Time-Series Surface Velocity and Backscattering Coefficients from Sentinel-1 SAR Images Document Glacier Seasonal Dynamics and Surges on the Puruogangri Ice Field in the Central Tibetan Plateau
Abstract
Highlights
- The study presents the first comprehensive and high spatiotemporal resolution 3D displacement field of the Puruogangri Ice Field (PIF) from 2017 to 2024, revealing significant seasonal velocity variations and surge events on three glaciers.
- The results show that summer velocities are approximately six times the winter velocities on average, and peak displacements during surges exceed 110 m in 12 days.
- The findings enhance our understanding of glacier dynamics in the central Tibetan Plateau and highlight the potential of using SAR imaging geodesy to monitor glacial hazards in High Mountain Asia.
- The study suggests that damaged subglacial drainage systems may trigger glacier surges, indicating that the mechanism of glacier surging in the region is hydrological control.
Abstract
1. Introduction
2. Data
2.1. Sentinel-1 SAR Data
2.2. Topographic Data
2.3. ERA5 Reanalysis Products
3. Methods
3.1. InSAR Processing
3.2. Pixel Offset Tracking
3.3. The 2D and 3D Deformation Inversion
3.4. Time-Series Analysis
3.5. Amplitude Map Calculation
4. Results
4.1. Winter Velocity from InSAR
4.2. Velocity from Pixel Offset Tracking
4.3. Time-Series Displacement from Offset Tracking
4.4. Surface Water Changes Revealed from SAR Backscatter-Coefficient Images
5. Discussion
5.1. Comprehensive Time-Series Displacements from Radar Imaging Geodesy
5.2. A Possible Mechanism for the Surges on the PIF
5.3. Implications of Monitoring Surface Velocity and Backscattering Coefficients from Radar Imagery for Glaciers in High Mountain Asia
5.4. Prospects and Limitations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PIF | Puruogangri Ice Field |
SAR | Synthetic Aperture Radar |
DEM | Digital Elevation Model |
References
- Xu, J.; Shangguan, D.; Wang, J. Recent surging event of a glacier on Geladandong Peak on the Central Tibetan Plateau. J. Glaciol. 2021, 67, 967–973. [Google Scholar] [CrossRef]
- Fu, X.; Li, Z.; Zhou, J. Characterizing the surge behavior of Alakesayi Glacier in the West Kunlun Shan, Northwestern Tibetan Plateau, from remote-sensing data between 2013 and 2018. J. Glaciol. 2019, 65, 168–172. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, S.; Qi, M.; Zhu, Y.; Xie, F.; Wu, K.; Jiang, Z. Characterizing the behaviour of surge-type glaciers in the Geladandong Mountain Region, Inner Tibetan Plateau, from 1986 to 2020. Geomorphology 2021, 389, 107806. [Google Scholar] [CrossRef]
- Pan, B.; Guan, W.; Shi, M.; Wu, G.; Cheng, J.; Shangguan, D.; Guo, W.; Cao, B. Different characteristics of two surges in Weigeledangxiong Glacier, northeastern Tibetan Plateau. Environ. Res. Lett. 2022, 17, 114009. [Google Scholar] [CrossRef]
- Kääb, A.; Leinss, S.; Gilbert, A.; Bühler, Y.; Gascoin, S.; Evans, S.G.; Bartelt, P.; Berthier, E.; Brun, F.; Chao, W.-A.; et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci. 2018, 11, 114–120. [Google Scholar] [CrossRef]
- Yao, X.; Iqbal, J.; Li, L.J.; Zhou, Z.K. Characteristics of mountain glacier surge hazard: Learning from a surge event in NE Pamir, China. J. Mt. Sci. 2019, 16, 1515–1533. [Google Scholar] [CrossRef]
- Leclercq, P.W.; Kääb, A.; Altena, B. Brief communication: Detection of glacier surge activity using cloud computing of Sentinel-1 radar data. Cryosphere 2021, 15, 4901–4907. [Google Scholar] [CrossRef]
- Li, G.; Chen, Z.; Mao, Y.; Yang, Z.; Chen, X.; Cheng, X. Different glacier surge patterns revealed by Sentinel-2 imagery derived quasi-monthly flow velocity at west Kunlun Shan, Karakoram, Hindu Kush and Pamir. Remote Sens. Environ. 2024, 311, 114298. [Google Scholar] [CrossRef]
