Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,185)

Search Parameters:
Keywords = tension force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1271 KiB  
Article
Study of the Physico-Mechanical Properties and Oxygen Permeability of Bacterial-Cellulose-Based Conduits
by Marina V. Parchaykina, Mikhail A. Baykov, Elvira S. Revina, Mikhail V. Shchankin and Viktor V. Revin
Polymers 2025, 17(15), 2123; https://doi.org/10.3390/polym17152123 (registering DOI) - 31 Jul 2025
Abstract
The article is devoted to the study of the physico-mechanical properties and oxygen permeability of the examined conduits based on bacterial cellulose (BC) obtained using the Komagataeibacter sucrofermentans B-11267 strain. BC is considered a promising material for regenerative biomedicine. The chemical structure, crystallinity [...] Read more.
The article is devoted to the study of the physico-mechanical properties and oxygen permeability of the examined conduits based on bacterial cellulose (BC) obtained using the Komagataeibacter sucrofermentans B-11267 strain. BC is considered a promising material for regenerative biomedicine. The chemical structure, crystallinity degree and porosity of BC-based conduits were characterized by means of infrared spectroscopy (IR-spectroscopy), scanning electron microscopy (SEM) and atomic-force microscopy (AFM). Both the Young’s modulus and determined tension showed the high strength of the obtained conduits. Their oxygen permeability exceeded the values for the existing analogues, and lack of cytotoxicity indicated biocompatibility, confirming that BC-based conduits may be used for biomedical purposes. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
18 pages, 373 KiB  
Article
Surrendering to and Transcending Ming 命 in the Analects, Mencius and Zhuangzi
by Ying Zhou
Religions 2025, 16(8), 1000; https://doi.org/10.3390/rel16081000 - 31 Jul 2025
Abstract
This article examines the concept of ming 命 (mandate/command or fate/destiny) in the Analects, Mencius, and Zhuangzi, exploring its relationship to tian 天 (Heaven). Across these works, ming retains an intrinsic connection to tian—an inviolable cosmic force beyond human [...] Read more.
This article examines the concept of ming 命 (mandate/command or fate/destiny) in the Analects, Mencius, and Zhuangzi, exploring its relationship to tian 天 (Heaven). Across these works, ming retains an intrinsic connection to tian—an inviolable cosmic force beyond human control. All three texts exhibit profound reverence and submission to tian, acknowledging the boundary between human control and cosmic inevitability, yet, at the same time, advocating active alignment with tian’s ordained patterns. In the Analects, a central tension emerges between tian’s teleological purpose—centered on preserving human culture and ethical cultivation—and the seemingly arbitrary fluctuations of individual fate, particularly regarding lifespan and personal fulfillment. This tension persists in the Mencius, articulated as a conflict between the political disorder of Mencius’ contemporary era and tian’s normative moral order. The Zhuangzi, by contrast, resolves this tension through advocating for withdrawal from the political life, as well as a radical reinterpretation of tian. Stripping tian off the Confucian moral–cultural imperatives, the text deconstructs dichotomies like life and death, championing inner equanimity via flowing with the cosmic transformation. Full article
16 pages, 4320 KiB  
Article
Effect of Thermo-Oxidative, Ultraviolet and Ozone Aging on Mechanical Property Degradation of Carbon Black-Filled Rubber Materials
by Bo Zhou, Wensong Liu, Youjian Huang, Jun Luo and Boyuan Yin
Buildings 2025, 15(15), 2705; https://doi.org/10.3390/buildings15152705 (registering DOI) - 31 Jul 2025
Abstract
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, [...] Read more.
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, uniaxial tension and dynamic mechanical analysis (DMA) tests were carried out. In the uniaxial tension tests, the stress strength and elongation decreased with an increase in aging time. In the DMA tests, the effective temperature ranges decreased by 3.4–14%. And the neo-Hookean model was applied to simulate the hyperelasticity of CB-filled rubber materials. The relationship between the elastic modulus (a constant of the neo-Hookean model) and aging time was established, which provided a qualitative relationship between crosslink density and aging time. In addition, the dispersion of the CB aggregate was investigated using an atomic force microscope (AFM). The results indicated that the mechanical property degradation might be closely related to the aggregate diameter. This paper establishes a bridge between the microstructure and mechanical properties of CB-filled rubber materials, which can improve the understanding of the mechanical property degradation mechanisms of rubber materials and the fabrication of rubber components. Full article
(This article belongs to the Special Issue Studies on the Durability of Building Composite Materials)
Show Figures

