a substantial 42.5% improvement in accuracy compared to traditional Ordinary Least Squares (OLS) methodologies. Reliability assessments further demonstrate that the integration of multiple InSAR datasets significantly enhances both internal and external reliability metrics compared to single-source analyses. This study underscores the efficacy of the proposed framework in mitigating errors induced by phase unwrapping inaccuracies, thereby enhancing the robustness and credibility of InSAR-derived displacement measurements. Full article
(This article belongs to the Special Issue Applications of Radar Remote Sensing in Earth Observation)
Show Figures

Graphical abstract

26 pages, 14672 KB  
Article
InSAR-Based Assessment of Land Subsidence Induced by Coal Mining in Karaganda, Kazakhstan
by Assel Satbergenova, Dinara Talgarbayeva, Andrey Vilayev, Asset Urazaliyev, Alena Yelisseyeva, Azamat Kaldybayev and Semen Gavruk
Geomatics 2025, 5(4), 55; https://doi.org/10.3390/geomatics5040055 - 16 Oct 2025
Viewed by 305
Abstract
The objective of this study is to quantify and characterize ground deformations induced by underground coal mining in the Karaganda coal basin, Kazakhstan, in order to improve the understanding of subsidence processes and their long-term evolution. The SBAS-InSAR method was applied to Sentinel-1 [...] Read more.
The objective of this study is to quantify and characterize ground deformations induced by underground coal mining in the Karaganda coal basin, Kazakhstan, in order to improve the understanding of subsidence processes and their long-term evolution. The SBAS-InSAR method was applied to Sentinel-1 (C-band) and TerraSAR-X (X-band) data from 2019–2021 to estimate the magnitude, extent, and temporal behavior of displacements over the Kostenko, Kuzembayev, Aktasskaya, and Saranskaya mines. The results reveal spatially coherent and progressive deformation, with maximum cumulative LOS displacements exceeding –800 mm in TerraSAR-X data within active longwall mining zones. Time-series analysis confirmed acceleration of displacement during active extraction and its subsequent attenuation after mining ceased. Comparative assessment demonstrated a strong agreement between Sentinel-1 and TerraSAR-X results (r = 0.9628), despite differences in resolution and acquisition geometry, highlighting the robustness of the SBAS-InSAR approach. Analysis of displacement over individual longwalls showed that several panels (3, 5, 8, 15, and 18) already exceeded their projected maximum subsidence values, underlining the necessity of continuous monitoring for ensuring safety. In contrast, other longwalls have not yet reached their maximum deformation, indicating potential for further activity. Overall, this study demonstrates the value of multi-sensor InSAR monitoring for reliable assessment of mining-induced subsidence and for supporting geotechnical risk management in post-industrial regions. Full article
Show Figures

Figure 1

30 pages, 26397 KB  
Article
Dynamic Landslide Susceptibility Assessment in the Yalong River Alpine Gorge Region Integrating InSAR-Derived Deformation Velocity
by Zhoujiang Li, Jianming Xiang, Guanchen Zhuo, Hongyuan Zhang, Keren Dai and Xianlin Shi
Remote Sens. 2025, 17(18), 3210; https://doi.org/10.3390/rs17183210 - 17 Sep 2025
Viewed by 599
Abstract
Dynamic susceptibility assessment is essential for mitigating evolving landslide risks in alpine gorge regions. To address the static limitations and unit mismatch issues in conventional landslide susceptibility assessments in alpine gorge regions, this study proposes a dynamic framework integrating time-series InSAR-derived deformation. Applied [...] Read more.
Dynamic susceptibility assessment is essential for mitigating evolving landslide risks in alpine gorge regions. To address the static limitations and unit mismatch issues in conventional landslide susceptibility assessments in alpine gorge regions, this study proposes a dynamic framework integrating time-series InSAR-derived deformation. Applied to the Xinlong–Kangding section of the Yalong River, annual surface deformation velocities were retrieved using SBAS-InSAR with Sentinel-1 data, identifying 24 active landslide zones (>25 mm/a). The Geodetector model quantified the spatial influence of 18 conditioning factors, highlighting deformation velocity as the second most significant (q = 0.21), following soil type. Incorporating historical landslide data and InSAR deformation zones, slope unit delineation was optimized to construct a refined sample dataset. A Random Forest model was then used to assess the contribution of deformation factors. Results show that integrating InSAR data substantially improved model performance: “Very High” risk landslides increased from 67.21% to 87.01%, the AUC score improved from 0.9530 to 0.9798, and the Kappa coefficient increased from 0.7316 to 0.8870. These results demonstrate the value of InSAR-based dynamic monitoring in enhancing landslide susceptibility mapping, particularly for spatial clustering, classification precision, and model robustness. This approach offers a more efficient dynamic evaluation pathway for dynamic assessment and early warning of landslide hazards in mountainous regions. Full article
(This article belongs to the Special Issue Role of SAR/InSAR Techniques in Investigating Ground Deformation)
Show Figures