- Leprince, S.; Barbot, S.; Ayoub, F.; Avouac, J.P. Automatic and precise orthorectification, coregistration, and subpixel correlation of satellite images, application to ground deformation measurements. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1529–1558. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Glacier mass balance in the Qinghai–Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Mohr, J.J.; Reeh, N.; Madsen, S.N. Three-dimensional glacial flow and surface elevation measured with radar interferometry. Nature 1998, 391, 273–276. [Google Scholar] [CrossRef]
- Joughin, I.R.; Kwok, R.; Fahnestock, M.A. Interferometric estimation of three-dimensional ice-flow using ascending and descending passes. IEEE Trans. Geosci. Remote Sens. 2002, 36, 25–37. [Google Scholar] [CrossRef]
- Sánchez-Gámez, P.; Navarro, F.J. Glacier surface velocity retrieval using D-InSAR and offset tracking techniques applied to ascending and descending passes of Sentinel-1 data for Southern Ellesmere ice caps, Canadian Arctic. Remote Sens. 2017, 9, 442. [Google Scholar] [CrossRef]
- Wang, X.; Yao, J.; Cao, Y.; Yao, J. The improved SBAS-InSAR technique reveals three-dimensional glacier collapse: A case study in the Qinghai–Tibet Plateau. Land 2024, 13, 1126. [Google Scholar] [CrossRef]
- Strozzi, T.; Luckman, A.; Murray, T.; Wegmuller, U.; Werner, C.L. Glacier motion estimation using SAR offset-tracking procedures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2384–2391. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H.; Hetzenecker, M.; Wuite, J.; Potin, P. The Sentinel-1 mission: New opportunities for ice sheet observations. Remote Sens. 2015, 7, 9371–9389. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, J.; Zhou, W.; Tong, L.; Guo, Z.; Liu, G.; Yuan, W.; Sousa, J.J.; Perski, Z. 3D Surface velocity retrieval of mountain glacier using an offset tracking technique applied to ascending and descending SAR constellation data: A case study of the Yiga Glacier. Int. J. Digit. Earth 2019, 12, 614–624. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.-W.; Li, J.; Zhang, L.; Ding, X.-L.; Zhu, J.-J.; Sun, Q. 3-D movement mapping of the alpine glacier in Qinghai-Tibetan Plateau by integrating D-InSAR, MAI and Offset-Tracking: Case study of the Dongkemadi Glacier. Glob. Planet. Change 2014, 118, 62–68. [Google Scholar] [CrossRef]
- Rounce, D.R.; Hock, R.; Maussion, F.; Hugonnet, R.; Kochtitzky, W.; Huss, M.; Berthier, E.; Brinkerhoff, D.; Compagno, L.; Copland, L.; et al. Global glacier change in the 21st century: Every increase in temperature matters. Science 2023, 379, 78–83. [Google Scholar] [CrossRef]
- Xu, B.; Cao, J.; Hansen, J.; Yao, T.; Joswia, D.R.; Wang, N.; Wu, G.; Wang, M.; Zhao, H.; Yang, W.; et al. Black soot and the survival of Tibetan glaciers. Proc. Natl. Acad. Sci. USA 2009, 106, 22114–22118. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Liu, S.; Wei, J.; Bao, W. The 2008/09 surge of central Yulinchuan glacier, northern Tibetan Plateau, as monitored by remote sensing. Ann. Glaciol. 2013, 54, 299–310. [Google Scholar] [CrossRef]
- Guan, W.; Cao, B.; Pan, B.; Chen, R.; Shi, M.; Li, K.; Zhao, X.; Sun, X. Updated surge-type glacier inventory in the West Kunlun Mountains, Tibetan Plateau, and implications for glacier change. J. Geophys. Res. Earth Surf. 2022, 127, e2021JF006369. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, N.; Wu, Y.; Zhou, S.; Qin, G. Annual and seasonal variations in glacier velocity, and surging glaciers in the West Kunlun Mountain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 10703–10714. [Google Scholar] [CrossRef]
- Yang, W.; Guo, X.; Yao, T.; Zhu, M.; Wang, Y. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations. Clim. Dyn. 2016, 47, 805–815. [Google Scholar] [CrossRef]
