Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,666)

Search Parameters:
Keywords = three-dimensional (3D) printing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 15691 KiB  
Article
Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact
by Xinke Xiao, Penglei Wang, Anxiao Guo, Linzhuang Han, Yunhao Yang, Yalin He and Xuanming Cai
Materials 2025, 18(15), 3686; https://doi.org/10.3390/ma18153686 - 6 Aug 2025
Abstract
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response [...] Read more.
Short fiber-reinforced polymer (SFRP) has been extensively applied in structural engineering due to its exceptional specific strength and superior mechanical properties. Its mechanical behavior under medium strain rate conditions has become a key focus of ongoing research. A comprehensive understanding of the response characteristics and underlying mechanisms under such conditions is of critical importance for both theoretical development and practical engineering applications. This study proposes an innovative three-dimensional (3D) multiscale constitutive model that comprehensively integrates mesoscopic fiber–matrix interface effects and pore characteristics. To systematically investigate the dynamic response and damage evolution of SFRP under medium strain rate conditions, 3D-printed SFRP porous structures with volume fractions of 25%, 35%, and 45% are designed and subjected to drop hammer impact experiments combined with multiscale numerical simulations. The experimental and simulation results demonstrate that, for specimens with a 25% volume fraction, the strain rate strengthening effect is the primary contributor to the increase in peak stress. In contrast, for specimens with a 45% volume fraction, the interaction between damage evolution and strain rate strengthening leads to a more complex stress–strain response. The specific energy absorption (SEA) of 25% volume fraction specimens increases markedly with increasing strain rate. However, for specimens with 35% and 45% volume fractions, the competition between these two mechanisms results in non-monotonic variations in energy absorption efficiency (EAE). The dominant failure mode under impact loading is shear-dominated compression, with damage evolution becoming increasingly complex as the fiber volume fraction increases. Furthermore, the damage characteristics transition from fiber pullout and matrix folding at lower volume fractions to the coexistence of brittle and ductile behaviors at higher volume fractions. The numerical simulations exhibit strong agreement with the experimental data. Multi-directional cross-sectional analysis further indicates that the initiation and propagation of shear bands are the principal drivers of structural instability. This study offers a robust theoretical foundation for the impact-resistant design and dynamic performance optimization of 3D-printed short fiber-reinforced polymer (SFRP) porous structures. Full article
Show Figures

Figure 1

16 pages, 10388 KiB  
Article
Highly-Oriented Polylactic Acid Fiber Reinforced Polycaprolactone Composite Produced by Infused Fiber Mat Process for 3D Printed Tissue Engineering Technology
by Zhipeng Deng, Chen Rao, Simin Han, Qungui Wei, Yichen Liang, Jialong Liu and Dazhi Jiang
Polymers 2025, 17(15), 2138; https://doi.org/10.3390/polym17152138 - 5 Aug 2025
Viewed by 195
Abstract
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced [...] Read more.
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced PCL (PLA/PCL) composite as the filament for 3D printed scaffolds to significantly enhance their mechanical performance: Special-made PLA short fiber mat was infused with PCL matrix and rolled into PLA/PCL filaments through a “Vacuum Assisted Resin Infusion” (VARI) process. The investigation revealed that the PLA fibers are highly oriented along the printing direction when using this filament for 3D printing due to the unique microstructure formed during the VARI process. At the same PLA fiber content, the percentage increase in Young’s modulus of the 3D printed strands using the filaments produced by the VARI process is 127.6% higher than the 3D printed strands using the filaments produced by the conventional melt blending process. The 3D printed tissue engineering scaffolds using the PLA/PCL composite filament with 11 wt% PLA fiber content also achieved an exceptional 84.2% and 143.3% increase in peak load and stiffness compared to the neat PCL counterpart. Full article
Show Figures

