The Stepwise Multi-Temporal Interferometric Synthetic Aperture Radar with Partially Coherent Scatterers for Long-Time Series Deformation Monitoring
Abstract
:1. Introduction
2. Methods
2.1. Stepwise PSI Processing
- (1)
- PS selection is based on the amplitude-dispersion index (ADI) algorithm, and high-quality scatterers are obtained using a certain ADI threshold.
- (2)
- The topography and flat phases in the interferogram are removed using the external digital elevation model (DEM) and precise orbit file by selecting the master image and generating N interferograms for each pair of master and slave SLC images.
- (3)
- The global reference point in the SAR image is obtained by jointly considering the ADI for the temporal subsets. Then, the deformation parameter estimation is performed on every edge of the PS Delaunay network by analyzing the time-series wrapped differential phase. Linear deformation rates are obtained by integrating the differential parameter with the reference point.
- (4)
- The residual unmodeled wrapped phase is phase unwrapping through the minimum cost flow (MCF) algorithm, followed by atmospheric filtering. The obtained nonlinear deformation phase is added to the linear deformation phase, and the final PS deformation phase time series are generated.
2.2. PCS Processing
2.3. Integration
3. Experiment
3.1. Study Area and Dataset
3.2. Results
3.3. Typical Subsidence Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, F.; Lv, X.; Yun, Y. A review of time-series interferometric SAR techniques: A tutorial for surface deformation analysis. IEEE Geosci. Remote Sens. Mag. 2020, 8, 22–42. [Google Scholar] [CrossRef]
- Wang, R.; Liu, K.; Liu, D. LuTan-1: An innovative L-band spaceborne bistatic interferometric synthetic aperture radar mission. IEEE Geosci. Remote Sens. Mag. 2024. [Google Scholar] [CrossRef]
- Suzuki, S.; Motohka, T. Overview of ALOS-2 and ALOS-4 L-band SAR. In Proceedings of the 2021 IEEE Radar Conference, Atlanta, GA, USA, 8–14 May 2021; pp. 1–4. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Chapman, B.; Anconitano, G.; Borsa, A.; Christensen, A. The NASA ISRO SAR (NISAR) Mission-Validation of Science Measurement Requirements. In Proceedings of the IGARSS 2024, Athens, Greece, 7–12 July 2024. [Google Scholar]
- Festa, D.; Bonano, M.; Casagli, N. Nation-wide mapping and classification of ground deformation phenomena through the spatial clustering of P-SBAS InSAR measurements: Italy case study. ISPRS J. Photogramm. Remote Sens. 2022, 189, 1–22. [Google Scholar] [CrossRef]
- Moretto, S.; Bozzano, F.; Mazzanti, P. The role of satellite InSAR for landslide forecasting: Limitations and openings. Remote Sens. 2021, 13, 3735. [Google Scholar] [CrossRef]
- Moro, M.; Saroli, M.; Stramondo, S.; Bignami, C. New insights into earthquake precursors from InSAR. Sci. Rep. 2017, 7, 12035. [Google Scholar] [CrossRef]
- Li, S.; Xu, W.; Li, Z. Review of the SBAS InSAR Time-series algorithms, applications, and challenges. Geod. Geodyn. 2022, 13, 114–126. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Teixeira, A.; Bakon, M.; Perissin, D.; Sousa, J. InSAR Analysis of Partially Coherent Targets in a Subsidence Deformation: A Case Study of Maceió. Remote Sens. 2024, 16, 3806. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Ding, X.; Jung, H. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Hu, F.; Wu, J.; Chang, L.; Hanssen, R. Incorporating temporary coherent scatterers in multi-temporal InSAR using adaptive temporal subsets. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7658–7670. [Google Scholar] [CrossRef]
- Dörr, N.; Schenk, A.; Hinz, S. Fully integrated temporary persistent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4412815. [Google Scholar] [CrossRef]
- Shahryarinia, K.; Omidalizarandi, M.; Heidarianbaei, M.; Sharifi, M.; Neumann, I. Detecting change points in time series of inSAR persistent scatterers using deep learning models. Appl. Geomat. 2025, 1–10. [Google Scholar] [CrossRef]
- Wassie, Y.; Milillo, P. Interferometric Synthetic Aperture Radar Multitemporal Deformation Monitoring: A review of machine learning techniques. IEEE Geosci. Remote Sens. Mag. 2025, 2–26. [Google Scholar] [CrossRef]
- Chen, C.; Dai, K.; Tang, X.; Cheng, J.; Pirasteh, S.; Wu, M.; Shi, X.; Zhou, H.; Li, Z. Removing InSAR Topography-Dependent Atmospheric Effect Based on Deep Learning. Remote Sens. 2022, 14, 4171. [Google Scholar] [CrossRef]