- Kapnick, S.B.; Delworth, T.L.; Ashfaq, M.; Malyshev, S.; Milly, P.C.D. Snowfall less sensitive to warming in Karakoram than in Himalayas due to a unique seasonal cycle. Nat. Geosci. 2014, 7, 834–840. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Farinotti, D.; Immerzeel, W.W.; de Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and mechanisms of the Karakoram glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef]
- Yi, C.L.; Li, X.Z.; Qu, J.J. Quaternary glaciation of Puruogangri—The largest modern ice field in Tibet. Quat. Int. 2002, 97–98, 111–121. [Google Scholar] [CrossRef]
- Pu, J.C.; Yao, T.D.; Wang, N.L.; Ding, L.F.; Zhang, Q.H. Puruogangri Ice Filed and its variation since the Little Ice Age of the northern Tibetan Plateau. J. Glaciol. Geocryol. 2002, 24, 87–92. [Google Scholar]
- Huintjes, E.; Neckel, N.; Hochschild, V.; Schneider, C. Surface energy and mass balance at Purogangri ice cap, central Tibetan Plateau, 2001–2011. J. Glaciol. 2015, 61, 1048–1060. [Google Scholar] [CrossRef]
- Jiao, K.Q.; Zhang, Z.S. Glacier Inventory of China VII: Qinghai-Xizang Plateau Interior Area (Drainage Basins of the Seling Lake); Science Press: Beijing, China, 1988. [Google Scholar]
- Liu, L.; Jiang, L.; Sun, Y.; Yi, C.; Wang, H.; Hsu, H. Glacier elevation changes (2012–2016) of the Puruogangri Ice Field on the Tibetan Plateau derived from bi-temporal TanDEM-X InSAR data. Int. J. Remote Sens. 2016, 37, 5687–5707. [Google Scholar] [CrossRef]
- Yao, T.D. Puruogangri ice field was discovered in middle of Tibetan Plateau. J. Glaciol. Geocryol. 2000, 22, 1–2. [Google Scholar]
- Ren, S.; Li, X.; Wang, Y.; Zheng, D.; Jiang, D.; Nian, Y.; Zhou, Y. Multitemporal glacier mass balance and area changes in the Puruogangri Ice Field during 1975–2021 based on multisource satellite observations. Remote Sens. 2022, 14, 4078. [Google Scholar] [CrossRef]
- Raup, B.; Kääb, A.; Kargel, J.S.; Bishop, M.P.; Hamilton, G.; Lee, E.; Paul, F.; Rau, F.; Soltesz, D.; Khalsa, S.J.S. Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. Comput. Geosci. 2007, 33, 104–125. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.; Sun, Y.; Wang, H.; Yi, C.; Hsu, H. Morphometric controls on glacier mass balance of the puruogangri ice field, central tibetan plateau. Water 2016, 8, 496. [Google Scholar] [CrossRef]
- Neckel, N.; Braun, A.; Kropáček, J.; Hochschild, V. Recent mass balance of the Purogangri Ice Cap, central Tibetan Plateau, by means of differential X-band SAR interferometry. Cryosphere 2013, 7, 1623–1633. [Google Scholar] [CrossRef]
- Liu, L.; Jiang, L.M.; Jiang, H.J.; Wang, H.S.; Ma, N.; Xu, H.Z. Accelerated glacier mass loss (2011–2016) over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements. Remote Sens. Environ. 2019, 231, 111241. [Google Scholar] [CrossRef]
- Jin, Z.F.; Yao, T.D.; Wang, N.L. The surface flow features of the Puruogangri ice field. J. Glaciol. Geocryol. 2003, 25, 288–290. [Google Scholar]
- Liu, L.; Jiang, L.; Wang, H. Extraction of glacier surface elevation and velocity in high Asia with ERS-1/2 Tandem SAR data: Application to Puruogangri ice field, Tibetan Plateau. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4442–4445. [Google Scholar]
- Zhou, S.; Wang, N.; Li, Z.; Yao, X.; Zhang, Y.; Qin, G. Characterizing the behavior of surge-type glaciers in the Puruogangri Ice Field, Tibetan Plateau. J. Geogr. Sci. 2024, 34, 1174–1194. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, S.; Sun, M.; Duan, H.; Zhang, Y. Surging Glaciers in High Mountain Asia between 1986 and 2021. Remote Sens. 2023, 15, 4595. [Google Scholar] [CrossRef]
- Zhang, W. Identification of glaciers with surge characteristics on the Tibetan Plateau. Ann. Glaciol. 1992, 16, 168–172. [Google Scholar]