Graphical abstract

13 pages, 1296 KiB  
Article
Impact of Autoclaving on the Dimensional Stability of 3D-Printed Surgical Guides for Aesthetic Crown Lengthening
by Albert González-Barnadas, Anna Ribas-Garcia, Adrià Jorba-García, Rui Figueiredo, Eduard Valmaseda-Castellón and Octavi Camps-Font
J. Funct. Biomater. 2025, 16(8), 284; https://doi.org/10.3390/jfb16080284 - 2 Aug 2025
Viewed by 243
Abstract
The aim of this study was to evaluate the impact of autoclaving on the dimensional stability of surgical guides (SGs) for aesthetic crown lengthening (ACL) using different resins/printing methods. Fifty SGs for ACL were printed using five different resin/printer combinations (FL, SR, ND, [...] Read more.
The aim of this study was to evaluate the impact of autoclaving on the dimensional stability of surgical guides (SGs) for aesthetic crown lengthening (ACL) using different resins/printing methods. Fifty SGs for ACL were printed using five different resin/printer combinations (FL, SR, ND, KS and VC). All the SGs were scanned before (T0) and after (T1) sterilization. Autoclaving was conducted at 134 °C during 4 min. The STL files of each SG at T0 and T1 were compared with the original design (TR). Dimensional stability was measured using trueness and precision. Deviations from TR to T1 were calculated in the three space axes and by measuring the area between three reference landmarks. At T0, the FL group showed the best trueness and precision, while the SR group performed significantly worse than the other groups. At T1, all the groups except VC exhibited significant dimensional alterations compared with T0. Also, VC showed the best trueness and precision values. All the groups had a significant deviation in at least one space axis, while only the SR group exhibited significant variations from T1 to TR in the area between the reference landmarks. Most of the evaluated resin/3D printer combinations suffered significant dimensional alterations after autoclaving. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

25 pages, 17212 KiB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 - 1 Aug 2025
Viewed by 383
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Graphical abstract

25 pages, 659 KiB  
Systematic Review
Mechanical and Physical Properties of Durable Prosthetic Restorations Printed Using 3D Technology in Comparison with Hybrid Ceramics and Milled Restorations—A Systematic Review
by Bettanapalya. V. Swapna, B. Shivamurthy, Vinu Thomas George, Kavishma Sulaya and Vaishnavi M Nayak
Prosthesis 2025, 7(4), 90; https://doi.org/10.3390/prosthesis7040090 - 1 Aug 2025
Viewed by 147
Abstract
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins [...] Read more.
Background/Objectives: Additive manufacturing (AM) technology has emerged as an innovative approach in dentistry. Recently, manufacturers have developed permanent resins engineered explicitly for the fabrication of definitive prostheses using AM techniques. This systematic review evaluated the mechanical and physical properties of 3D-printed permanent resins in comparison to milled resins and hybrid ceramics for the fabrication of indirect dental restorations. Methods: Three electronic databases—Scopus, Web of Science, and PubMed—were searched for English-language articles. Two independent researchers conducted study selection, data extraction, quality assessment, and the evaluation of the certainty of evidence. In vitro studies assessing the mechanical and physical properties of the permanent resins were included in this review. Results: A total of 1779 articles were identified through electronic databases. Following full-text screening and eligibility assessment, 13 studies published between 2023 and 2024 were included in this qualitative review. The investigated outcomes included physical properties (surface roughness, color changes, water sorption/solubility) and mechanical properties (flexural strength, elastic modulus, microhardness). Conclusions: Three-dimensionally printed permanent resins show promising potential for fabricating indirect dental restorations. However, the current evidence regarding their mechanical and physical properties remain limited and inconsistent, mainly due to variability in study methodologies. Full article
(This article belongs to the Section Prosthodontics)
Show Figures

