Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,773)

Search Parameters:
Keywords = thermo-stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3565 KiB  
Article
Controlled PolyDMAEMA Functionalization of Titanium Surfaces via Graft-To and Graft-From Strategies
by Chiara Frezza, Susanna Romano, Daniele Rocco, Giancarlo Masci, Giovanni Sotgiu, Monica Orsini and Serena De Santis
Micromachines 2025, 16(8), 899; https://doi.org/10.3390/mi16080899 (registering DOI) - 31 Jul 2025
Abstract
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the [...] Read more.
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the integration of smart polymers, such as poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)—noted for its dual pH- and thermo-responsive behavior—has emerged as a promising approach to tailor surface properties for next-generation devices. This work compares two covalent immobilization strategies for PDMAEMA on titanium: the “graft-to” method, involving the attachment of pre-synthesized polymer chains, and the “graft-from” method, based on surface-initiated polymerization. The resulting materials were characterized with size exclusion chromatography (SEC) for molecular weight, Fourier-transform infrared spectroscopy (FTIR) for chemical structure, scanning electron microscopy (SEM) for surface morphology, and contact angle measurements for wettability. Electrochemical impedance spectroscopy and polarization studies were used to assess electrochemical performance. Both strategies yielded uniform and stable coatings, with the mode of grafting influencing both surface morphology and functional stability. These findings provide valuable insights into the development of adaptive, stimuli-responsive titanium-based interfaces in advanced electrochemical systems. Full article
Show Figures

Figure 1

14 pages, 4194 KiB  
Article
Crystal Structure of Anthranilate Phosphoribosyltransferase from Methanocaldococcus jannaschii
by Jung-Min Choi
Crystals 2025, 15(8), 702; https://doi.org/10.3390/cryst15080702 (registering DOI) - 31 Jul 2025
Abstract
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has [...] Read more.
Tryptophan is synthesized in microorganisms via a five-step enzymatic pathway originating from chorismate, which is a product of the shikimate pathway. As a biosynthetic precursor to a wide range of high-value compounds such as indole-3-acetic acid, indigo, indirubin, and violacein, this pathway has been a central target for metabolic engineering to enhance microbial production. Anthranilate phosphoribosyltransferase (AnPRT) catalyzes the second step of the pathway by transferring a phosphoribosyl group from PRPP to anthranilate, forming phosphoribosyl anthranilate (PRA). AnPRT, the sole member of class IV phosphoribosyltransferases, adopts a unique fold and functions as a homodimer. While the structural basis of AnPRT activity has been elucidated in several organisms, thermostable variants remain underexplored despite their relevance for high-temperature bioprocessing. In this study, the crystal structure of AnPRT from the thermophilic archaeon Methanocaldococcus jannaschii (MjAnPRT) was determined at a 2.16 Å resolution. The enzyme exhibits a conserved dimeric architecture and key catalytic motifs. Comparative structural analysis with mesophilic and hyper thermophilic homologs revealed that MjAnPRT possesses enhanced local stability in catalytically important regions and strengthened inter-subunit interactions. These features likely contribute to its thermostability and provide a valuable framework for the rational design of robust AnPRTs for industrial and synthetic biology applications. Full article
(This article belongs to the Special Issue Crystallography of Enzymes)
Show Figures