- Kamb, B.; Engelhardt, H. Waves of accelerated motion in a glacier approaching surge: The mini-surges of Variegated Glacier, Alaska, USA. J. Glaciol. 1987, 33, 27–46. [Google Scholar] [CrossRef]
- Eisen, O.; Harrison, W.D.; Raymond, C.F.; Echelmeyer, K.A.; Bender, G.A.; Gorda, J.L. Variegated Glacier, Alaska, USA: A century of surges. J. Glaciol. 2005, 51, 399–406. [Google Scholar] [CrossRef]
- Kamb, B.; Raymond, C.; Harrison, W.; Engelhardt, H.; Echelmeyer, K.; Humphrey, N.; Brugman, M.; Pfeffer, T. Glacier surge mechanism: 1982–1983 surge of Variegated Glacier, Alaska. Science 1985, 227, 469–479. [Google Scholar] [CrossRef]
- Burgess, E.W.; Forster, R.R.; Larsen, C.F.; Braun, M. Surge dynamics on Bering Glacier, Alaska, in 2008–2011. Cryosphere 2012, 6, 1251–1262. [Google Scholar] [CrossRef]
- Paul, F.; Strozzi, T.; Schellenberger, T.; Kääb, A. The 2015 surge of Hispar Glacier in the Karakoram. Remote Sens. 2017, 9, 888. [Google Scholar] [CrossRef]
- Quincey, D.J.; Glasser, N.F.; Cook, S.J.; Luckman, A. Heterogeneity in Karakoram glacier surges. J. Geophys. Res. Earth Surf. 2015, 120, 1288–1300. [Google Scholar] [CrossRef]
- Hewitt, K. Tributary glacier surges: An exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol. 2007, 53, 181–188. [Google Scholar] [CrossRef]
- Rashid, I.; Abdullah, T.; Glasser, N.F.; Naz, H.; Romshoo, S.A. Surge of Hispar Glacier, Pakistan, between 2013 and 2017 detected from remote sensing observations. Geomorphology 2018, 303, 410–416. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Chen, C.W.; Zebker, H.A. Network approaches to two-dimensional phase unwrapping: Intractability and two new algorithms. J. Opt. Soc. Am. A 2000, 17, 401–414. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Luo, R.; Yang, Y.; Yong, Q. Method and accuracy of extracting surface deformation field from SAR image coregistration. Acta Geod. Et Cartogr. Sin. 2015, 44, 301–308. [Google Scholar]
- Gomez, R.; Arigony-Neto, J.; De Santis, A.; Vijay, S.; Jana, R.; Rivera, A. Ice dynamics of union glacier from SAR offset tracking. Glob. Planet. Change 2019, 174, 1–15. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.H.; Fan, X.R.; Ma, C.; Shan, X.J. Coseismic deformation, fault slip distribution, and Coulomb stress perturbation of the 2023 Türkiye-Syria earthquake doublet based on SAR offset tracking. Remote Sens. 2023, 15, 5443. [Google Scholar] [CrossRef]
- Wen, M.; Wang, T. Review of SAR imaging geodesy for glacier velocity monitoring. Geod. Geodyn. 2024, 16, 262–274. [Google Scholar] [CrossRef]
- Scherler, D.; Leprince, S.; Strecker, M.R. Glacier-surface velocities in alpine terrain from optical satellite imagery—Accuracy improvement and quality assessment. Remote Sens. Environ. 2008, 112, 3806–3819. [Google Scholar] [CrossRef]
- Scambos, T.A.; Dutkiewicz, M.J.; Wilson, J.C.; Bindschadler, R.A. Application of image cross-correlation to the measurement of glacier velocity using satellite image data. Remote Sens. Environ. 1992, 42, 177–186. [Google Scholar] [CrossRef]
- Heid, T.; Kääb, A. Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sens. Environ. 2012, 118, 339–355. [Google Scholar] [CrossRef]
- Fahnestock, M.; Scambos, T.; Moon, T.; Gardner, A.; Haran, T.; Klinger, M. Rapid large-area mapping of ice flow using Landsat 8. Remote Sens. Environ. 2016, 185, 84–94. [Google Scholar] [CrossRef]