Figure 1

29 pages, 2309 KiB  
Systematic Review
The Influence of Printing Orientation on the Properties of 3D-Printed Polymeric Provisional Dental Restorations: A Systematic Review and Meta-Analysis
by Firas K. Alqarawi
J. Funct. Biomater. 2025, 16(8), 278; https://doi.org/10.3390/jfb16080278 - 31 Jul 2025
Viewed by 381
Abstract
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to [...] Read more.
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to analyze the articles evaluating the influence of printing orientation on the physical and mechanical properties of 3D-printed polymeric provisional dental restorations. Recommendations provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to structure and compose the review. The PICO (Participant, Intervention, Comparison, Outcome) question ordered was: ‘Do 3D-printed provisional dental restorations (P) printed at various orientations (except 0°) (I) exhibit similar physical and mechanical properties (O) when compared to those printed at a 0° orientation (C)?’. An electronic search was conducted on 28 and 29 April 2025, by two independent researchers across four databases (MEDLINE/PubMed, Scopus, Cochrane Library, and Web of Science) to systematically collect relevant articles published up to March 2025. After removing duplicate articles and applying predefined inclusion and exclusion criteria, twenty-one articles were incorporated into this review. Self-designed Performa’s were used to tabulate all relevant information. For the quality analysis, the modified CONSORT scale was utilized. The quantitative analysis was performed on only fifteen out of twenty-one articles. It can be concluded that the printing orientation affects some of the tested properties, which include fracture strength (significantly higher for specimens printed at 0° when compared to 90°), wear resistance (significantly higher for specimens printed at 90° when compared to 0°), microhardness (significantly higher for specimens printed at 90°and 45° when compared to 0°), color stability (high at 0°), and surface roughness (significantly higher for specimens printed at 45° and 90° when compared to 0°). There were varied outcomes in terms of flexural strength and elastic modulus. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

15 pages, 2263 KiB  
Article
Comparison of the Trueness of Complete Dentures Fabricated Using Liquid Crystal Display 3D Printing According to Build Angle and Natural Light Exposure
by Haeri Kim, KeunBaDa Son, So-Yeun Kim and Kyu-Bok Lee
J. Funct. Biomater. 2025, 16(8), 277; https://doi.org/10.3390/jfb16080277 - 30 Jul 2025
Viewed by 340
Abstract
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration [...] Read more.
The dimensional accuracy of the intaglio surface of complete dentures fabricated using liquid crystal display (LCD) three-dimensional (3D) printing might be influenced by the build angle and post-processing storage conditions. This study evaluated the effect of build angle and natural light exposure duration on the intaglio surface trueness of maxillary complete denture bases. Standardized denture base designs (2 mm uniform thickness) were fabricated using an LCD 3D printer (Lilivis Print; Huvitz, Seoul, Republic of Korea) at build angles of 0°, 45°, and 90° (n = 7 per group). All specimens were printed using the same photopolymer resin (Tera Harz Denture; Graphy, Seoul, Republic of Korea) and identical printing parameters, followed by ultrasonic cleaning and ultraviolet post-curing. Specimens were stored under controlled light-emitting diode lighting and exposed to natural light (400–800 lux) for 0, 14, or 30 days. The intaglio surfaces were scanned and superimposed on the original design data, following the International Organization for Standardization 12836. Quantitative assessment included root mean square deviation, mean deviation, and tolerance percentage. Statistical analyses were performed using one-way analysis of variance and paired t-tests (α = 0.05). Build angle and light exposure duration significantly affected surface trueness (p < 0.05). The 90° build angle group exhibited the highest accuracy and dimensional stability, while the 0° group showed the greatest deviations (p < 0.05). These findings underscore the importance of optimizing build orientation and storage conditions in denture 3D printing. Full article
(This article belongs to the Special Issue Bio-Additive Manufacturing in Materials Science)
Show Figures

