Study of the Physico-Mechanical Properties and Oxygen Permeability of Bacterial-Cellulose-Based Conduits
Abstract
1. Introduction
2. Materials and Methods
2.1. BC-Based Conduits Production
2.2. IR-Spectroscopy
2.3. Scanning Electron Microscopy
2.4. Atomic-Force Microscopy
2.5. X-Ray Diffraction
2.6. Strength and Tensile Measurement
2.7. Oxygen Permeability Measurement
2.8. MTT Assay
2.9. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lopes, B.; Sousa, P.; Alvites, R.; Branquinho, M.; Sousa, A.C.; Mendonça, C.; Atayde, L.M.; Luís, A.L.; Varejão, A.S.P.; Maurício, A.C. Peripheral Nerve Injury Treatments and Advances: One Health Perspective. Int. J. Mol. Sci. 2022, 23, 918. [Google Scholar] [CrossRef] [PubMed]
- Uranues, S.; Bretthauer, G.; Tomasch, G.; Rafolt, D.; Nagele-Moser, D.; Berghold, A.; Kleinert, R.; Justich, I.; Waldert, J.; Koch, H. A New Synthetic Conduit for the Treatment of Peripheral Nerve Injuries. World J Surg. 2020, 44, 3373–3382. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, R.; Zheng, B.; Guo, W.; Li, C.; He, W.; Wei, Y.; Du, Y.; Wang, H.; Wu, D.; et al. Highly Stretchable, Adhesive, Biocompatible, and Antibacterial Hydrogel Dressings for Wound Healing. Adv. Sci. 2021, 8, 2003627. [Google Scholar] [CrossRef]
- Swingler, S.; Gupta, A.; Gibson, H.; Kowalczuk, M.; Heaselgrave, W.; Radecka, I. Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers 2021, 13, 412. [Google Scholar] [CrossRef]
- Tudoroiu, E.-E.; Dinu-Pîrvu, C.-E.; Albu Kaya, M.G.; Popa, L.; Anuța, V.; Prisada, R.M.; Ghica, M.V. An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management. Pharmaceuticals 2021, 14, 1215. [Google Scholar] [CrossRef]
- Yakupu, A.; Aimaier, R.; Yuan, B.; Chen, B.; Cheng, J.; Zhao, Y.; Peng, Y.; Dong, J.; Lu, S. The Burden of Skin and Subcutaneous Diseases: Findings From the Global Burden of Disease Study 2019. Front. Public Health. 2023, 11, 1145513. [Google Scholar] [CrossRef] [PubMed]
- Datta, D.; Bandi, S.P.; Colaco, V.; Dhas, N.; Saha, S.S.; Hussain, S.Z.; Singh, S. Cellulose-Based Nanofibers Infused with Biotherapeutics for Enhanced Wound-Healing Applications. ACS Polym. Au 2025, 5, 80–104. [Google Scholar] [CrossRef]
- Hodel, K.V.S.; Machado, B.A.S.; Sacramento, G.d.C.; Maciel, C.A.d.O.; Oliveira-Junior, G.S.; Matos, B.N.; Gelfuso, G.M.; Nunes, S.B.; Barbosa, J.D.V.; Godoy, A.L.P.C. Active Potential of Bacterial Cellulose-Based Wound Dressing: Analysis of Its Potential for Dermal Lesion Treatment. Pharmaceutics 2022, 14, 1222. [Google Scholar] [CrossRef]
- Aslam Khan, M.U.; Abd Razak, S.I.; Al Arjan, W.S.; Nazir, S.; Sahaya Anand, T.J.; Mehboob, H.; Amin, R. Recent Advances in Biopolymeric Composite Materials for Tissue Engineering and Regenerative Medicines: A Review. Molecules 2021, 26, 619. [Google Scholar] [CrossRef]
- Parchaykina, M.V.; Liyaskina, E.V.; Bogatyreva, A.O.; Baykov, M.A.; Gotina, D.S.; Arzhanov, N.E.; Netrusov, A.I.; Revin, V.V. Cost-Effective Production of Bacterial Cellulose and Tubular Materials by Cultivating Komagataeibacter sucrofermentans B-11267 on a Molasses Medium. Polymers 2025, 17, 179. [Google Scholar] [CrossRef] [PubMed]
- De Amorim, J.D.P.; da Silva Junior, C.J.G.; de Medeiros, A.D.M.; do Nascimento, H.A.; Sarubbo, M.; de Medeiros, T.P.M.; Costa, A.F.d.S.; Sarubbo, L.A. Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application. Molecules 2022, 27, 5580. [Google Scholar] [CrossRef]
- Kang, B.S.; Na, Y.C.; Jin, Y.W. Comparison of the Wound Healing Effect of Cellulose and Gelatin: An In Vivo Study. Arch. Plast. Surg. 2012, 39, 317–321. [Google Scholar] [CrossRef]
- Liu, M.; Jin, J.; Zhong, X. Polysaccharide Hydrogels for Skin Wound Healing. Heliyon 2024, 10, 35014. [Google Scholar] [CrossRef]
- Naomi, R.; Bt Hj Idrus, R.; Fauzi, M.B. Plant- vs. Bacterial-Derived Cellulose for Wound Healing: A Review. Int. J. Environ. Res. Public Health 2020, 17, 6803. [Google Scholar] [CrossRef]
- Ferreira, F.V.; Souza, A.G.; Ajdary, R.; De Souza, L.P.; Lopes, J.H.; Correa, D.S.; Siqueira, G.; Barud, H.S.; Rosa, D.d.S.; Mattoso, L.H.C.; et al. Nanocellulose-Based Porous Materials: Regulation and Pathway to Commercialization in Regenerative Medicine. Bioact. Mater. 2023, 29, 151–176. [Google Scholar] [CrossRef]