Figure 1

13 pages, 19290 KiB  
Article
Enhancement of Anti-Staling Properties of Rice Bread Through Fermentation Rice Flour with Three Lactic Acid Bacteria
by Zhiqi Wang, Zhaosen Yuan, Xinlai Dou, Wanshan Yang, Huining Zhang, Yue Zhang, Fenglian Chen and Yanling Hao
Foods 2025, 14(15), 2674; https://doi.org/10.3390/foods14152674 - 29 Jul 2025
Viewed by 186
Abstract
This study investigated the effects of Lactococcus lactis subsp. 1.2472 (L)-, Streptococcus thermophilus 1.2718 (S)-, and thermostable Lactobacillus rhamnosus HCUL 1.1901-1912 (T)-fermented rice flour with inoculum levels of 3–11% (w/w) on rice bread staling. Optimal staling resistance was achieved, [...] Read more.
This study investigated the effects of Lactococcus lactis subsp. 1.2472 (L)-, Streptococcus thermophilus 1.2718 (S)-, and thermostable Lactobacillus rhamnosus HCUL 1.1901-1912 (T)-fermented rice flour with inoculum levels of 3–11% (w/w) on rice bread staling. Optimal staling resistance was achieved, as follows: 9% L-fermented rice bread (LRB), 7% T-fermented rice bread (TRB), and 5% S-fermented rice bread (SRB). Lactic acid bacteria-fermented rice flour significantly enhanced hydration properties. LF-NMR analysis revealed that T21 (strongly bound water) and T22 (weakly bound water) relaxation times decreased, while T23 (free water) increased with prolonged storage. Fermented-rice-flour groups had significantly more strongly bound water than the control group on 7 d. The optimized formulations exhibited exceptional volumetric stability with specific volume change rates of 17.63% (LRB), 17.60% (TRB), and 19.58% (SRB), coupled with maximal porosities of 10.34%, 9.05%, and 9.41%, respectively. This study provides a theoretical foundation for improving rice bread’s anti-staling properties. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

29 pages, 2504 KiB  
Review
Bridging Gaps in Vaccine Access and Equity: A Middle Eastern Perspective
by Laith N. AL-Eitan, Diana L. Almahdawi, Rabi A. Abu Khiarah and Mansour A. Alghamdi
Vaccines 2025, 13(8), 806; https://doi.org/10.3390/vaccines13080806 - 29 Jul 2025
Viewed by 356
Abstract
Vaccine equity and access remain critical challenges in global health, particularly in regions with complex socio-political landscapes, like the Middle East. This review examines disparities in vaccine distribution within the Middle Eastern context, analyzing the unique challenges and opportunities across the region. It [...] Read more.
Vaccine equity and access remain critical challenges in global health, particularly in regions with complex socio-political landscapes, like the Middle East. This review examines disparities in vaccine distribution within the Middle Eastern context, analyzing the unique challenges and opportunities across the region. It provides an overview of the area’s diverse finances and its impact on healthcare accessibility. We examine vaccination rates and identify critical barriers to vaccination, which may be particular issues in developing countries, such as vaccine thermostability, logistical hurdles, financial constraints, and socio-cultural factors, or broader problems, like political instability, economic limitations, and deficiencies in healthcare infrastructure. However, we also highlight successful efforts at the regional and national levels to improve vaccine equity, along with their outcomes and impacts. Ultimately, by drawing on the experiences of previous programs and initiatives, we propose strategies to bridge the gaps in vaccine access through sustainable financing, local manufacturing, and the strengthening of health systems. This approach emphasizes the importance of regional collaboration and long-term self-sufficiency in enhancing global health security and achieving more equitable outcomes in the Middle East. Full article
Show Figures

Figure 1

14 pages, 3517 KiB  
Article
Characterization of a Thermostable α-Amylase from Bacillus licheniformis 104.K for Industrial Applications
by Askar Kholikov, Khushnut Vokhidov, Azizjon Murtozoyev, Zoé S. Tóth, Gergely N. Nagy, Beáta G. Vértessy and Akhmadzhan Makhsumkhanov
Microorganisms 2025, 13(8), 1757; https://doi.org/10.3390/microorganisms13081757 - 28 Jul 2025
Viewed by 353
Abstract
This study describes the characterization of a novel thermostable α-amylase from a Bacillus licheniformis 104.K strain isolated from the Kashkadarya region of Uzbekistan. Phylogenetic analysis revealed that the thermostable α-amylase belongs to glycoside hydrolase family 13 subfamily 5 (GH13_5) and shares high sequence [...] Read more.
This study describes the characterization of a novel thermostable α-amylase from a Bacillus licheniformis 104.K strain isolated from the Kashkadarya region of Uzbekistan. Phylogenetic analysis revealed that the thermostable α-amylase belongs to glycoside hydrolase family 13 subfamily 5 (GH13_5) and shares high sequence similarity with known α-amylases. Our results demonstrate that the recombinant α-amylase exhibits optimal activity at pH 6.0 and 90 °C, retaining full activity after 30 min at 60 °C. The addition of CaCl2 significantly enhanced thermostability, with the enzyme retaining more than 95% of its initial activity at 70 °C after 30 min. Our findings indicate that α-amylase from B. licheniformis 104.K is a functional, thermostable enzyme with potential industrial applications. This study highlights the commercial significance of thermostable amylases and the need to identify novel, cost-effective, and sustainable sources. The results of this study will contribute to the fields of enzyme applications, stabilizing additives, and genetic engineering of thermostable genes. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