Figure 1

15 pages, 4141 KiB  
Article
Influence of Friction on Pre-Stressing Construction of Suspen-Dome Structures
by Miao Liu, Pengyuan Li, Ni Zhang and Zhancai Lao
Buildings 2025, 15(15), 2697; https://doi.org/10.3390/buildings15152697 (registering DOI) - 31 Jul 2025
Abstract
Suspension dome structures are widely utilized due to their superior performance compared to conventional structures. The condition of the cables, particularly the forces they experience, is critical for ensuring the safety of the overall structures. However, friction between cables and joints significantly disrupts [...] Read more.
Suspension dome structures are widely utilized due to their superior performance compared to conventional structures. The condition of the cables, particularly the forces they experience, is critical for ensuring the safety of the overall structures. However, friction between cables and joints significantly disrupts cable force distribution, particularly during pre-stressing construction. This paper integrates a tension-compensation method with a numerical approach that accurately accounts for friction effects. A computational flowchart was introduced and subsequently applied to analyze a practical suspension dome structure. We assessed the impact of friction on cable forces, structural deformations, and the mechanical state of the cable–strut system. Furthermore, we quantified the consequences of excessive tensioning. The findings demonstrate that the method presented in this paper can efficiently be employed for the analysis of large-scale complex structures and is readily accessible to structural designers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 4708 KiB  
Article
Mechanical Characteristics and Precision Analysis of Inflatable Deployable Parabolic Membrane Antenna Structures
by Yu Hu, Huichao Ji and Wujun Chen
Aerospace 2025, 12(8), 677; https://doi.org/10.3390/aerospace12080677 - 29 Jul 2025
Viewed by 135
Abstract
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper [...] Read more.
As accuracy of the reflector surface of a space parabolic deployable antenna is an important factor to determine its electrical characteristics (transmission gain and side lobes), mechanical characteristics of parabolic antennas under various internal pressures should be studied. The objective of this paper is to explore the force analysis of parabolic antennas by theoretical method and to estimate the effect of different air pressures on the surface precision of parabolic antennas via experiments in horizontal and vertical directions, and then a numerical analysis of the vibration characteristics of the parabolic antenna is proposed to explore the transient response of parabolic antennas. It is found that the ratio of tension reduces as depth of the parabolic membrane increases and can infinitely converge to 1/2. For precision analysis, it is concluded that precision of the parabolic membrane surface in a vertical state is higher than that in a horizontal state. Full article
Show Figures

Figure 1

20 pages, 9479 KiB  
Article
Clinch-Bonding Process for Ultra-High-Strength Steel and A5052 Aluminum Alloy Sheets
by Yohei Abe, Yu Tatara, Takahiro Hosokawa and Ryoto Yamauchi
Materials 2025, 18(15), 3556; https://doi.org/10.3390/ma18153556 - 29 Jul 2025
Viewed by 111
Abstract
Initially, the effects of sheet combinations for joining two sheets, including 780 MPa steel and A5052 aluminum alloy sheets, on the joined cross-sectional shapes of the sheets in a clinch-bonding process and the tension-shear load of joined sheets were investigated. The effect of [...] Read more.
Initially, the effects of sheet combinations for joining two sheets, including 780 MPa steel and A5052 aluminum alloy sheets, on the joined cross-sectional shapes of the sheets in a clinch-bonding process and the tension-shear load of joined sheets were investigated. The effect of an adhesive on the amounts of the interlock and the minimum thickness in the upper sheet was not large, whereas the effect of the sheet combination was observed. Subsequently, for joining the upper 980 MPa ultra-high-strength steel and lower aluminum alloy sheets in the clinch-bonding process, the effects of the die shape, punch velocity, and sheet holding force on the joinability were investigated. As a result, defect-free conditions were narrowly constrained. Finally, a method that involved controlling material flow using an adhesive with fine particles to increase friction between the sheets was introduced. The upper 980 MPa steel and lower aluminum alloy sheets were successfully joined using this approach. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