Figure 1

19 pages, 4676 KiB  
Article
Self-Healing 3D-Printed Polyurethane Nanocomposites Based on Graphene
by Justyna Gołąbek, Natalia Sulewska and Michał Strankowski
Micromachines 2025, 16(8), 889; https://doi.org/10.3390/mi16080889 - 30 Jul 2025
Viewed by 247
Abstract
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These [...] Read more.
This study explores the self-healing properties of polyurethane nanocomposites enhanced by multiple hydrogen bonds from ureido-pyrimidinone and the incorporation of 1–3 wt.% graphene nanoparticles, based on polyol α,ω-dihydroxy[oligo(butylene-ethylene adipate)]diol, which, according to our knowledge, has not been previously used in such systems. These new materials were synthesized via a two-step process and characterized by their thermal, mechanical, chemical, and self-healing properties. The mechanical analysis revealed that all nanocomposites exhibited high self-healing efficiencies (88–91%). The PU containing 2% graphene stands out as it exhibits the highest initial mechanical strength of ~5 MPa compared to approximately 2MP for a pristine PU while maintaining excellent self-healing efficiency (88%). A cut on the PU nanocomposite with 2% graphene can be completely healed after being heated at 80 °C for 1 h, which shows that it has a fast recovery time. Moreover, 3D printing was also successfully used to assess their processability and its effect on self-healing behavior. Three-dimensional printing did not negatively affect the material regeneration properties; thus, the material can be used in a variety of applications as expected in terms of dimensions and geometry. Full article
Show Figures

Figure 1

22 pages, 3894 KiB  
Article
3D-Printed Biocompatible Frames for Electrospun Nanofiber Membranes: An Enabling Biofabrication Technology for Three-Dimensional Tissue Models and Engineered Cell Culture Platforms
by Adam J. Jones, Lauren A. Carothers, Finley Paez, Yanhao Dong, Ronald A. Zeszut and Russell Kirk Pirlo
Micromachines 2025, 16(8), 887; https://doi.org/10.3390/mi16080887 - 30 Jul 2025
Viewed by 464
Abstract
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a [...] Read more.
Electrospun nanofiber membranes (ESNFMs) are exceptional biomaterials for tissue engineering, closely mimicking the native extracellular matrix. However, their inherent fragility poses significant handling, processing, and integration challenges, limiting their widespread application in advanced 3D tissue models and biofabricated devices. This study introduces a novel and on-mat framing technique utilizing extrusion-based printing of a UV-curable biocompatible resin (Biotough D90 MF) to create rigid, integrated support structures directly on chitosan–polyethylene oxide (PEO) ESNFMs. We demonstrate fabrication of these circular frames via precise 3D printing and a simpler manual stamping method, achieving robust mechanical stabilization that enables routine laboratory manipulation without membrane damage. The resulting framed ESNFMs maintain structural integrity during subsequent processing and exhibit excellent biocompatibility in standardized extract assays (116.5 ± 12.2% normalized cellular response with optimized processing) and acceptable performance in direct contact evaluations (up to 78.2 ± 32.4% viability in the optimal configuration). Temporal assessment revealed characteristic cellular adaptation dynamics on nanofiber substrates, emphasizing the importance of extended evaluation periods for accurate biocompatibility determination of three-dimensional scaffolds. This innovative biofabrication approach overcomes critical limitations of previous handling methods, transforming delicate ESNFMs into robust, easy-to-use components for reliable integration into complex cell culture applications, barrier tissue models, and engineered systems. Full article
(This article belongs to the Special Issue Advanced Biomaterials and Biofabrication)
Show Figures