17 pages, 8482 KiB  
Article
The Optimization of Culture Conditions for the Cellulase Production of a Thermostable Cellulose-Degrading Bacterial Strain and Its Application in Environmental Sewage Treatment
by Jiong Shen, Konglu Zhang, Yue Ren and Juan Zhang
Water 2025, 17(15), 2225; https://doi.org/10.3390/w17152225 - 25 Jul 2025
Viewed by 229
Abstract
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, [...] Read more.
A novel cellulose-degrading bacterial strain, D3-1, capable of degrading cellulose under medium- to high-temperature conditions, was isolated from soil samples and identified as Staphylococcus caprae through 16SrRNA gene sequencing. The strain’s cellulase production was optimized by controlling different factors, such as pH, temperature, incubation period, substrate concentration, nitrogen and carbon sources, and response surface methods. The results indicated that the optimal conditions for maximum cellulase activity were an incubation time of 91.7 h, a temperature of 41.8 °C, and a pH of 4.9, which resulted in a maximum cellulase activity of 16.67 U/mL, representing a 165% increase compared to pre-optimization levels. The above experiment showed that, when maize straw flour was utilized as a natural carbon source, strain D3-1 exhibited relatively high cellulase production. Furthermore, gas chromatography–mass spectrometry (GC-MS) analysis of products in the degradation liquid revealed the presence of primary sugars. The results indicated that, in the denitrification of simulated sewage, supplying maize straw flour degradation liquid (MSFDL) as the carbon source resulted in a carbon/nitrogen (C/N) ratio of 6:1 after a 24 h reaction with the denitrifying strain WH-01. The total nitrogen (TN) reduction was approximately 70 mg/L, which is equivalent to the removal efficiency observed in the glucose-fed denitrification process. Meanwhile, during a 4 h denitrification reaction in urban sewage without any denitrifying bacteria, but with MSFDL supplied as the carbon source, the TN removal efficiency reached 11 mg/L, which is approximately 70% of the efficiency of the glucose-fed denitrification process. Furthermore, experimental results revealed that strain D3-1 exhibits some capacity for nitrogen removal; when the cellulose-degrading strain D3-1 is combined with the denitrifying strain WH-01, the resulting TN removal rate surpasses that of a single denitrifying bacterium. In conclusion, as a carbon source in municipal sewage treatment, the degraded maize straw flour produced by strain D3-1 holds potential as a substitute for the glucose carbon source, and strain D3-1 has a synergistic effect with the denitrifying strain WH-01 on TN elimination. Thus, this research offers new insights and directions for advancement in environmental sewage treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