20 pages, 5053 KiB  
Article
Physics-Informed Neural Networks for Depth-Dependent Constitutive Relationships of Gradient Nanostructured 316L Stainless Steel
by Huashu Li, Yang Cheng, Zheheng Wang and Xiaogui Wang
Materials 2025, 18(15), 3532; https://doi.org/10.3390/ma18153532 - 28 Jul 2025
Viewed by 277
Abstract
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material [...] Read more.
The structural units with different characteristic scales in gradient nanostructured (GS) 316L stainless steel act synergistically to achieve the matching of strength and plasticity, and the intrinsic plasticity of nanoscale and ultrafine grains is fully demonstrated. The macroscopic stress–strain responses of each material unit in the GS surface layer can be measured directly by tension or compression tests on microspecimens. However, the experimental results based on microspecimens do not reflect either the extraordinary strengthening effect caused by non-uniform deformation or the intrinsic plasticity of nanoscale and ultrafine grains. In this paper, a method for constructing depth-dependent constitutive relationships of GS materials was proposed, which combines strain hardening parameter (hardness) with physics-informed neural networks (PINNs). First, the microhardness distribution on the specimen cross-sections was measured after stretching to different strains, and the hardness–strain–force test data were used to construct the depth-dependent PINNs model for the true strain–hardness relationship (PINNs_εH). Hardness–strain–force test data from specimens with uniform coarse grains were used to pre-train the PINNs model for hardness and true stress (PINNs_Hσ), on the basis of which the depth-dependent PINNs_Hσ model for GS materials was constructed by transfer learning. The PINNs_εσ model, which characterizes the depth-dependent constitutive relationships of GS materials, was then constructed using hardness as an intermediate variable. Finally, the accuracy and validation of the PINNs_εσ model were verified by a three-point flexure test and finite element simulation. The modeling method proposed in this study can be used to determine the position-dependent constitutive relationships of heterogeneous materials. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

16 pages, 8118 KiB  
Article
The Influence of Long-Term Service on the Mechanical Properties and Energy Dissipation Capacity of Flexible Anti-Collision Rings
by Junhong Zhou, Jia Lu, Wei Jiang, Ang Li, Hancong Shao, Zixiao Huang, Fei Wang and Qiuwei Yang
Coatings 2025, 15(8), 880; https://doi.org/10.3390/coatings15080880 - 27 Jul 2025
Viewed by 220
Abstract
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image [...] Read more.
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image correlation (DIC) technology. The results show that: The mechanical response of the anti-collision ring shows significant asymmetric tension–compression, with the tensile peak force being 6.8 times that of compression. A modified Johnson–Cook model was developed to accurately characterize the tension–compression force–displacement behavior across varying strain rates (0.001–0.1 s−1). The DIC full-field strain analysis reveals that the clamping fixture significantly influences the tensile deformation mode of the anti-collision ring by constraining its inner wall movement, thereby altering strain distribution patterns. Despite exhibiting a corrosion gradient from severe underwater degradation to minimal surface weathering, all tested rings demonstrated consistent mechanical performance, verifying the robust protective capability of the rubber coating in marine service conditions. Full article
Show Figures

Figure 1

25 pages, 16252 KiB  
Article
Investigation of Resonance Modes in Iced Transmission Lines Using Two Discrete Methods
by Rui Chen, Wanyu Bao and Mengqi Cai
Mathematics 2025, 13(15), 2376; https://doi.org/10.3390/math13152376 - 24 Jul 2025
Viewed by 109
Abstract
To investigate the oscillation modes of iced transmission lines, this study introduces a forcing term into the galloping equation and applies two discretization approaches: Discrete Method I (DMI), which directly transforms the partial differential equation into an ordinary differential form, and Discrete Method [...] Read more.
To investigate the oscillation modes of iced transmission lines, this study introduces a forcing term into the galloping equation and applies two discretization approaches: Discrete Method I (DMI), which directly transforms the partial differential equation into an ordinary differential form, and Discrete Method II (DMII), which first averages dynamic tension along the span. The finite element method is employed to validate the analytical solutions. Using a multiscale approach, amplitude-frequency responses under primary, harmonic, and internal resonance are derived. Results show that DMII yields larger galloping amplitudes and trajectories than DMI, with lower resonant frequencies and weaker geometric nonlinearities. In harmonic resonance, superharmonic and subharmonic modes (notably 1/2) are more easily excited. Under 2:1:2 internal resonance, amplitude differences in the vertical (z) direction are more sensitive to the discretization method, whereas the 1:1:1 case shows minimal variation across directions. These findings suggest that the choice of discretization significantly influences galloping behavior, with DMII offering a more conservative prediction. Full article
Show Figures