Figure 1

21 pages, 6814 KB  
Article
Urban Land Subsidence Analyzed Through Time-Series InSAR Coupled with Refined Risk Modeling: A Wuhan Case Study
by Lv Zhou, Liqi Liang, Quanyu Chen, Haotian He, Hongming Li, Jie Qin, Fei Yang, Xinyi Li and Jie Bai
ISPRS Int. J. Geo-Inf. 2025, 14(9), 320; https://doi.org/10.3390/ijgi14090320 - 22 Aug 2025
Viewed by 1131
Abstract
Due to extensive soft soil and high human activities, Wuhan is a hotspot for land subsidence. This study used the time-series InSAR to calculate the spatial and temporal distribution map of subsidence in Wuhan and analyze the causes of subsidence. An improved fuzzy [...] Read more.
Due to extensive soft soil and high human activities, Wuhan is a hotspot for land subsidence. This study used the time-series InSAR to calculate the spatial and temporal distribution map of subsidence in Wuhan and analyze the causes of subsidence. An improved fuzzy analytic hierarchy process (GD-FAHP) was proposed and integrated with the Entropy Weight Method (EWM) to assess the hazard and vulnerability of land subsidence using multiple evaluation factors, thereby deriving the spatial distribution characteristics of subsidence risk in Wuhan. Results indicated the following: (1) Maximum subsidence rates reached −49 mm/a, with the most severe deformation localized in Hongshan District, exhibiting a cumulative displacement of −135 mm. Comparative validation between InSAR results and leveling was conducted, demonstrating the reliability of InSAR monitoring. (2) Areas with frequent urban construction largely coincided with subsidence locations. In addition, the analysis indicated that rainfall and hydrogeological conditions were also correlated with land subsidence. (3) The proposed risk assessment model effectively identified high-risk areas concentrated in central urban zones, particularly the Hongshan and Wuchang Districts. This research establishes a methodological framework for urban hazard mitigation and provides actionable insights for subsidence risk reduction strategies. Full article
(This article belongs to the Topic Geotechnics for Hazard Mitigation, 2nd Edition)
Show Figures

Figure 1

23 pages, 30771 KB  
Article
Spatiotemporal Characteristics of Ground Subsidence in Xiong’an New Area Revealed by a Combined Observation Framework Based on InSAR and GNSS Techniques
by Shaomin Liu and Mingzhou Bai
Remote Sens. 2025, 17(15), 2654; https://doi.org/10.3390/rs17152654 - 31 Jul 2025
Viewed by 853
Abstract
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns [...] Read more.
The Xiong’an New Area, a newly established national-level zone in China, faces the threat of land subsidence and ground fissure due to groundwater overexploitation and geothermal extraction, threatening urban safety. This study integrates time-series InSAR and GNSS monitoring to analyze spatiotemporal deformation patterns from 2017/05 to 2025/03. The key results show: (1) Three subsidence hotspots, namely northern Xiongxian (max. cumulative subsidence: 591 mm; 70 mm/yr), Luzhuang, and Liulizhuang, strongly correlate with geothermal wells and F4/F5 fault zones; (2) GNSS baseline analysis (e.g., XA01-XA02) reveals fissure-induced differential deformation (max. horizontal/vertical rates: 40.04 mm/yr and 19.8 mm/yr); and (3) InSAR–GNSS cross-validation confirms the high consistency of the results (Pearson’s correlation coefficient = 0.86). Subsidence in Xiongxian is driven by geothermal/industrial groundwater use, without any seasonal variations, while Anxin exhibits agricultural pumping-linked seasonal fluctuations. The use of rooftop GNSS stations reduces multipath effects and improves urban monitoring accuracy. The spatiotemporal heterogeneity stems from coupled resource exploitation and tectonic activity. We propose prioritizing rooftop GNSS deployments to enhance east–west deformation monitoring. This framework balances regional and local-scale precision, offering a replicable solution for geological risk assessments in emerging cities. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