- Sun, X.; Zimmer, A.; Mukherjee, S.; Kottayil, N.K.; Ghuman, P.; Cheng, I. DeepInSAR—A Deep Learning Framework for SAR Interferometric Phase Restoration and Coherence Estimation. Remote Sens. 2020, 12, 2340. [Google Scholar] [CrossRef]
- Ren, P.; Han, Z.; Yu, Z.; Zhang, B. Confucius tri-learning: A paradigm of learning from both good examples and bad examples. Pattern Recognit. 2025, 163, 111481. [Google Scholar] [CrossRef]
- Tiwari, A.; Narayan, A.; Dikshit, O. Deep learning networks for selection of measurement pixels in multi-temporal SAR interferometric processing. ISPRS J. Photogramm. Remote Sens. 2020, 166, 169–182. [Google Scholar] [CrossRef]
- Ma, P.; Yu, C.; Jiao, Z.; Zheng, Y.; Wu, Z. Improving time-series InSAR deformation estimation for city clusters by deep learning-based atmospheric delay correction. Remote Sens. Environ. 2024, 304, 114004. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, H.; Lan, Y.; Xing, M. Deep Learning-Based Branch-Cut Method for InSAR Two-Dimensional Phase Unwrapping. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5209615. [Google Scholar] [CrossRef]
- Ansari, H.; De Zan, F.; Bamler, R. Sequential estimator: Toward efficient InSAR time series analysis. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5637–5652. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Q.; Zhao, C.; Pepe, A.; Niu, Y. Near real-time InSAR deformation time series estimation with modified Kalman filter and sequential least squares. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2437–2448. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, M.; Ferreira, V.; Wu, Z. Time-series InSAR dynamic analysis with robust sequential adjustment. IEEE Geosci. Remote Sens. Lett. 2022, 19, 4514405. [Google Scholar] [CrossRef]
- Liu, J.; Hu, J.; Li, Z.; Zhang, L. Dynamically estimating deformations with wrapped InSAR based on sequential adjustment. J. Geod. 2023, 97, 49. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, X.; Che, Y. Near Real-Time Monitoring of Large Gradient Nonlinear Subsidence in Mining Areas: A Hybrid SBAS-InSAR Method Integrating Robust Sequential Adjustment and Deep Learning. Remote Sens. 2024, 16, 1664. [Google Scholar] [CrossRef]
- Lv, X.; Yazıcı, B.; Zeghal, M.; Bennett, V.; Abdoun, T. Joint-scatterer processing for time-series InSAR. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7205–7221. [Google Scholar]
- Bakr, M. Influence of groundwater management on land subsidence in deltas: A case study of Jakarta (Indonesia). Water Resour. Manag. 2015, 29, 1541–1555. [Google Scholar] [CrossRef]
- Abidin, H.; Andreas, H.; Gumilar, I. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards 2011, 59, 1753–1771. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W. ESA WorldCover 10 m 2020 v100 [Data Set]; Universitat Politècnica de València: Valencia, Spain, 2020. [Google Scholar] [CrossRef]
- Susilo, S.; Salman, R.; Hermawan, W. GNSS land subsidence observations along the northern coastline of Java, Indonesia. Sci. Data 2023, 10, 421. [Google Scholar] [CrossRef] [PubMed]
Parameter | Value |
---|---|
Orbit direction | Ascending |
Polarization/mode | VV/IW |
Path | 98 |
Incidence angle | 39.2° |
Resolution(m) Azimuth × Range | 14.0 × 2.3 |
Revisit time (d) | 12 |
Date | 12 October 2014–1 October 2023 |
SAR image number | 229 |
Data volume (GB) | 938.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Duan, W.; Fu, X.; Yun, Y.; Lv, X. The Stepwise Multi-Temporal Interferometric Synthetic Aperture Radar with Partially Coherent Scatterers for Long-Time Series Deformation Monitoring. Remote Sens. 2025, 17, 1374. https://doi.org/10.3390/rs17081374
Zhang J, Duan W, Fu X, Yun Y, Lv X. The Stepwise Multi-Temporal Interferometric Synthetic Aperture Radar with Partially Coherent Scatterers for Long-Time Series Deformation Monitoring. Remote Sensing. 2025; 17(8):1374. https://doi.org/10.3390/rs17081374
Chicago/Turabian StyleZhang, Jinbao, Wei Duan, Xikai Fu, Ye Yun, and Xiaolei Lv. 2025. "The Stepwise Multi-Temporal Interferometric Synthetic Aperture Radar with Partially Coherent Scatterers for Long-Time Series Deformation Monitoring" Remote Sensing 17, no. 8: 1374. https://doi.org/10.3390/rs17081374
APA StyleZhang, J., Duan, W., Fu, X., Yun, Y., & Lv, X. (2025). The Stepwise Multi-Temporal Interferometric Synthetic Aperture Radar with Partially Coherent Scatterers for Long-Time Series Deformation Monitoring. Remote Sensing, 17(8), 1374. https://doi.org/10.3390/rs17081374