Figure 1

15 pages, 7562 KiB  
Article
Unnatural Amino Acid Photo-Crosslinking Sheds Light on Gating of the Mechanosensitive Ion Channel OSCA1.2
by Scarleth Duran-Morales, Rachel Reyes-Lizana, German Fernández, Macarena Loncon-Pavez, Yorley Duarte, Valeria Marquez-Miranda and Ignacio Diaz-Franulic
Int. J. Mol. Sci. 2025, 26(15), 7121; https://doi.org/10.3390/ijms26157121 - 23 Jul 2025
Viewed by 290
Abstract
Mechanosensitive ion channels such as OSCA1.2 enable cells to sense and respond to mechanical forces by translating membrane tension into ionic flux. While lipid rearrangement in the inter-subunit cleft has been proposed as a key activation mechanism, the contributions of other domains to [...] Read more.
Mechanosensitive ion channels such as OSCA1.2 enable cells to sense and respond to mechanical forces by translating membrane tension into ionic flux. While lipid rearrangement in the inter-subunit cleft has been proposed as a key activation mechanism, the contributions of other domains to OSCA gating remain unresolved. Here, we combined the genetic encoding of the photoactivatable crosslinker p-benzoyl-L-phenylalanine (BzF) with functional Ca2+ imaging and molecular dynamics simulations to dissect the roles of specific residues in OSCA1.2 gating. Targeted UV-induced crosslinking at positions F22, H236, and R343 locked the channel in a non-conducting state, indicating their functional relevance. Structural analysis revealed that these residues are strategically positioned: F22 interacts with lipids near the activation gate, H236 lines the lipid-filled cavity, and R343 forms cross-subunit contacts. Together, these results support a model in which mechanical gating involves a distributed network of residues across multiple channel regions, allosterically converging on the activation gate. This study expands our understanding of mechanotransduction by revealing how distant structural elements contribute to force sensing in OSCA channels. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

15 pages, 4116 KiB  
Article
The Spatial Configuration and Force Analyses of Hoses in a Fully Hose-Based Conveyance System
by Jun Li, Kai Zhan, Ming Zhang, Yangrui Cheng and Yingying Wang
J. Mar. Sci. Eng. 2025, 13(8), 1395; https://doi.org/10.3390/jmse13081395 - 23 Jul 2025
Viewed by 188
Abstract
The conveying hose is an important piece of equipment in the field of Marine engineering. Its spatial configuration and force conditions affect the normal operation of the Marine engineering system. This paper proposes a flexible, fully hose-based conveyance method for the field of [...] Read more.
The conveying hose is an important piece of equipment in the field of Marine engineering. Its spatial configuration and force conditions affect the normal operation of the Marine engineering system. This paper proposes a flexible, fully hose-based conveyance method for the field of deep-sea mining and mainly uses Orcaflex software to simulate and analyze the characteristics of the conveying hose in this system. This paper studies the influences of the top spacing, incoming flow direction, and placement and recovery processes on the configuration characteristics and force conditions of the hose. The conclusion drawn is that the conveying hose studied in this paper can maintain a good spatial configuration underwater and has a stable force condition. When the top spacing is 20 m, the transition of the curved section at the bottom of the hose is relatively smooth. The top tension of the hose has a good adaptability to the top spacing and the direction of the incoming flow. The conveying hose can stably complete the deployment and recovery operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

25 pages, 5687 KiB  
Article
Using an Equine Cadaver Head to Investigate Associations Between Sub-Noseband Space, Noseband Tension, and Sub-Noseband Pressure at Three Locations
by Orla Doherty, Richard Conway and Paul McGreevy
Animals 2025, 15(14), 2141; https://doi.org/10.3390/ani15142141 - 19 Jul 2025
Viewed by 278
Abstract
Pressures applied to horses via nosebands are of growing concern. The current study applied noseband pressure to the head of a dead horse. Pressure sensors were placed on the left nasal bone to record pressures as the noseband was progressively tightened. Tightness increased [...] Read more.
Pressures applied to horses via nosebands are of growing concern. The current study applied noseband pressure to the head of a dead horse. Pressure sensors were placed on the left nasal bone to record pressures as the noseband was progressively tightened. Tightness increased as predicated by holes in the strap of the noseband (as supplied) through eight steps from two fingers’ space, assessed using the standard International Society for Equitation Science Taper Gauge through to zero space. Sensors were also placed at the midline frontal plane and intra-orally at the level of the second premolar tooth. A strain gauge integrated into the noseband recorded tensions within the noseband at each tightness level, and a digital taper gauge under the noseband recorded forces on the face. Pressures at the left nasal bone rose to 403 kPa, while those at the frontal nasal plane reached 185 kPa. Pressures rose rapidly once the noseband was tightened at the equivalent of 1.4 fingers’ space under the noseband. These findings may help to explain cases of bone and skin damage at the noseband location and indicate the need to ensure that nosebands can accommodate more than the equivalent of 1.4 fingers beneath them in the nasal midline. Given that pressures are expected to rise from those reported here when horses wear bits, locomote, and when the reins are under tension, we conclude that the traditional provision of two fingers’ space should be retained. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