22 pages, 8078 KiB  
Article
Experimental Testing of the Efficiency, Stability, and Compatibility of Fillers in the Conservation and Restoration of Water-Gilded Wooden Heritage
by María-Ángeles Carabal-Montagud, Laura Osete-Cortina, Ángel Vicente-Escuder and Celia Laguarda-Gómez
Appl. Sci. 2025, 15(15), 8276; https://doi.org/10.3390/app15158276 - 25 Jul 2025
Viewed by 554
Abstract
The conservation and restoration of water-gilded wooden cultural heritage, such as polychrome sculptures, frames, panels, altarpieces, etc., requires the use of fillers that guarantee structural stability, physicochemical and mechanical compatibility with the original support, and the ability to adapt to dimensional movements induced [...] Read more.
The conservation and restoration of water-gilded wooden cultural heritage, such as polychrome sculptures, frames, panels, altarpieces, etc., requires the use of fillers that guarantee structural stability, physicochemical and mechanical compatibility with the original support, and the ability to adapt to dimensional movements induced by thermo-hygrometric variations. This study, conducted as part of the DorART Project, analyzed the behavior of nine formulations, both commercial and non-commercial, selected through a review of the state-of-the-art specialized literature, along with the use of participatory science, which focused on the practices and materials most commonly used by professionals in the field. The experimental design was based on three types of specimens: two with wooden supports, selected for evaluating their interaction with the original material and with the traditional water gilding technique, and a third type for analyzing the individual behavior of the tested materials. Analyses of adhesion, tensile strength, Shore C hardness, gloss, abrasion test results, wettability, pH changes, and chemical composition were performed using ATR-FTIR spectroscopy. The results showed significant differences depending on the type of curing used and the composition and aging behavior of the specimen. Some of the fillers demonstrated improved compatibility with water-based gilding, facilitating workability and providing structural strength. M3 and M9 demonstrated an optimal balance of workability and aging stability. The results of this study can help restorers select materials based on their specific needs, considering the requirements of mechanical adaptation to the substrate, compatibility, and durability. Full article
Show Figures

Figure 1

13 pages, 3189 KiB  
Article
Synthesis of Thermo-Responsive Hydrogel Stabilizer and Its Impact on the Performance of Ecological Soil
by Xiaoyan Zhou, Weihao Zhang, Peng Yuan, Zhao Liu, Jiaqiang Zhao, Yue Gu and Hongqiang Chu
Appl. Sci. 2025, 15(15), 8279; https://doi.org/10.3390/app15158279 - 25 Jul 2025
Viewed by 190
Abstract
In high-slope substrates, special requirements are imposed on sprayed ecological soil, which needs to exhibit high rheological properties before spraying and rapid curing after spraying. Traditional stabilizers are often unable to meet these demands. This study developed a thermo-responsive hydrogel stabilizer (HSZ) and [...] Read more.
In high-slope substrates, special requirements are imposed on sprayed ecological soil, which needs to exhibit high rheological properties before spraying and rapid curing after spraying. Traditional stabilizers are often unable to meet these demands. This study developed a thermo-responsive hydrogel stabilizer (HSZ) and applied it to ecological soil. The effects of HSZ on the rheological, mechanical, and vegetation performance of ecological soil were investigated, and the mechanism of the responsive carrier in the stabilizer was explored. The experimental results show that the ecological soil containing HSZ has high flowability before response, but its flowability rapidly decreases and consistency sharply increases after response. After the addition of HSZ, the 7 d unconfined compressive strength of the ecological soil reaches 1.55 MPa. The pH value of the ecological soil generally ranges from 6.5 to 8.0, and plant growth in a simulated vegetation box is favorable. Conductivity and viscosity tests demonstrate that the core–shell microcarriers, upon thermal response, release crosslinking components from the carrier, which rapidly react with the precursor solution components to form a curing system. This study provides a novel method for regulating ecological soil using a responsive stabilizer, further expanding its capacity to adapt to various complex scenarios. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

24 pages, 5866 KiB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 229
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

