Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing
Abstract
1. Introduction
2. Study Area
3. Datasets and Methodology
3.1. Datasets
3.1.1. Sentinel-1
3.1.2. SRTM DEM
3.1.3. Other Data
3.2. Methodology
3.2.1. Principle of SBAS-InSAR
3.2.2. Data Processing Workflow
3.2.3. STL Model
3.2.4. Time-Lagged Cross-Correlation Analysis
3.2.5. Optical Fiber Monitoring Scheme
4. Results and Discussion
4.1. Spatiotemporal Evolution of Land Subsidence
4.2. Temporal Variation in Annual Average Cumulative Surface Deformation
4.3. Seasonal Characteristics of Ground Deformation in the Subsidence Funnel Area
4.4. Time Series Analysis of Surface Deformation and Groundwater Level
4.5. Investigation of the Time-Lag Relationship Between Subsurface Strain and Surface Subsidence
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Fiaschi, S.; Tessitore, S.; Bonì, R.; Di Martire, D.; Achilli, V.; Borgstrom, S.; Ibrahim, A.; Floris, M.; Meisina, C.; Ramondini, M.; et al. From ERS-1/2 to Sentinel-1: Two decades of subsidence monitored through A-DInSAR techniques in the Ravenna area (Italy). GISci. Remote Sens. 2017, 54, 305–328. [Google Scholar] [CrossRef]
- Yu, H.H.; Li, B.Q.; Xiao, Y.; Sun, J.Y.; Chen, C.; Jin, G.Y.; Liu, H.Y. Surface Subsidence over a Coastal City Using SBAS-InSAR with Sentinel-1A Data: A Case of Nansha District, China. Remote Sens. 2024, 16, 21. [Google Scholar] [CrossRef]
- Herrera-García, G.; Ezquerro, P.; Tomás, R.; Béjar-Pizarro, M.; López-Vinielles, J.; Rossi, M.; Mateos, R.M.; Carreón-Freyre, D.; Lambert, J.; Teatini, P.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.L.; Jin, M.Q.; Jing, Y.; Liu, Y.; Liu, Y.F.; Sun, W.; Wei, J.Q.; Chen, Y. Monitoring Land Subsidence in Wuhan City (China) using the SBAS-InSAR Method with Radarsat-2 Imagery Data. Sensors 2019, 19, 16. [Google Scholar] [CrossRef]
- Shen, S.L.; Xu, Y.S. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Can. Geotech. J. 2011, 48, 1378–1392. [Google Scholar] [CrossRef]
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Figueroa-Miranda, S.; Tuxpan-Vargas, J.; Ramos-Leal, J.A.; Hernández-Madrigal, V.M.; Villaseñor-Reyes, C.I. Land subsidence by groundwater over-exploitation from aquifers in tectonic valleys of Central Mexico: A review. Eng. Geol. 2018, 246, 91–106. [Google Scholar] [CrossRef]
- Shi, X.-Q.; Xue, Y.-Q.; Ye, S.-J.; Wu, J.-C.; Zhang, Y.; Yu, J. Characterization of land subsidence induced by groundwater withdrawals in Su-Xi-Chang area, China. Environ. Geol. 2007, 52, 27–40. [Google Scholar] [CrossRef]
- Ouyang, L.; Zhao, Z.; Zhou, D.; Cao, J.; Qin, J.; Cao, Y.; He, Y. Study on the Relationship between Groundwater and Land Subsidence in Bangladesh Combining GRACE and InSAR. Remote Sens. 2024, 16, 3715. [Google Scholar] [CrossRef]
- Lee, M.; Lee, J.-Y.; Jang, J. Numerical modeling of groundwater system with tunnel construction in an urban area of Korea: Implications for land subsidence and mitigation measures. Environ. Earth Sci. 2024, 83, 80. [Google Scholar] [CrossRef]
- Vincent, C.; Giebel, G.; Pinson, P.; Madsen, H. Resolving Nonstationary Spectral Information in Wind Speed Time Series Using the Hilbert–Huang Transform. J. Appl. Meteorol. Climatol. 2010, 49, 253–267. [Google Scholar] [CrossRef]
