Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact
Abstract
1. Introduction
2. Experimental Design and Theoretical Foundation
2.1. Fundamentals and Principles of the Drop-Weight Test
2.2. Schwarz Primitive Porous Structure Design
2.3. Macroscopic Failure Criteria and Damage Evolution Models
3. Numerical Simulation Under Medium Strain Rate Loading Conditions
3.1. Finite Element Model
3.2. Material Model Parameters
4. Experimental Results and Analysis
4.1. Compressive Stress–Strain Relationship
4.2. Energy Absorption Characteristics
4.3. Damage and Failure Modes
5. Numerical Simulation Results and Analysis
5.1. Damage and Failure Modes
5.2. Comparison Between the Experimental Results and Numerical Simulations
6. Conclusions
- (1)
- At moderate strain rates, in SFRP porous structures with low fiber volume fractions, the peak stress increased with increasing strain rate, indicating the predominance of the strain rate strengthening effect. In contrast, for structures with high fiber volume fractions, competition between the strain rate strengthening effect and the damage evolution mechanism resulted in more complex stress–strain curve profiles. Specifically, the dominance of damage evolution led to the lowest peak stress at intermediate strain rates, whereas the superior performance of the strain rate strengthening mechanism at higher strain rates yielded the highest peak stress. Furthermore, across all three fiber volume fractions, damage accumulation was relatively slow and the stress rise was more gradual at lower strain rates, exhibiting distinct differences in curve morphology compared to those observed at moderate-to-high strain rates.
- (2)
- For SFRP porous structures with low fiber volume fractions, both the SEA and EAE increased significantly with the rising strain rate, demonstrating a pronounced strain rate effect. In contrast, for structures with medium and high fiber volume fractions, the dual mechanisms of strain rate strengthening and damage evolution led to considerable variations in both SEA and EAE across different strain rates. This resulted in an alternating dominance of the energy absorption mechanisms and consequently more complex curve profiles.
- (3)
- Under drop-weight impact, the deformation and failure modes of SFRP porous structures across all three fiber volume fractions were fundamentally similar. A higher impact energy induced rapid crack initiation and propagation, culminating in crushing dominated by shear failure. The microscopic damage morphology analysis at moderate strain rates revealed distinct characteristics dependent on the volume fraction. (i) For the 25 vol% structure, damage primarily manifested as fiber pull-out, matrix wrinkling, and tearing; (ii) the 35 vol% structure exhibited matrix plastic deformation, generating fibrillar structures accompanied by progressive interlaminar damage; and (iii) the 45 vol% structure demonstrated a coexistence of brittle fracture and plastic deformation.
- (4)
- Numerical simulations demonstrated good agreement with the experimental observations regarding the damage and failure modes. The multidirectional cross-sectional failure analysis indicated that under impact loading, local shear instability occurred in the porous structures due to relative sliding along oblique planes. Furthermore, the primary reason for structural failure was attributed to the initiation of multiple shear bands and their subsequent rapid propagation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, C.T.; Liu, P.; Chen, J.; Ding, Z.X.; Tang, G.H.; Gao, Q.Q.; Ni, Y.X.; Xu, K.; Hao, Z.L.; Xu, G.J.; et al. Constructing Ti3C2Tx–MXene-based gradient woodpile structure by direct ink writing 3D printing for efficient microwave absorption. Int. J. Min. Metall. Mater. 2025, 32, 657–667. [Google Scholar] [CrossRef]