23 pages, 4774 KiB  
Article
Chlorogenic Acid and Cinnamaldehyde in Breast Cancer Cells: Predictive Examination of Pharmacokinetics and Binding Thermodynamics with the Key Mediators of PI3K/Akt Signaling
by Yusuff Olayiwola and Lauren Gollahon
Biomedicines 2025, 13(8), 1810; https://doi.org/10.3390/biomedicines13081810 - 24 Jul 2025
Viewed by 304
Abstract
Background/Objective: In the pursuit of identifying novel therapeutic agents against breast cancer, a major priority is finding agents that effectively and safely inhibit the signaling pathways sustaining cancer cells. To better focus research efforts in validating such candidates, this in silico study assessed [...] Read more.
Background/Objective: In the pursuit of identifying novel therapeutic agents against breast cancer, a major priority is finding agents that effectively and safely inhibit the signaling pathways sustaining cancer cells. To better focus research efforts in validating such candidates, this in silico study assessed the pharmacokinetic profiles, thermodynamics, and binding affinity of chlorogenic acid and cinnamaldehyde with the upstream mediators of the Akt pathway implicated in breast cancer cells. Methods: Various software and online tools were used to conduct molecular docking of the small molecules with the proteins PI3K, Akt, and PDK1, and to examine their absorption, distribution, metabolism, elimination, and toxicity (ADMET) profile. Results: The results show strong binding energy (all within the range of those of FDA-approved drugs) and thermostability between the compounds and the proteins. The phytochemicals were predicted to have moderate oral bioavailability and tissue distribution, and were identified as substrates of drug metabolizing enzymes, but not deactivated. Conclusion: Although these predictive data warrant confirmation in a biological system, they suggest that the compounds have good pharmacokinetics and are strong inhibitors of the Akt pathway, with great potential to shut down breast cancer cell invasion and migration. These data also inform more efficient experimental designs for our planned in vivo studies. Full article
(This article belongs to the Special Issue Signaling of Protein Kinases in Development and Disease)
Show Figures

Figure 1

39 pages, 18290 KiB  
Article
Turning Construction, Renovation, and Demolition (CRD) Wood Waste into Biochar: A Scalable and Sustainable Solution for Energy and Environmental Applications
by Aravind Ganesan, Simon Barnabé, Younès Bareha, Simon Langlois, Olivier Rezazgui and Cyrine Boussabbeh
Energies 2025, 18(15), 3902; https://doi.org/10.3390/en18153902 - 22 Jul 2025
Viewed by 330
Abstract
This study investigates the pyrolysis of construction, renovation, and demolition (CRD) wood waste to produce biochar, with a focus on its robustness, scalability, and characterization for energy and environmental applications. Pyrolysis conditions, including the temperature, biomass residence time (BRT), and feedstock mass, were [...] Read more.
This study investigates the pyrolysis of construction, renovation, and demolition (CRD) wood waste to produce biochar, with a focus on its robustness, scalability, and characterization for energy and environmental applications. Pyrolysis conditions, including the temperature, biomass residence time (BRT), and feedstock mass, were varied to evaluate their effects on biochar properties. High-temperature biochars (B800) showed the highest fixed carbon (FC) (87%) and thermostable fraction (TSF) (96%) and the lowest volatile carbon (VC) (9%), with a high carbon content (92%), a large BET surface area (300 m2/g), and a high micropore volume (0.146 cm3/g). However, the hydrogen (0.9%) and oxygen (2.2%) content, Van-Krevelen parameters (H/C: 0.1; O/C: 0.02), and biochar yield (21%) decreased with increasing temperature. Moderate-temperature biochars (B600) have balanced physicochemical properties and yields, making them suitable for adsorption applications. Methyl orange dye removal exceeded 90% under the optimal conditions, with B600 fitting well with the Freundlich isotherm model (R2 = 0.97; 1/n = 0.5) and pseudo-second-order kinetic model (R2 = 1). The study highlights biochar’s suitability for varied applications, emphasizing the need for scalability in CRD wood pyrolysis. Full article
Show Figures