- Debella-Gilo, M.; Kääb, A. Sub-pixel precision image matching for measuring surface displacements on mass movements using normalized cross-correlation. Remote Sens. Environ. 2011, 115, 130–142. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry Data Interpretation and Error Analysis; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Wang, T.; Jónsson, S. Improved SAR amplitude image offset measurements for deriving three-dimensional coseismic displacements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3271–3278. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, J.; Li, Z.; Zhang, M.; Wang, Y.; Liu, J.; Yang, J.; Yang, Z. Retrieving and verifying three-dimensional surface motion displacement of mountain glacier from Sentinel-1 imagery using optimized method. Water 2021, 13, 1793. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, C.; Lu, Z.; Yang, C.; Zhang, Q. Three-dimensional time series movement of the Cuolangma glaciers, southern Tibet with Sentinel-1 imagery. Remote Sens. 2020, 12, 3466. [Google Scholar] [CrossRef]
- Casu, F.; Manconi, A.; Pepe, A.; Lanari, R. Deformation time-series generation in areas characterized by large displacement dynamics: The SAR amplitude pixel-offset SBAS technique. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2752–2763. [Google Scholar] [CrossRef]
- Zou, A.J. Research on Coseismic Deformation Monitoring Based on Image Correlation Technology. Master’s Thesis, East China University of Technology, Nanchang, China, 2022. [Google Scholar]
- Wang, T.; Wei, S.; Shi, X.; Qiu, Q.; Li, L.; Peng, D.; Weldon, R.J.; Barbot, S. The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults. Earth Planet. Sci. Lett. 2018, 482, 44–51. [Google Scholar] [CrossRef]
- Morishita, Y.; Kobayashi, T.; Fujiwara, S.; Yarai, H. Complex crustal deformation of the 2016 Kaikoura, New Zealand, earthquake revealed by ALOS-2. Bull. Seismol. Soc. Am. 2017, 107, 2676–2686. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.-W.; Wu, L.-X.; Xu, B.; Hu, J.; Zhou, Y.-S.; Miao, Z.-L. Deriving a time series of 3D glacier motion to investigate interactions of a large mountain glacial system with its glacial lake: Use of Synthetic Aperture Radar Pixel Offset-Small Baseline Subset technique. J. Hydrol. 2018, 559, 596–608. [Google Scholar] [CrossRef]
- Bartholomaus, T.C.; Anderson, R.S.; Anderson, S.P. Response of glacier basal motion to transient water storage. Nat. Geosci. 2008, 1, 33–37. [Google Scholar] [CrossRef]
- Sugiyama, S.; Skvarca, P.; Naito, N.; Enomoto, H.; Tsutaki, S.; Tone, K.; Marinsek, S.; Aniya, M. Ice speed of a calving glacier modulated by small fluctuations in basal water pressure. Nat. Geosci. 2011, 4, 597–600. [Google Scholar] [CrossRef]
- Millan, R.; Mouginot, J.; Rabatel, A.; Morlighem, M. Ice velocity and thickness of the world’s glaciers. Nat. Geosci. 2022, 15, 124–129. [Google Scholar] [CrossRef]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Paterson, W.S.B.; Andrews, J.T. The Physics of Glaciers. Phys. Today 1982, 35, 59–61. [Google Scholar] [CrossRef]
- Harrison, W.D.; Post, A.S. How much do we really know about glacier surging? Ann. Glaciol. 2003, 36, 1–6. [Google Scholar] [CrossRef]
- Murray, T.; Stuart, G.W.; Miller, P.J.; Woodward, J.; Smith, A.M.; Porter, P.R.; Jiskoot, H. Glacier surge propagation by thermal evolution at the bed. J. Geophys. Res. Solid Earth 2000, 105, 13491–13507. [Google Scholar] [CrossRef]
- Qiu, J. Ice on the run. Science 2017, 358, 1120–1123. [Google Scholar] [CrossRef]
- Huang, M.H.; Sun, Z.Z. Some flow characteristics of continental-type glaciers in China. J. Glaciolgy Geocryol. 1982, 4, 35–45. [Google Scholar]
- Zhang, Y.S.; Yao, T.D.; Pu, J.C. The response of continental type glaciers to climate change in China. J. Glaciolgy Geocryol. 1998, 20, 3–8. [Google Scholar]
- Su, B.; Li, Z.Q.; Zhang, M.J.; Guo, R.; Sun, M.P.; Che, Y.J.; Ying, X. A comparative study on mass balance between the continental glaciers and the temperate glaciers: Taking the typical glaciers in the Tianshan Mountains and the Alps as examples. J. Glaciolgy Geocryol. 2015, 37, 1131–1140. [Google Scholar]
- Li, K.M.; Chen, S.F.; Kang, L.F.; Li, Z.Q.; Li, S.D.; Wen, Q. Variation of continental glacier and temperate glacier in China: A case study of Glacier No.1 at the headwaters of the Urumqi River and Baishui Glacier No.1. Arid Zone Res. 2018, 35, 12–19. [Google Scholar]