- Duan, H.P.; Liu, X.; Ran, X.Z.; Li, J.; Liu, D. Mechanical properties and microstructure of 3D-printed high Co–Ni secondary hardening steel fabricated by laser melting deposition. Int. J. Min. Metall. Mater. 2017, 24, 1027–1033. [Google Scholar] [CrossRef]
- Shukla, M.J.; Mahato, K.K.; Kumar, S.; Ray, B.C. In-service performance of fiber reinforced polymer composite in different environmental conditions: A review. J. Adv. Res. Manuf. Mater. Sci. Metall. Eng. 2014, 1, 55–88. [Google Scholar]
- Bai, J.P. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications; Woodhead Publishing: Cambridge, UK, 2022. [Google Scholar]
- Rajak, D.K.; Wagh, P.H.; Linul, E. Manufacturing technologies of carbon/glass fiber-reinforced polymer composites and their properties: A review. Polymer 2021, 13, 3721. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.Y.; Cao, S.; Yilmaz, E. Effect of layer thickness on the flexural property and microstructure of 3D-printed rhomboid polymer-reinforced cemented tailing composites. Int. J. Min. Metall. Mater. 2023, 30, 236–249. [Google Scholar] [CrossRef]
- Jariwala, H.; Jain, P. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications. J. Reinf. Plast. Comp. 2019, 38, 441–453. [Google Scholar] [CrossRef]
- Boretti, A. A techno-economic perspective on 3D printing for aerospace propulsion. J. Manuf. Process. 2024, 109, 607–614. [Google Scholar] [CrossRef]
- Kroll, E.; Artzi, D. Enhancing aerospace engineering students’ learning with 3D printing wind-tunnel models. Rapid Prototyp. J. 2011, 17, 393–402. [Google Scholar] [CrossRef]
- Wong, K.V.; Hernandez, A. A review of additive manufacturing. Int. Sch. Res. Not. 2012, 2012, 208760. [Google Scholar] [CrossRef]
- Wang, P.; Zou, B.; Ding, S.L.; Huang, C.Z.; Shi, Z.Y.; Ma, Y.S.; Yao, P. Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing. Compos. Part B-Eng. 2020, 198, 108175. [Google Scholar] [CrossRef]
- Norman, D.A.; Robertson, R.E. The effect of fiber orientation on the toughening of short fiber-reinforced polymers. J. Appl. Polym. Sci. 2003, 90, 2740–2751. [Google Scholar] [CrossRef]
- Malakhov, A.V.; Tian, X.Y.; Zheng, Z.Q.; Plugatar, T.P.; Huang, Y.M.; Tatus, N.A.; Li, D.C. Three-dimensional printing of biomimetic variable stiffness composites with controlled orientations and volume fraction of fibers. Compos. Struct. 2022, 299, 116091. [Google Scholar] [CrossRef]
- Ayatollahi, M.R.; Nabavi-Kivi, A.; Bahrami, B.; Yahya, M.Y.; Khosravani, M.R. The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens. Eng. Fract. Mech. 2020, 237, 107225. [Google Scholar] [CrossRef]
- Rajpurohit, S.R.; Dave, H.K. Impact strength of 3D printed PLA using open source FFF-based 3D printer. Prog. Addit. Manuf. 2021, 6, 119–131. [Google Scholar] [CrossRef]
- Camargo, J.C.; Machado, Á.R.; Almeida, E.C.; Silva, E.F.M.S. Mechanical properties of PLA-graphene filament for FDM 3D printing. Int. J. Adv. Manuf. Technol. 2019, 103, 2423–2443. [Google Scholar] [CrossRef]
- Tang, C.; Liu, J.; Yang, Y.; Ye, L.; Jiang, S.; Hao, W. Effect of process parameters on mechanical properties of 3D printed PLA lattice structures. Compos. Part C-Open 2020, 3, 100076. [Google Scholar] [CrossRef]
- Mirzadeh, H. Surface metal-matrix composites based on AZ91 magnesium alloy via friction stir processing: A review. Int. J. Min. Metall. Mater. 2023, 30, 1278–1296. [Google Scholar] [CrossRef]
- Zhong, J.H.; Song, C.M.; Zhang, Z.W.; Zhang, H.T.; Liu, F. Experimental and theoretical investigations on reinforced concrete slabs subjected to low-velocity impact at various points by a drop hammer. Thin-Walled Struct. 2025, 213, 113326. [Google Scholar] [CrossRef]