Figure 1

16 pages, 1758 KiB  
Case Report
3D Printing Today, AI Tomorrow: Rethinking Apert Syndrome Surgery in Low-Resource Settings
by Maria Bajwa, Mustafa Pasha and Zafar Bajwa
Healthcare 2025, 13(15), 1844; https://doi.org/10.3390/healthcare13151844 - 29 Jul 2025
Viewed by 239
Abstract
Background/Objectives: This case study presents the first documented use of a low-cost, simulated, patient-specific three-dimensional (3D) printed model to support presurgical planning for an infant with Apert syndrome in a resource-limited setting. The primary objectives are to (1) demonstrate the value of 3D [...] Read more.
Background/Objectives: This case study presents the first documented use of a low-cost, simulated, patient-specific three-dimensional (3D) printed model to support presurgical planning for an infant with Apert syndrome in a resource-limited setting. The primary objectives are to (1) demonstrate the value of 3D printing as a simulation tool for preoperative planning in low-resource environments and (2) identify opportunities for future AI-enhanced simulation models in craniofacial surgical planning. Methods: High-resolution CT data were segmented using InVesalius 3, with mesh refinement performed in ANSYS SpaceClaim (version 2021). The cranial model was fabricated using fused deposition modeling (FDM) on a Creality Ender-3 printer with Acrylonitrile Butadiene Styrene (ABS) filament. Results: The resulting 3D-printed simulated model enabled the surgical team to assess cranial anatomy, simulate incision placement, and rehearse osteotomies. These steps contributed to a reduction in operative time and fewer complications during surgery. Conclusions: This case demonstrates the value of accessible 3D printing as a simulation tool in surgical planning within low-resource settings. Building on this success, the study highlights potential points for AI integration, such as automated image segmentation and model reconstruction, to increase efficiency and scalability in future 3D-printed simulation models. Full article
Show Figures

Figure 1

24 pages, 56885 KiB  
Article
Bio-Crafting Architecture: Experiences of Growing Mycelium in Minimal Surface Molds
by Anca-Simona Horvath, Alina Elena Voinea and Radu Adrian Arieșan
Sustainability 2025, 17(15), 6835; https://doi.org/10.3390/su17156835 - 28 Jul 2025
Viewed by 395
Abstract
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the [...] Read more.
Mycelium is a living material that has gained popularity over the last decade in both architecture and design. Apart from understanding the physical behaviour of novel materials, it is also important to grasp how designers and the general audience perceive them. On the one hand, this study investigated mycelium growth in 3D-printed minimal surface shapes using a wood-based filament, and on the other hand, it examined how both designers and the general public experience interacting with mycelium. Using a material-driven design research method, a workshop with architecture students was conducted where various triply periodic minimal surfaces were designed and 3D printed. These shapes were used as molds and impregnated with mycelium, and the growth of mycelium was analyzed visually and photographically. Data on the experiences of the 30 workshop participants of working with mycelium was collected through a survey and analyzed qualitatively. After exhibiting results of the workshop in a public-facing exhibition, semi-structured interviews with members of the general public about their perceptions of mycelium were conducted. Three-dimensionally printed minimal surfaces with wood-based filaments can function as structural cores for mycelium-based composites, and the density of the minimal surface appears to influence mycelium growth, which binds to wood-based filaments. Students exhibited stronger feelings for living materials compared to non-living ones, displaying both biophilia and, to a lesser extent, biophobia. Introducing hands-on workshops with living and experimental materials in design studio settings can help future generations of designers develop sensibilities for, and a critical approach towards, the impact of their design decisions on the environment and sustainability. The study also contributes empirical data on how members of the general public perceive mycelium as a material for design. Full article
Show Figures

Figure 1

18 pages, 4344 KiB  
Review
Additive Manufacturing Technologies and Their Applications in Dentistry: A Systematic Literature Review
by Dragana Oros, Marko Penčić, Marko Orošnjak and Slawomir Kedziora
Appl. Sci. 2025, 15(15), 8346; https://doi.org/10.3390/app15158346 - 26 Jul 2025
Viewed by 388
Abstract
Additive manufacturing (AM) has emerged as a transformative technology in dentistry, enabling the production of patient-specific dental applications with reduced costs and fabrication times. Despite the growth of applications, a consolidated understanding of current 3D printing technologies, materials, and performance in dental settings [...] Read more.
Additive manufacturing (AM) has emerged as a transformative technology in dentistry, enabling the production of patient-specific dental applications with reduced costs and fabrication times. Despite the growth of applications, a consolidated understanding of current 3D printing technologies, materials, and performance in dental settings remains fragmented. Here, we perform a Systematic Literature Review (SLR) using the PRISMA protocol, retrieving 19 closely related primary studies. The evidence is synthesized across three axes: application domain, AM technology, and critical quality parameters. Dental restorations, prosthetics, crowns, and implants are the most common applications, while fused deposition modeling, stereolithography, digital light processing, selective laser sintering, and laser-directed energy deposition are the most used technologies. AM materials include polymers, metals, and emerging biomaterials. Key quality determinants include dimensional accuracy, wear and corrosion resistance, and photosensitivity. Notably, biocompatibility and cytotoxicity remain underexplored yet critical factors for ensuring long-term clinical safety. The evidence also suggests a lack of in vivo studies, insufficient tribological and microbiological testing, including limited data degradation pathways of AM materials under oral conditions. Understanding that there are disconnects between the realization of the clinical and the economic benefits of 3D printing in dentistry, future research requires standardized testing frameworks and long-term biocompatibility validation. Full article
Show Figures