Figure 1

21 pages, 4823 KiB  
Article
Thermo-Mechanical Behavior of Polymer-Sealed Dual-Cavern Hydrogen Storage in Heterogeneous Rock Masses
by Chengguo Hu, Xiaozhao Li, Bangguo Jia, Lixin He and Kai Zhang
Energies 2025, 18(14), 3797; https://doi.org/10.3390/en18143797 - 17 Jul 2025
Viewed by 168
Abstract
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of [...] Read more.
Underground hydrogen storage (UHS) in geological formations offers a promising solution for large-scale energy buffering, but its long-term safety and mechanical stability remain concerns, particularly in fractured rock environments. This study develops a fully coupled thermo-mechanical model to investigate the cyclic response of a dual-cavern hydrogen storage system with polymer-based sealing layers. The model incorporates non-isothermal gas behavior, rock heterogeneity via a Weibull distribution, and fracture networks represented through stochastic geometry. Two operational scenarios, single-cavern and dual-cavern cycling, are simulated to evaluate stress evolution, displacement, and inter-cavity interaction under repeated pressurization. Results reveal that simultaneous operation of adjacent caverns amplifies tensile and compressive stress concentrations, especially in inter-cavity rock bridges (i.e., the intact rock zones separating adjacent caverns) and fracture-dense zones. Polymer sealing layers remain under compressive stress but exhibit increased residual deformation under cyclic loading. Contour analyses further show that fracture orientation and spatial distribution significantly influence stress redistribution and deformation localization. The findings highlight the importance of considering thermo-mechanical coupling and rock fracture mechanics in the design and operation of multicavity UHS systems. This modeling framework provides a robust tool for evaluating storage performance and informing safe deployment in complex geological environments. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

16 pages, 3161 KiB  
Article
Screening, Characterization and Comparison of Endoglucanases/Xylanases from Thermophilic Fungi: A Thielavia terrestris Xylanase with High Activity-Stability Properties
by Shaohua Xu, Kexuan Ma, Zixiang Chen, Jian Zhao, Xin Song and Yuqi Qin
Int. J. Mol. Sci. 2025, 26(14), 6849; https://doi.org/10.3390/ijms26146849 - 17 Jul 2025
Viewed by 191
Abstract
Thermostable cellulases and xylanases have broad acceptance in food, feed, paper and pulp, and bioconversion of lignocellulosics. Thermophilic fungi serve as an excellent source of thermostable enzymes. This study characterized four endo-β-1,4-glucanases (two glycoside hydrolase (GH) family 5 and two GH7 members) and [...] Read more.
Thermostable cellulases and xylanases have broad acceptance in food, feed, paper and pulp, and bioconversion of lignocellulosics. Thermophilic fungi serve as an excellent source of thermostable enzymes. This study characterized four endo-β-1,4-glucanases (two glycoside hydrolase (GH) family 5 and two GH7 members) and four endo-β-1,4-xylanases (two GH10 and two GH11 members) from thermophilic fungus Thielavia terrestris, along with one GH10 endo-β-1,4-xylanase each from thermophilic fungus Chaetomium thermophilum and mesophilic fungus Chaetomium globosum. Comparative analysis was conducted against three previously reported GH10 endoxylanases: two thermostable enzymes from the thermophilic fungus Humicola insolens and thermophilic bacterium Halalkalibacterium halodurans, and one mesophilic enzyme from model fungus Neurospora crassa. The GH10 xylanase TtXyn10C (Thite_2118148; UniProt G2R8T7) from T. terrestris demonstrated high thermostability and activity, with an optimal temperature of 80–85 °C. It retained over 60% of its activity after 2 h at 70 °C, maintained approximately 30% activity after 15 min at 80 °C, and showed nearly complete stability following 1 min of exposure to 95 °C. TtXyn10C exhibited specific activity toward beechwood xylan (1130 ± 15 U/mg) that exceeded xylanases from H. insolens and H. halodurans while being comparable to N. crassa xylanase activity. Furthermore, TtXyn10C maintained stability across a pH range of 3–9 and resisted trypsin digestion, indicating its broad applicability. The study expands understanding of enzymes from thermophilic fungi. The discovery of the TtXyn10C offers a new model for investigating the high activity-stability trade-off and structure-activity relationships critical for industrial enzymes. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