- Zeng, Y.P.; Zhu, P.Y.; Tong, K. Effect of microstructure on the low temperature toughness of high strength pipeline steels. Int. J. Min. Metall. Mater. 2015, 22, 254–261. [Google Scholar] [CrossRef]
- Yu, W.; Sun, T.C.; Liu, Z.Z.; Kou, J.; Xu, C.Y. Study on the strength of cold-bonded high-phosphorus oolitic hematite-coal composite briquettes. Int. J. Min. Metall. Mater. 2014, 21, 423–430. [Google Scholar] [CrossRef]
- Raju, S.K.K.; Onkar, P.S. Lattice_Karak: Lattice structure generator for tissue engineering, lightweighting and heat exchanger applications. Softw. Impacts 2022, 14, 100425. [Google Scholar] [CrossRef]
- Al-Ketan, O.; Al-Rub, R.K.A. Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices. Adv. Eng. Mater. 2019, 21, 1900524. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, W.Y.; Qiu, R.Y.; Xu, D.; Zhang, H.; Zhu, P. Multiscale-based multiaxial fatigue model of short fiber reinforced polymer composites under high-cycle proportional loading. Compos. Part B-Eng. 2024, 275, 111308. [Google Scholar] [CrossRef]
- Hamid, Z.M.A.; Findeisen, C.; Laveuve, D.M.; Rohrumuller, B. A continuum damage mechanics model for fatigue degradation and failure of short fiber reinforced composites. Compos. Sci. Technol. 2024, 254, 110679. [Google Scholar] [CrossRef]
- Hessman, P.A.; Welschinger, F.; Hornberger, K.; Rohlke, T. A micromechanical cyclic damage model for high cycle fatigue failure of short fiber reinforced composites. Compos. Part B-Eng. 2023, 264, 110855. [Google Scholar] [CrossRef]
- Chen, X.M.; Sun, X.S.; Chen, P.H.; Wang, B.W.; Gu, J.F.; Wang, W.Z.; Chai, Y.N.; Zhao, Y.R. Rationalized improvement of Tsai–Wu failure criterion considering different failure modes of composite materials. Compos. Struct. 2021, 256, 113120. [Google Scholar] [CrossRef]
- Shirinbayan, M.; Nouira, S.; Imaddahen, M.A.; Fitoussi, J. Microstructure-sensitive investigation on the plastic deformation and damage initiation of fiber-reinforced polypropylene composite. Compos. Part B-Eng. 2024, 286, 111790. [Google Scholar] [CrossRef]
- Lu, P.J.; Nan, T.; Liu, H.; Zhang, Z.S.; Yang, Y.L.; Chen, Y.; Zhang, C. A Viscoelastic–Viscoplastic Constitutive Model for Fiber-Reinforced Composites with Application to Variable Angle Tow Composites. Compos. Commun. 2025, 57, 102479. [Google Scholar] [CrossRef]
- Lu, X.Y.; Guo, S.Y.; Hu, Y.G. Study of the effect of interfacial damage and friction on stress transfer in short fiber-reinforced composites. Eur. J. Mech. A-Solid. 2025, 109, 105476. [Google Scholar] [CrossRef]
- Wetzel, P.; Schneider, B.; Sambale, A.K.; Stommel, M.; Kaiser, J. RVE Simulations of short fiber reinforced polyamide: Direct and inverse matrix parameter identification in view of the semi-crystalline polymer structure. Compos. Sci. Technol. 2025, 260, 110961. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Moshrefzadeh-Sani, H. On the constant parameters of Halpin-Tsai equation. Polymer 2016, 106, 14–20. [Google Scholar] [CrossRef]
- Qin, F.P.; Lu, F.C.; Chen, K.J.; Hou, Y.H.; Zhang, C.B.; Huang, L. Numerical simulation and experimental validation of ratchetting deformation of short fiber-reinforced polymer composites. Compos. Part B-Eng. 2023, 266, 110974. [Google Scholar] [CrossRef]
- Tian, W.L.; Qi, L.H.; Su, C.Q.; Zhou, J.M.; Jing, Z. Numerical simulation on elastic properties of short-fiber-reinforced metal matrix composites: Effect of fiber orientation. Compos. Struct. 2016, 152, 408–417. [Google Scholar] [CrossRef]
- Ahn, H.; Chun, B.; Ye, J.H.; Yu, Y.; Yao, D.Y.; Cho, J.Y. Guidelines for measuring impact forces in drop-weight impact test on concrete members. Measurement 2025, 253, 117601. [Google Scholar] [CrossRef]