Figure 1

24 pages, 7001 KiB  
Article
VAM-Based Equivalent Cauchy Model for Accordion Honeycomb Structures with Zero Poisson’s Ratio
by Yuxuan Lin, Mingfang Chen, Zhenxuan Cai, Zhitong Liu, Yifeng Zhong and Rong Liu
Materials 2025, 18(15), 3502; https://doi.org/10.3390/ma18153502 - 25 Jul 2025
Viewed by 451
Abstract
The accordion honeycomb has unique deformation characteristics in cellular materials. This study develops a three-dimensional equivalent Cauchy continuum model (3D-ECM) based on the variational asymptotic method (VAM) to efficiently predict the mechanical response of the accordion honeycomb. The accuracy of the 3D-ECM is [...] Read more.
The accordion honeycomb has unique deformation characteristics in cellular materials. This study develops a three-dimensional equivalent Cauchy continuum model (3D-ECM) based on the variational asymptotic method (VAM) to efficiently predict the mechanical response of the accordion honeycomb. The accuracy of the 3D-ECM is validated via quasi-static compression experiments on 3D-printed specimens and detailed 3D finite element simulations (3D-FEM), showing a strong correlation between simulation and experimental data. Parametric analyses reveal that the re-entrant angle, ligament-to-strut length ratio, and thickness ratios significantly affect the equivalent elastic moduli, providing insights into geometric optimization strategies for targeted mechanical performance. Comparative experiments among honeycomb structures with positive, negative, and zero Poisson’s ratios show that the accordion honeycomb achieves superior dimensional stability and tunable stiffness but exhibits lower energy-absorption efficiency due to discontinuous buckling and recovery processes. Further comparison among different ZPR honeycombs confirms that the accordion design offers the highest equivalent modulus in the re-entrant direction. The findings underscore the accordion honeycomb’s promise in scenarios demanding structural reliability, tunable stiffness, and moderate energy absorption. Full article
(This article belongs to the Special Issue Lightweight and High-Strength Sandwich Panel (2nd Edition))
Show Figures