- Yang, W.; Zhao, C.; Westoby, M.; Yao, T.; Wang, Y.; Pellicciotti, F.; Zhou, J.; He, Z.; Miles, E. Seasonal dynamics of a temperate Tibetan glacier revealed by high-resolution UAV photogrammetry and in situ measurements. Remote Sens. 2020, 12, 2389. [Google Scholar] [CrossRef]
- Xiong, J.; Fan, X.; Dou, X.; Yang, Y. Seasonal variation of Yalong Glacier’s velocity in Ranwu Lake Basin, southeast Tibetan Plateau. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1579–1588. [Google Scholar] [CrossRef]
- Sole, A.J.; Mair, D.W.F.; Nienow, P.W.; Bartholomew, I.D.; King, M.A.; Burke, M.J.; Joughin, I. Seasonal speedup of a Greenland marine-terminating outlset glacier forced by surface melt–induced changes in subglacial hydrology. J. Geophys. Res. Earth Surf. 2011, 116, F03014. [Google Scholar] [CrossRef]
- Rogers, D. The Relationship Between Seasonal Fluctuations in Ice Velocity and Surge-Type Behaviour in Glaciers: Hubbard glacier, Alaska, USA. Ph.D. Thesis, Bournemouth University, Poole, UK, 2023. [Google Scholar]
- Ritchie, J.B.; Lingle, C.S.; Motyka, R.J.; Truffer, M. Seasonal fluctuations in the advance of a tidewater glacier and potential causes: Hubbard Glacier, Alaska, USA. J. Glaciol. 2008, 54, 401–411. [Google Scholar] [CrossRef]
- Murray, T.; Luckman, A.; Strozzi, T.; Nuttall, A.-M. The initiation of glacier surging at Fridtjovbreen, Svalbard. Ann. Glaciol. 2003, 36, 110–116. [Google Scholar] [CrossRef]
- Auriac, A.; Sigmundsson, F.; Hooper, A.; Spaans, K.; Björnsson, H.; Pálsson, F.; Pinel, V.; Feigl, K. InSAR observations and models of crustal deformation due to a glacial surge in Iceland. Geophys. J. Int. 2014, 198, 1329–1341. [Google Scholar] [CrossRef]
- Pritchard, H.; Murray, T.; Luckman, A.; Strozzi, T.; Barr, S. Glacier surge dynamics of Sortebræ, east Greenland, from synthetic aperture radar feature tracking. J. Geophys. Res. Earth Surf. 2005, 110, F03005. [Google Scholar] [CrossRef]
- Solgaard, A.; Simonsen, S.; Grinsted, A.; Mottram, R.; Karlsson, N.; Hansen, K.; Kusk, A.; Sørensen, L. Hagen Bræ: A surging glacier in North Greenland—35 years of observations. Geophys. Res. Lett. 2020, 47, e2019GL085802. [Google Scholar] [CrossRef]
- Yasuda, T.; Furuya, M. Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet. J. Geophys. Res. Earth Surf. 2015, 120, 2393–2405. [Google Scholar] [CrossRef]
- Jia, B.; Hou, S.; Wang, Y. A surging glacier recognized by remote sensing on the Zangser kangri ice field, central Tibetan plateau. Remote Sens. 2021, 13, 1220. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Q.; Wang, T. Time-Series Surface Velocity and Backscattering Coefficients from Sentinel-1 SAR Images Document Glacier Seasonal Dynamics and Surges on the Puruogangri Ice Field in the Central Tibetan Plateau. Remote Sens. 2025, 17, 3490. https://doi.org/10.3390/rs17203490
Wen Q, Wang T. Time-Series Surface Velocity and Backscattering Coefficients from Sentinel-1 SAR Images Document Glacier Seasonal Dynamics and Surges on the Puruogangri Ice Field in the Central Tibetan Plateau. Remote Sensing. 2025; 17(20):3490. https://doi.org/10.3390/rs17203490
Chicago/Turabian StyleWen, Qingxin, and Teng Wang. 2025. "Time-Series Surface Velocity and Backscattering Coefficients from Sentinel-1 SAR Images Document Glacier Seasonal Dynamics and Surges on the Puruogangri Ice Field in the Central Tibetan Plateau" Remote Sensing 17, no. 20: 3490. https://doi.org/10.3390/rs17203490
APA StyleWen, Q., & Wang, T. (2025). Time-Series Surface Velocity and Backscattering Coefficients from Sentinel-1 SAR Images Document Glacier Seasonal Dynamics and Surges on the Puruogangri Ice Field in the Central Tibetan Plateau. Remote Sensing, 17(20), 3490. https://doi.org/10.3390/rs17203490