16 pages, 3372 KB  
Article
Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
by Qing He, Hehe Liu, Lu Wei, Jing Ding, Heling Sun and Zhen Zhang
Appl. Sci. 2025, 15(14), 7991; https://doi.org/10.3390/app15147991 - 17 Jul 2025
Viewed by 913
Abstract
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution [...] Read more.
Understanding the time-lagged response of land subsidence to groundwater level fluctuations and subsurface strain variations is crucial for uncovering its underlying mechanisms and enhancing disaster early warning capabilities. This study focuses on Dangshan County, Anhui Province, China, and systematically analyzes the spatio-temporal evolution of land subsidence from 2018 to 2024. A total of 207 Sentinel-1 SAR images were first processed using the Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-InSAR) technique to generate high-resolution surface deformation time series. Subsequently, the seasonal-trend decomposition using the LOESS (STL) model was applied to extract annual cyclic deformation components from the InSAR-derived time series. To quantitatively assess the delayed response of land subsidence to groundwater level changes and subsurface strain evolution, time-lagged cross-correlation (TLCC) analysis was performed between surface deformation and both groundwater level data and distributed fiber-optic strain measurements within the 5–50 m depth interval. The strain data was collected using a borehole-based automated distributed fiber-optic sensing system. The results indicate that land subsidence is primarily concentrated in the urban core, with annual cyclic amplitudes ranging from 10 to 18 mm and peak values reaching 22 mm. The timing of surface rebound shows spatial variability, typically occurring in mid-February in residential areas and mid-May in agricultural zones. The analysis reveals that surface deformation lags behind groundwater fluctuations by approximately 2 to 3 months, depending on local hydrogeological conditions, while subsurface strain changes generally lead surface subsidence by about 3 months. These findings demonstrate the strong predictive potential of distributed fiber-optic sensing in capturing precursory deformation signals and underscore the importance of integrating InSAR, hydrological, and geotechnical data for advancing the understanding of subsidence mechanisms and improving monitoring and mitigation efforts. Full article
Show Figures

Figure 1

21 pages, 15482 KB  
Article
InSAR Detection of Slow Ground Deformation: Taking Advantage of Sentinel-1 Time Series Length in Reducing Error Sources
by Machel Higgins and Shimon Wdowinski
Remote Sens. 2025, 17(14), 2420; https://doi.org/10.3390/rs17142420 - 12 Jul 2025
Cited by 1 | Viewed by 1165
Abstract
Using interferometric synthetic aperture radar (InSAR) to observe slow ground deformation can be challenging due to many sources of error, with tropospheric phase delay and unwrapping errors being the most significant. While analytical methods, weather models, and data exist to mitigate tropospheric error, [...] Read more.
Using interferometric synthetic aperture radar (InSAR) to observe slow ground deformation can be challenging due to many sources of error, with tropospheric phase delay and unwrapping errors being the most significant. While analytical methods, weather models, and data exist to mitigate tropospheric error, most of these techniques are unsuitable for all InSAR applications (e.g., complex tropospheric mixing in the tropics) or are deficient in spatial or temporal resolution. Likewise, there are methods for removing the unwrapping error, but they cannot resolve the true phase when there is a high prevalence (>40%) of unwrapping error in a set of interferograms. Applying tropospheric delay removal techniques is unnecessary for C-band Sentinel-1 InSAR time series studies, and the effect of unwrapping error can be minimized if the full dataset is utilized. We demonstrate that using interferograms with long temporal baselines (800 days to 1600 days) but very short perpendicular baselines (<5 m) (LTSPB) can lower the velocity detection threshold to 2 mm y−1 to 3 mm y−1 for long-term coherent permanent scatterers. The LTSPB interferograms can measure slow deformation rates because the expected differential phases are larger than those of small baselines and potentially exceed the typical noise amplitude while also reducing the sensitivity of the time series estimation to the noise sources. The method takes advantage of the Sentinel-1 mission length (2016 to present), which, for most regions, can yield up to 300 interferograms that meet the LTSPB baseline criteria. We demonstrate that low velocity detection can be achieved by comparing the expected LTSPB differential phase measurements to synthetic tests and tropospheric delay from the Global Navigation Satellite System. We then characterize the slow (~3 mm/y) ground deformation of the Socorro Magma Body, New Mexico, and the Tampa Bay Area using LTSPB InSAR analysis. The method we describe has implications for simplifying the InSAR time series processing chain and enhancing the velocity detection threshold. Full article
Show Figures