- Sang, Y.-F. A review on the applications of wavelet transform in hydrology time series analysis. Atmos. Res. 2013, 122, 8–15. [Google Scholar] [CrossRef]
- Boergens, E.; Güntner, A.; Sips, M.; Schwatke, C.; Dobslaw, H. Interannual variations of terrestrial water storage in the East African Rift region. Hydrol. Earth Syst. Sci. 2024, 28, 4733–4754. [Google Scholar] [CrossRef]
- Chai, L.; Wei, L.; Cai, P.; Liu, J.; Kang, J.; Zhang, Z. Risk assessment of land subsidence based on GIS in the Yongqiao area, Suzhou City, China. Sci. Rep. 2024, 14, 11377. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Chen, S.; Feng, S.B.; Ding, D.D. Hydrochemical characteristics, hydraulic connectivity and water quality assessment of multilayer aquifers in Western Suzhou City, Northern Anhui Province, China. Water Supply 2022, 22, 2644–2658. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, X.; Hu, J.; Gui, R.; Yang, L. Estimation of Land Deformation and Groundwater Storage Dynamics in Shijiazhuang–Baoding–Cangzhou–Hengshui Using Multi-Temporal Interferometric Synthetic Aperture Radar. Remote Sens. 2024, 16, 1724. [Google Scholar] [CrossRef]
- Li, H.J.; Zhu, L.; Dai, Z.X.; Gong, H.L.; Guo, T.; Guo, G.X.; Wang, J.B.; Teatini, P. Spatiotemporal modeling of land subsidence using a geographically weighted deep learning method based on PS-InSAR. Sci. Total Environ. 2021, 799, 13. [Google Scholar] [CrossRef]
- Liu, H.H.; Zhang, Z.; Liu, S.Y.; Xie, F.M.; Ding, J.; Li, G.L.; Su, H.R. Quantifying Spatiotemporal Changes in Supraglacial Debris Cover in Eastern Pamir from 1994 to 2024 Based on the Google Earth Engine. Remote Sens. 2025, 17, 19. [Google Scholar] [CrossRef]
- Ouyang, Y.; Feng, T.; Feng, H.; Wang, X.H.; Zhang, H.Y.; Zhou, X.X. Deformation Monitoring and Potential Risk Detection of In-Construction Dams Utilizing SBAS-InSAR Technology-A Case Study on the Datengxia Water Conservancy Hub. Water 2024, 16, 17. [Google Scholar] [CrossRef]
- Tizzani, P.; Berardino, P.; Casu, F.; Euillades, P.; Manzo, M.; Ricciardi, G.P.; Zeni, G.; Lanari, R. Surface deformation of Long Valley Caldera and Mono Basin, California, investigated with the SBAS-InSAR approach. Remote Sens. Environ. 2007, 108, 277–289. [Google Scholar] [CrossRef]
- Zhao, R.; Li, Z.W.; Feng, G.C.; Wang, Q.J.; Hu, J. Monitoring surface deformation over permafrost with an improved SBAS-InSAR algorithm: With emphasis on climatic factors modeling. Remote Sens. Environ. 2016, 184, 276–287. [Google Scholar] [CrossRef]
- Dong, S.C.; Samsonov, S.; Yin, H.W.; Ye, S.J.; Cao, Y.R. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ. Earth Sci. 2014, 72, 677–691. [Google Scholar] [CrossRef]
- Castellazzi, P.; Garfias, J.; Martel, R.; Brouard, C.; Rivera, A. InSAR to support sustainable urbanization over compacting aquifers: The case of Toluca Valley, Mexico. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 33–44. [Google Scholar] [CrossRef]
- Zhang, P.; Guo, Z.; Guo, S.; Xia, J. Land Subsidence Monitoring Method in Regions of Variable Radar Reflection Characteristics by Integrating PS-InSAR and SBAS-InSAR Techniques. Remote Sens. 2022, 14, 3265. [Google Scholar] [CrossRef]
- Ben Abbes, A.; Bounouh, O.; Farah, I.R.; de Jong, R.; Martínez, B. Comparative study of three satellite image time-series decomposition methods for vegetation change detection. Eur. J. Remote Sens. 2018, 51, 607–615. [Google Scholar] [CrossRef]