12 pages, 492 KiB  
Article
Protective Effect of Tomato By-Product in Refined Sunflower Oil with Different Lipid Profiles
by Idoya Fernández-Pan, Sandra Horvitz, Francisco C. Ibañez, Paloma Vírseda and María José Beriain
Molecules 2025, 30(14), 2968; https://doi.org/10.3390/molecules30142968 - 15 Jul 2025
Viewed by 286
Abstract
The recovery of carotenoids, particularly lycopene, from industrial tomato by-products is contingent upon the composition of the raw material, the harvesting season, and the specifics of the extraction process. Industrial tomato by-product from three harvest seasons (S1, S2, and S3) was revalorized and [...] Read more.
The recovery of carotenoids, particularly lycopene, from industrial tomato by-products is contingent upon the composition of the raw material, the harvesting season, and the specifics of the extraction process. Industrial tomato by-product from three harvest seasons (S1, S2, and S3) was revalorized and used as a lycopene natural source. Pressurization-assisted extraction of lycopene was carried out using two types of refined sunflower oil (high oleic, HO, and low oleic, LO). The carotenoid and tocopherol content, as well as the fatty acid profile, were analyzed in the resulting HO and LO oil samples, and thermooxidation stability was evaluated. Lycopene recovery was found to be higher in the LO oil than in the HO oil using the by-product from the S3 harvest. Conversely, the tocopherol content declined in both oil types following the incorporation of the S3 by-products. The addition of by-products did not affect the thermooxidation stability of the HO oil. Conversely, the thermooxidation stability of the LO oil increased by about 3.2 ± 0.6 h, irrespective of the season. The findings of this study demonstrate that the addition of tomato by-product, regardless of its lycopene content, provides a protective effect against the thermooxidation of conventional sunflower oil. Full article
Show Figures

Graphical abstract

15 pages, 2000 KiB  
Article
Residue 365 in Hemagglutinin–Neuraminidase Is a Key Thermostable Determinant of Genotype VI.2.1.1.2.2 Newcastle Disease Virus
by Tao Di, Ran Zhao, Qiankai Shi, Fangfang Wang, Zongxi Han, Huixin Li, Yuhao Shao, Junfeng Sun and Shengwang Liu
Viruses 2025, 17(7), 977; https://doi.org/10.3390/v17070977 - 13 Jul 2025
Viewed by 339
Abstract
Newcastle disease virus (NDV) genotype VI from pigeon origin is an important causative agent for serious disease in pigeons. Although the biological characteristics of genotype VI NDV have been extensively studied, the understanding of the thermostability of this genotype is still incomplete. In [...] Read more.
Newcastle disease virus (NDV) genotype VI from pigeon origin is an important causative agent for serious disease in pigeons. Although the biological characteristics of genotype VI NDV have been extensively studied, the understanding of the thermostability of this genotype is still incomplete. In this study, an NDV strain, designated P0506, was isolated from a diseased pigeon in China and classified as genotype VI. Phylogenetic analysis on the basis of the Fusion gene coding sequence indicated that P0506 belonged to sub-genotype VI.2.1.1.2.2 of class II. The thermostability may be a universal characteristic of genotype VI NDV. Thus, the thermostability of two strains, including P0506 identified in this study and P0713 identified previously, belonging to VI.2.1.1.2.2, and another previously isolated strain, P0813, in VI.2.1.1.2.1, was investigated. It was indicated that all three viruses presented resistance to heat treatment, but P0713 was more robust than P0813 and P0506. By constructing a series of HN protein mutants, amino acid residues at both residues 365 and 497 in HN protein were found to be involved in the heat resistance. Furthermore, the effects of residues 365 and 497 in HN protein on the thermostability of the virus were further evaluated by using recombinant viruses generated by the reverse genetic system. Our results showed that residue at position 365 in HN protein was the key thermostable determinant of sub-genotype VI.2.1.1.2.2 NDV. These findings will help us better understand the thermostable mechanism of NDV and serve as a foundation for the further development of novel thermostable vaccines. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, 4th Edition)
Show Figures

Figure 1

Back to TopTop