Graphical abstract

17 pages, 7849 KB  
Article
Applicability of Multi-Sensor and Multi-Geometry SAR Data for Landslide Detection in Southwestern China: A Case Study of Qijiang, Chongqing
by Haiyan Wang, Xiaoting Liu, Guangcai Feng, Pengfei Liu, Wei Li, Shangwei Liu and Weiming Liao
Sensors 2025, 25(14), 4324; https://doi.org/10.3390/s25144324 - 10 Jul 2025
Viewed by 637
Abstract
The southwestern mountainous region of China (SMRC), characterized by complex geological environments, experiences frequent landslide disasters that pose significant threats to local residents. This study focuses on the Qijiang District of Chongqing, where we conduct a systematic evaluation of wavelength and observation geometry [...] Read more.
The southwestern mountainous region of China (SMRC), characterized by complex geological environments, experiences frequent landslide disasters that pose significant threats to local residents. This study focuses on the Qijiang District of Chongqing, where we conduct a systematic evaluation of wavelength and observation geometry effects on InSAR-based landslide monitoring. Utilizing multi-sensor SAR imagery (Sentinel-1 C-band, ALOS-2 L-band, and LUTAN-1 L-band) acquired between 2018 and 2025, we integrate time-series InSAR analysis with geological records, high-resolution topographic data, and field investigation findings to assess representative landslide-susceptible zones in the Qijiang District. The results indicate the following: (1) L-band SAR data demonstrates superior monitoring precision compared to C-band SAR data in the SMRC; (2) the combined use of LUTAN-1 ascending/descending orbits significantly improved spatial accuracy and detection completeness in complex landscapes; (3) multi-source data fusion effectively mitigated limitations of single SAR systems, enhancing identification of small- to medium-scale landslides. This study provides critical technical support for multi-source landslide monitoring and early warning systems in Southwest China while demonstrating the applicability of China’s SAR satellites for geohazard applications. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

26 pages, 3234 KB  
Article
Time-Series Deformation and Kinematic Characteristics of a Thaw Slump on the Qinghai-Tibetan Plateau Obtained Using SBAS-InSAR
by Zhenzhen Yang, Wankui Ni, Siyuan Ren, Shuping Zhao, Peng An and Haiman Wang
Remote Sens. 2025, 17(13), 2206; https://doi.org/10.3390/rs17132206 - 26 Jun 2025
Viewed by 755
Abstract
Based on ascending and descending orbit SAR data from 2017–2025, this study analyzes the long time-series deformation monitoring and slip pattern of an active-layer detachment thaw slump, a typical active-layer detachment thaw slump in the permafrost zone of the Qinghai-Tibetan Plateau, by using [...] Read more.
Based on ascending and descending orbit SAR data from 2017–2025, this study analyzes the long time-series deformation monitoring and slip pattern of an active-layer detachment thaw slump, a typical active-layer detachment thaw slump in the permafrost zone of the Qinghai-Tibetan Plateau, by using the small baseline subset InSAR (SBAS-InSAR) technique. In addition, a three-dimensional displacement deformation field was constructed with the help of ascending and descending orbit data fusion technology to reveal the transportation characteristics of the thaw slump. The results show that the thaw slump shows an overall trend of “south to north” movement, and that the cumulative surface deformation is mainly characterized by subsidence, with deformation ranging from −199.5 mm to 55.9 mm. The deformation shows significant spatial heterogeneity, with its magnitudes generally decreasing from the headwall area (southern part) towards the depositional toe (northern part). In addition, the multifactorial driving mechanism of the thaw slump was further explored by combining geological investigation and geotechnical tests. The analysis reveals that the thaw slump’s evolution is primarily driven by temperature, with precipitation acting as a conditional co-factor, its influence being modulated by the slump’s developmental stage and local soil properties. The active layer thickness constitutes the basic geological condition of instability, and its spatial heterogeneity contributes to differential settlement patterns. Freeze–thaw cycles affect the shear strength of soils in the permafrost zone through multiple pathways, and thus trigger the occurrence of thaw slumps. Unlike single sudden landslides in non-permafrost zones, thaw slump is a continuous development process that occurs until the ice content is obviously reduced or disappears in the lower part. This study systematically elucidates the spatiotemporal deformation patterns and driving mechanisms of an active-layer detachment thaw slump by integrating multi-temporal InSAR remote sensing with geological and geotechnical data, offering valuable insights for understanding and monitoring thaw-induced hazards in permafrost regions. Full article
Show Figures