18 pages, 2807 KiB  
Article
The Nonlinear Vibration Response of Umbrella-Shaped Membrane Structure Under Heavy Rainfall Loads
by Zhongwei Luo, Zhoulian Zheng, Rui Yang and Peng Zhang
Buildings 2025, 15(14), 2529; https://doi.org/10.3390/buildings15142529 - 18 Jul 2025
Viewed by 152
Abstract
This paper investigates the vibration characteristics of tensioned umbrella-shaped membrane structures with complex curvature under heavy rainfall. To solve the geometrical problem of the complex curvature of a membrane surface, we set the rule of segmentation and simplify the shape by dividing it [...] Read more.
This paper investigates the vibration characteristics of tensioned umbrella-shaped membrane structures with complex curvature under heavy rainfall. To solve the geometrical problem of the complex curvature of a membrane surface, we set the rule of segmentation and simplify the shape by dividing it into multi-segment conical membranes. The generatrix becomes a polyline with a constant surface curvature in each segment, simplifying calculations. The equivalent uniform load of different rainfall intensity is determined by the theory of the stochastic process. The governing equations of the isotropic damped nonlinear forced vibration of membranes are established by using the theory of large deflection by von Karman and the principle of d’Alembert. The equations of the forced vibration of the membrane are solved by using Galerkin’s method and the small-parameter perturbation method, and the displacement function, vibration frequency, and acceleration of the membrane are obtained. At last, the influence of the height–span ratio, number of segments, pretension and load on membrane displacement, vibration frequency, and acceleration of the membrane surface are analyzed. Based on the above data, the general law of deformation of the umbrella-shaped membrane under heavy rainfall is obtained. Data and methods are provided for the design and construction of the membrane structure as a reference. Moreover, we propose methods to enhance calculation accuracy and streamline the computational process. Full article
Show Figures

Figure 1

20 pages, 3966 KiB  
Review
Mechanotransduction: A Master Regulator of Alveolar Cell Fate Determination
by Kusum Devi and Kalpaj R. Parekh
Bioengineering 2025, 12(7), 760; https://doi.org/10.3390/bioengineering12070760 - 14 Jul 2025
Viewed by 382
Abstract
Mechanotransduction plays an essential role in the fate determination of alveolar cells within the pulmonary system by translating mechanical forces into intricate biochemical signals. This process exclusively governs differentiation, phenotypic stability, and maintenance of alveolar epithelial cell subtypes, primarily the alveolar AT1/AT2 cells. [...] Read more.
Mechanotransduction plays an essential role in the fate determination of alveolar cells within the pulmonary system by translating mechanical forces into intricate biochemical signals. This process exclusively governs differentiation, phenotypic stability, and maintenance of alveolar epithelial cell subtypes, primarily the alveolar AT1/AT2 cells. Perturbed mechanical tension proportionally impacts alveolar cell phenotypic identity and their functional characteristics. The fundamental influence of respiratory mechanics on alveolar cell lineage commitment and sustenance is undeniable. AT1 cells are recognized as principal mechanosensors within the alveolus, directly perceiving and responding to mechanical forces imposed by respiration through cell–matrix interactions. These mechanical forces instigate a profound reorganization of the actin cytoskeleton within cells, indispensable for signal transduction and perpetuation of their differentiated phenotype, orchestrated by integrins and cell adhesion molecule-mediated signaling. The dysregulated mechanotransduction in the pulmonary system intrinsically contributes to the etiology and progression of various diseases, exemplified by pulmonary fibrosis. This review systematically elucidates the profound impact of mechanotransduction on alveolar cell differentiation and fate sustenance and underscores how its dysregulation contributes to the initiation and perpetuation of lung diseases. Full article
(This article belongs to the Section Cellular and Molecular Bioengineering)
Show Figures

Figure 1

37 pages, 8085 KiB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Viewed by 378
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

Back to TopTop