- Carlos, N.J.; Adeline, W.; Paul, S.; Trent, W.; Kaushik, B.; Daniel, R. A new drop weight tensile testing system for soft matter at intermediate strain rates. Eur. J. Mech. A-Solid 2025, 111, 105507. [Google Scholar]
- Wu, Y.; Deng, Y.J.; Liu, X.; Zeng, Q.M.; Liu, H.S.; Liu, L.B.; Kong, Y.H. Drop hammer impact tests of airport pavement slabs composed of modified rubber aggregate concrete. Constr. Build. Mater. 2025, 458, 139519. [Google Scholar] [CrossRef]
- Murali, G.; Wong, L.S.; Abid, S.R. A comprehensive review of drop weight impact testing: Evaluating the Pros and Cons in fiber-reinforced concrete performance assessment. J. Build. Eng. 2024, 94, 109934. [Google Scholar] [CrossRef]
- Jeong, K.; Jeong, Y.; Lee, J.; Chung, G.; Kim, G.; Yoon, J. Experimental correlation between bending crack evolution and load-drop criterion in tight-radius three-point bending test with GPa-grade steels. Int. J. Solids Struct. 2024, 301, 112949. [Google Scholar] [CrossRef]
- Xu, S.Y.; Lyu, W.H.; Kong, J.; Yang, Z.; Qi, B. Pore characteristics and compressive energy-absorption properties of four wood species. Wood Mater. Sci. Eng. 2025, 20, 1–8. [Google Scholar] [CrossRef]
- Zhao, M.; Li, Z.D.; Chua, J.W.; Lim, C.H.; Li, X.W. Enhanced energy-absorbing and sound-absorbing capability of functionally graded and helicoidal lattice structures with triply periodic minimal surfaces. Int. J. Min. Metall. Mater. 2023, 30, 1973–1985. [Google Scholar] [CrossRef]
- Karmiris-Obratański, P.; Georgakopoulos-Soares, I.; Cichocki, K.; Lisiecka-Graca, P.; Papazoglou, E. Compressive and energy absorption properties of titanium hybrid lattice structures for bioimplant applications fabricated via LPBF. Mater. Des. 2025, 254, 114045. [Google Scholar] [CrossRef]
- Xu, K.; Gao, Q.Q.; Shi, S.Q.; Liu, P.; Ni, Y.X.; Hao, Z.L.; Xu, G.J.; Fu, Y.; Liu, F.H. Construction of attapulgite-based one-dimensional nanonetwork composites with corrosion resistance for high-efficiency microwave absorption. Int. J. Min. Metall. Mater. 2025, 32, 689–698. [Google Scholar] [CrossRef]
Process Parameters | Filament Diameter | Nozzle Diameter | Build Plate Temperature | Nozzle Temperature | Scan Speed | Layer Thickness | Annealing Temperature | Annealing Duration |
---|---|---|---|---|---|---|---|---|
Bambu Lab X1 | 1.75 mm | 0.4 mm | 100 °C | 280 °C | 500 mm/s | 0.15 mm | 80 °C | 8 h |
Elastic Constant | E11/GPa | E22 = E33/GPa | G12 = G13/GPa | G23/GPa | ν12 = ν13 | ν23 |
---|---|---|---|---|---|---|
Finite element homogenization | 3.040 | 3.124 | 1.126 | 1.134 | 0.349 | 0.340 |
Materials | Elastic Modulus (GPa) | Shear Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|
CF | 230 | 30 | 0.3 |
PLA matrix | 2.97 | 1.08 | 0.35 |
Material Parameters | Values |
---|---|
Elastic Modulus Ec (GPa) | 3.11 |
Poisson’s Ratio ν | 0.34 |
Tensile Strength σt (MPa) | 45.28 |
Compressive Strength σc (MPa) | 108 |
Shear Strength τ (MPa) | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Wang, P.; Guo, A.; Han, L.; Yang, Y.; He, Y.; Cai, X. Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact. Materials 2025, 18, 3686. https://doi.org/10.3390/ma18153686
Xiao X, Wang P, Guo A, Han L, Yang Y, He Y, Cai X. Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact. Materials. 2025; 18(15):3686. https://doi.org/10.3390/ma18153686
Chicago/Turabian StyleXiao, Xinke, Penglei Wang, Anxiao Guo, Linzhuang Han, Yunhao Yang, Yalin He, and Xuanming Cai. 2025. "Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact" Materials 18, no. 15: 3686. https://doi.org/10.3390/ma18153686
APA StyleXiao, X., Wang, P., Guo, A., Han, L., Yang, Y., He, Y., & Cai, X. (2025). Mechanical Behavior and Response Mechanism of Short Fiber-Reinforced Polymer Structures Under Low-Speed Impact. Materials, 18(15), 3686. https://doi.org/10.3390/ma18153686