Figure 1

26 pages, 20693 KB  
Article
Wavelet-Based Analysis of Subsidence Patterns and High-Risk Zone Delineation in Underground Metal Mining Areas Using SBAS-InSAR
by Jiang Li, Zhuoying Tan, Nuobei Zeng, Linsen Xu, Yinglin Yang, Aboubakar Siddique, Junfeng Dang, Jianbing Zhang and Xin Wang
Land 2025, 14(5), 992; https://doi.org/10.3390/land14050992 - 4 May 2025
Cited by 2 | Viewed by 868
Abstract
Underground metal mines operated using the natural caving method often result in significant surface collapses. Key parameters such as settlement magnitude, settlement rate, settlement extent, and the influence of underground mining on surface deformation warrant serious attention. However, due to the long operational [...] Read more.
Underground metal mines operated using the natural caving method often result in significant surface collapses. Key parameters such as settlement magnitude, settlement rate, settlement extent, and the influence of underground mining on surface deformation warrant serious attention. However, due to the long operational timespan of mines and incomplete data from early collapse events, coupled with the inaccessibility of collapse zones for field measurements, it is challenging to obtain accurate displacement data, thereby posing significant difficulties for follow-up research. This study employs small baseline subset InSAR (SBAS-InSAR) technology to retrieve time series data on early-stage surface displacement and deformation rates in collapse areas, thereby compensating for the lack of historical data and eliminating the safety risks associated with on-site measurements. The 5th percentile of settlement rates across all monitoring points is used to define the severe settlement threshold, determined to be −42.1 mm/year. Continuous wavelet transform (CWT) is applied to calculate the time-series power spectrum, allowing the analysis of long-term stable and periodic settlement patterns in the collapse area. The instantaneous change rate at each point in the study area is identified. Using the 97th percentile of change rates in the time series, the number of severe change events at each point is determined. High-incidence zones of sudden surface deformation are visualized through QGIS 3.16 heat map clustering. The high-risk collapse area, identified by integrating both long-term stable settlement and sudden surface deformation patterns, accounts for multiple deformation modes. This provides robust technical support for the management of mine collapse zones and offers important theoretical guidance. Full article
Show Figures

Figure 1

22 pages, 6689 KB  
Article
Multi-Scale Time Series InSAR Integrated with ICA for Deciphering the Coupling Mechanism Between Groundwater Dynamics and Surface Deformation
by Zihan Yu, Qin Wang, Huili Gong, Chaofan Zhou, Beibei Chen and Yongkang Wang
Land 2025, 14(5), 971; https://doi.org/10.3390/land14050971 - 30 Apr 2025
Viewed by 655
Abstract
Land subsidence has become an increasingly serious environmental problem worldwide, especially in areas where groundwater is over-exploited. Hengshui City, as part of the North China Plain in eastern China, has been experiencing increasingly severe land subsidence due to long-term groundwater over-exploitation, which has [...] Read more.
Land subsidence has become an increasingly serious environmental problem worldwide, especially in areas where groundwater is over-exploited. Hengshui City, as part of the North China Plain in eastern China, has been experiencing increasingly severe land subsidence due to long-term groundwater over-exploitation, which has seriously affected local infrastructure and the sustainable utilization of water resources. In order to explore the relationship between hydraulic head changes and subsidence, this study systematically analyzed the ground subsidence characteristics and its driving mechanism in the Hengshui area from January 2018 to July 2022 using the time series InSAR (interferometric synthetic aperture radar) technique combined with independent component analysis (ICA). The subsidence signals were decomposed into seasonal, trend, and stochastic features by independent component analysis, revealing the multi-scale time lag effect of hydraulic head fluctuations on subsidence. The results show that the magnitude of land subsidence is increasing under the condition of a continuously decreasing water level, reflecting the groundwater compaction problem triggered by the over-exploitation of groundwater. This study provides a theoretical basis and technical support for groundwater management and subsidence prevention and control in Hengshui and similar regions. Full article
Show Figures