Figure 1

36 pages, 7620 KiB  
Review
Hydrogen Energy Storage via Carbon-Based Materials: From Traditional Sorbents to Emerging Architecture Engineering and AI-Driven Optimization
by Han Fu, Amin Mojiri, Junli Wang and Zhe Zhao
Energies 2025, 18(15), 3958; https://doi.org/10.3390/en18153958 - 24 Jul 2025
Viewed by 499
Abstract
Hydrogen is widely recognized as a key enabler of the clean energy transition, but the lack of safe, efficient, and scalable storage technologies continues to hinder its broad deployment. Conventional hydrogen storage approaches, such as compressed hydrogen storage, cryo-compressed hydrogen storage, and liquid [...] Read more.
Hydrogen is widely recognized as a key enabler of the clean energy transition, but the lack of safe, efficient, and scalable storage technologies continues to hinder its broad deployment. Conventional hydrogen storage approaches, such as compressed hydrogen storage, cryo-compressed hydrogen storage, and liquid hydrogen storage, face limitations, including high energy consumption, elevated cost, weight, and safety concerns. In contrast, solid-state hydrogen storage using carbon-based adsorbents has gained growing attention due to their chemical tunability, low cost, and potential for modular integration into energy systems. This review provides a comprehensive evaluation of hydrogen storage using carbon-based materials, covering fundamental adsorption mechanisms, classical materials, emerging architectures, and recent advances in computationally AI-guided material design. We first discuss the physicochemical principles driving hydrogen physisorption, chemisorption, Kubas interaction, and spillover effects on carbon surfaces. Classical adsorbents, such as activated carbon, carbon nanotubes, graphene, carbon dots, and biochar, are evaluated in terms of pore structure, dopant effects, and uptake capacity. The review then highlights recent progress in advanced carbon architectures, such as MXenes, three-dimensional architectures, and 3D-printed carbon platforms, with emphasis on their gravimetric and volumetric performance under practical conditions. Importantly, this review introduces a forward-looking perspective on the application of artificial intelligence and machine learning tools for data-driven sorbent design. These methods enable high-throughput screening of materials, prediction of performance metrics, and identification of structure–property relationships. By combining experimental insights with computational advances, carbon-based hydrogen storage platforms are expected to play a pivotal role in the next generation of energy storage systems. The paper concludes with a discussion on remaining challenges, utilization scenarios, and the need for interdisciplinary efforts to realize practical applications. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

16 pages, 2230 KiB  
Article
Three-Dimensional-Printed Biomimetic Scaffolds for Investigating Osteoblast-Like Cell Interactions in Simulated Microgravity: An In Vitro Platform for Bone Tissue Engineering Research
by Eleonora Zenobi, Giulia Gramigna, Elisa Scatena, Luca Panizza, Carlotta Achille, Raffaella Pecci, Annalisa Convertino, Costantino Del Gaudio, Antonella Lisi and Mario Ledda
J. Funct. Biomater. 2025, 16(8), 271; https://doi.org/10.3390/jfb16080271 - 24 Jul 2025
Viewed by 648
Abstract
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to [...] Read more.
Three-dimensional cell culture systems are relevant in vitro models for studying cellular behavior. In this regard, this present study investigates the interaction between human osteoblast-like cells and 3D-printed scaffolds mimicking physiological and osteoporotic bone structures under simulated microgravity conditions. The objective is to assess the effects of scaffold architecture and dynamic culture conditions on cell adhesion, proliferation, and metabolic activity, with implications for osteoporosis research. Polylactic acid scaffolds with physiological (P) and osteoporotic-like (O) trabecular architectures were 3D-printed by means of fused deposition modeling technology. Morphometric characterization was performed using micro-computed tomography. Human osteoblast-like SAOS-2 and U2OS cells were cultured on the scaffolds under static and dynamic simulated microgravity conditions using a rotary cell culture system (RCCS). Scaffold biocompatibility, cell viability, adhesion, and metabolic activity were evaluated through Bromodeoxyuridine incorporation assays, a water-soluble tetrazolium salt assay, and an enzyme-linked immunosorbent assay of tumor necrosis factor-α secretion. Both scaffold models supported osteoblast-like cell adhesion and growth, with an approximately threefold increase in colonization observed on the high-porosity O scaffolds under dynamic conditions. The dynamic environment facilitated increased surface interaction, amplifying the effects of scaffold architecture on cell behavior. Overall, sustained cell growth and metabolic activity, together with the absence of detectable inflammatory responses, confirmed the biocompatibility of the system. Scaffold microstructure and dynamic culture conditions significantly influence osteoblast-like cell behavior. The combination of 3D-printed scaffolds and a RCCS bioreactor provides a promising platform for studying bone remodeling in osteoporosis and microgravity-induced bone loss. These findings may contribute to the development of advanced in vitro models for biomedical research and potential countermeasures for bone degeneration. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration)
Show Figures

Graphical abstract

Back to TopTop