- Chen, C.; Hu, M.; Chen, Q.; Zhang, J.; Feng, T.; Cui, Z. Long-term trend forecast of chlorophyll-a concentration over eutrophic lakes based on time series decomposition and deep learning algorithm. Sci. Total Environ. 2024, 951, 175451. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q. Combining Seasonal and Trend Decomposition Using LOESS With a Gated Recurrent Unit for Climate Time Series Forecasting. IEEE Access 2024, 12, 85275–85290. [Google Scholar] [CrossRef]
- Kwok, C.-F.; Qian, G.; Kuleshov, Y. Analyzing Error Bounds for Seasonal-Trend Decomposition of Antarctica Temperature Time Series Involving Missing Data. Atmosphere 2023, 14, 193. [Google Scholar] [CrossRef]
- Carranza, C.D.U.; van der Ploeg, M.J.; Torfs, P.J.J.F. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values. Hydrol. Earth Syst. Sci. 2018, 22, 2255–2267. [Google Scholar] [CrossRef]
- Ghobadi-Far, K.; Werth, S.; Shirzaei, M.; Bürgmann, R. Spatiotemporal Groundwater Storage Dynamics and Aquifer Mechanical Properties in the Santa Clara Valley Inferred From InSAR Deformation Over 2017–2022. Geophys. Res. Lett. 2023, 50, 10. [Google Scholar] [CrossRef]
- Ku, C.-Y.; Liu, C.-Y.; Lu, H.-C. Spatial Variability in Land Subsidence and Its Relation to Groundwater Withdrawals in the Choshui Delta. Appl. Sci. 2022, 12, 12464. [Google Scholar] [CrossRef]
- Chen, B.; Gong, H.; Chen, Y.; Li, X.; Zhou, C.; Lei, K.; Zhu, L.; Duan, L.; Zhao, X. Land subsidence and its relation with groundwater aquifers in Beijing Plain of China. Sci. Total Environ. 2020, 735, 139111. [Google Scholar] [CrossRef]
- Wang, S.; Wang, G.; Huang, M.; Song, J.; Yang, X.; Zhang, T.; Ji, W.; Zhang, S.; Wu, W.; Wei, C.; et al. Spatio-Temporal Characteristics of Land Subsidence and Driving Factors Analysis in Shenzhen. Water 2024, 16, 1200. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Orbit Altitude (km) | 700 |
Revisit Period (days) | 12 |
Incidence Angle (°) | 29–46 |
Resolution (m) | 5 × 20 |
Swath Width (km) | 250 |
Polarization Mode | VV + VH |
Orbit Numbers | 142,106 |
Point ID | Longitude | Latitude | Annual Amplitude (mm) | Annual Phase (month) | SROCC Coefficient | Time Lag (month) |
---|---|---|---|---|---|---|
JC01 | 116.33 | 34.48 | 14.17 | 5 | 0.501 | 2 |
JC02 | 116.20 | 34.44 | 13.09 | 5 | 0.782 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Liu, H.; Wei, L.; Ding, J.; Sun, H.; Zhang, Z. Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing. Appl. Sci. 2025, 15, 7991. https://doi.org/10.3390/app15147991
He Q, Liu H, Wei L, Ding J, Sun H, Zhang Z. Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing. Applied Sciences. 2025; 15(14):7991. https://doi.org/10.3390/app15147991
Chicago/Turabian StyleHe, Qing, Hehe Liu, Lu Wei, Jing Ding, Heling Sun, and Zhen Zhang. 2025. "Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing" Applied Sciences 15, no. 14: 7991. https://doi.org/10.3390/app15147991
APA StyleHe, Q., Liu, H., Wei, L., Ding, J., Sun, H., & Zhang, Z. (2025). Monitoring the Time-Lagged Response of Land Subsidence to Groundwater Fluctuations via InSAR and Distributed Fiber-Optic Strain Sensing. Applied Sciences, 15(14), 7991. https://doi.org/10.3390/app15147991