Figure 1

19 pages, 9445 KB  
Article
The Stepwise Multi-Temporal Interferometric Synthetic Aperture Radar with Partially Coherent Scatterers for Long-Time Series Deformation Monitoring
by Jinbao Zhang, Wei Duan, Xikai Fu, Ye Yun and Xiaolei Lv
Remote Sens. 2025, 17(8), 1374; https://doi.org/10.3390/rs17081374 - 11 Apr 2025
Cited by 2 | Viewed by 800
Abstract
In recent decades, the interferometric synthetic aperture radar (InSAR) technique has emerged as a powerful tool for monitoring ground subsidence and geohazards. Various satellite SAR systems with different modes, such as Sentinel-1 and Lutan-1, have produced abundant SAR datasets with wide coverage and [...] Read more.
In recent decades, the interferometric synthetic aperture radar (InSAR) technique has emerged as a powerful tool for monitoring ground subsidence and geohazards. Various satellite SAR systems with different modes, such as Sentinel-1 and Lutan-1, have produced abundant SAR datasets with wide coverage and large historical archives, which have significantly influenced long-term deformation monitoring applications. However, large-scale InSAR data have posed significant challenges to conventional InSAR methods. These issues include the computational burden and storage of multi-temporal InSAR (MT-InSAR) methods, as well as temporal decorrelation for coherent scatterers with long temporal baselines. In this study, we propose a stepwise MT-InSAR with a temporal coherent scatterer method to address these problems. First, a batch sequential method is introduced in the algorithm by grouping the SAR dataset in the time domain based on the average coherence distribution and then applying permanent scatterer interferometry to each temporal subset. Second, a multi-layer network is employed to estimate deformation for partially coherent scatterers using small baseline subset interferograms, with permanent scatterer deformation parameters as the reference. Finally, the final deformation rate and displacement time series were obtained by incorporating all the temporal subsets. The proposed method efficiently generates high-density InSAR deformation measurements for long-time series analysis. The proposed method was validated using 9 years of Sentinel-1 data with 229 SAR images from Jakarta, Indonesia. The deformation results were compared with those of conventional methods and global navigation satellite system data to confirm the effectiveness of the proposed method. Full article
Show Figures

Figure 1

15 pages, 10610 KB  
Article
Geological Hazard Risk Assessment Based on Time-Series InSAR Deformation: A Case Study of Xiaojin County, China
by Jiancun Li, Zhao Yan, Liqiang Tong, Yi Wang and Shangyuan Yu
Appl. Sci. 2025, 15(8), 4143; https://doi.org/10.3390/app15084143 - 9 Apr 2025
Cited by 1 | Viewed by 537
Abstract
Geological hazard risk assessment provides essential scientific support for geological disaster prevention and governance. The selection of appropriate evaluation factors is crucial to the accuracy and practicality of the risk assessment results. The existing factors for geological hazard risk assessment often suffer from [...] Read more.
Geological hazard risk assessment provides essential scientific support for geological disaster prevention and governance. The selection of appropriate evaluation factors is crucial to the accuracy and practicality of the risk assessment results. The existing factors for geological hazard risk assessment often suffer from issues such as poor timeliness and insufficient completeness. Interferometric Synthetic Aperture Radar (InSAR) technology, which offers large-scale, high spatiotemporal resolution monitoring of surface deformation, can effectively compensate for the shortcomings of existing risk assessment factors. How to effectively integrate time-series InSAR deformation results into geological hazard risk assessment has become a focus of research. This study fully considers the time-series InSAR deformation information; both the ascending and descending orbit results of the time-series InSAR deformation are introduced as two categories of evaluation factors in the risk assessment model. Subsequently, 11 types of assessment factors are selected by the Pearson correlation coefficient method, while the Information Volume Model and Evidence Weight Model are applied in the partitioning and assessment of risks in Xiaojin County, China. Finally, ROC (Receiver Operating Characteristic Curve) analysis is utilized to compare the accuracy of model evaluations before and after incorporating time-series InSAR deformation results. The results indicate that: (1) after incorporating time-series InSAR deformation monitoring results as evaluation factors into the information volume model and evidence weight model, the evaluation accuracy of the two models improved by 9.69% and 11.26%, respectively; (2) there are differences in risk partitioning among different evaluation models. From the risk partitioning result of Xiaojin County in this study, the evaluation accuracy of the information volume model is higher than that of the evidence weight model, and the performance is more prominent after adding the time-series InSAR deformation results. Full article
(This article belongs to the Topic Remote Sensing and Geological Disasters)
Show Figures

Figure 1

Back to TopTop