- Yang, J.; Wang, S. Polysaccharide-Based Multifunctional Hydrogel Bio-Adhesives for Wound Healing: A Review. Gels 2023, 9, 138. [Google Scholar] [CrossRef]
- Kędzierska, M.; Blilid, S.; Miłowska, K.; Kołodziejczyk-Czepas, J.; Katir, N.; Lahcini, M.; El Kadib, A.; Bryszewska, M. Insight into Factors Influencing Wound Healing Using Phosphorylated Cellulose-Filled-Chitosan Nanocomposite Films. Int. J. Mol. Sci. 2021, 22, 11386. [Google Scholar] [CrossRef]
- Rodrigues, M.; Govindharajan, T. Study of Hydrocellular Functional Material as Microbicidal Wound Dressing for Diabetic Wound Healing. J. Appl. Biomater. Funct. Mater. 2021, 19, 22808000211054930. [Google Scholar] [CrossRef]
- Revin, V.V.; Liyaskina, E.V.; Parchaykina, M.V.; Kuzmenko, T.P.; Kurgaeva, I.V.; Revin, V.D.; Ullah, M.W. Bacterial Cellulose-Based Polymer Nanocomposites: A Review. Polymers 2022, 14, 4670. [Google Scholar] [CrossRef]
- He, W.; Wu, J.; Xu, J.; Mosselhy, D.A.; Zheng, Y.; Yang, S. Bacterial Cellulose: Functional Modification and Wound Healing Applications. Adv. Wound Care 2021, 10, 623–640. [Google Scholar] [CrossRef]
- Kruzicova, A.; Chalupova, M.; Kuzminova, G.; Parak, T.; Klusakova, J.; Sopuch, T.; Suchy, P. Effect of Novel Carboxymethyl Cellulose-Based Dressings on Acute Wound Healing Dynamics. Vet. Med-Czech. 2023, 68, 403–411. [Google Scholar] [CrossRef]
- Elangwe, C.N.; Morozkina, S.N.; Olekhnovich, R.O.; Krasichkov, A.; Polyakova, V.O.; Uspenskaya, M.V. A Review on Chitosan and Cellulose Hydrogels for Wound Dressings. Polymers 2022, 14, 5163. [Google Scholar] [CrossRef]
- Liu, K.; Wang, Y.; Liu, W.; Zheng, C.; Xu, T.; Du, H.; Yuan, Z.; Si, C. Bacterial Cellulose/Chitosan Composite Materials for Biomedical Applications. Chem. Eng. J. 2024, 494, 153014. [Google Scholar] [CrossRef]
- Netrusov, A.I.; Liyaskina, E.V.; Kurgaeva, I.V.; Liyaskina, A.U.; Yang, G.; Revin, V.V. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023, 11, 1541. [Google Scholar] [CrossRef]
- Abdelhamid, H.N.; Mathew, A.P. Cellulose-Based Nanomaterials Advance Biomedicine: A Review. Int. J. Mol. Sci. 2022, 23, 5405. [Google Scholar] [CrossRef] [PubMed]
- Revin, V.V.; Liyaskina, E.V.; Sapunova, N.B.; Bogatyreva, A.O. Isolation and Characterization of the Strains Producing Bacterial Cellulose. Microbiology 2020, 89, 86–95. [Google Scholar] [CrossRef]
- Revin, V.V.; Dolganov, A.V.; Liyaskina, E.V.; Nazarova, N.B.; Balandina, A.V.; Devyataeva, A.A.; Revin, V.D. Characterizing Bacterial Cellulose Produced by Komagataeibacter sucrofermentans H-110 on Molasses Medium and Obtaining a Biocomposite Based on it for the Adsorption of Fluoride. Polymers 2021, 13, 1422. [Google Scholar] [CrossRef]
- Alasfar, R.H.; Ahzi, S.; Barth, N.; Kochkodan, V.; Khraisheh, M.; Koç, M. A Review on the Modeling of the Elastic Modulus and Yield Stress of Polymers and Polymer Nanocomposites: Effect of Temperature, Loading Rate and Porosity. Polymers 2022, 14, 360. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Zharkova, I.I.; Volkov, A.V.; Muraev, A.A.; Makhina, T.K.; Voinova, V.V.; Ryabova, V.M.; Gazhva, Y.V.; Kashirina, A.S.; Kashina, A.V.; Bonartseva, G.A.; et al. Poly(3-hydroxybutyrate) 3D-Scaffold–Conduit for Guided Tissue Sprouting. Int. J. Mol. Sci. 2023, 24, 6965. [Google Scholar] [CrossRef]
- Alven, S.; Aderibigbe, B.A. Chitosan and Cellulose-Based Hydrogels for Wound Management. Int. J. Mol. Sci. 2020, 21, 9656. [Google Scholar] [CrossRef]
- Nelson, M.L.; O’Connor, R.T. Relation of Certain Infrared Bands to Cellulose Crystallinity and Crystal Lattice Type. Part II. A New Infrared Ratio for Estimation of Crystallinity in Celluloses I and II. J. Appl. Polym. Sci. 1964, 8, 1325–1341. [Google Scholar] [CrossRef]
- Nguyen Ngo, T.T.; Phan, T.H.; Thong Le, T.M.; Tu Le, T.N.; Huynh, Q.; Trang Phan, T.P.; Hoang, M.; Vo, T.P.; Nguyen, D.Q. Producing Bacterial Cellulose from Industrial Recycling Paper Waste Sludge. Heliyon 2023, 9, e17663. [Google Scholar] [CrossRef] [PubMed]
- Fadakar Sarkandi, A.; Montazer, M.; Mahmoudi Rad, M.; Appl, J. Oxygenated-Bacterial-Cellulose Nanofibers with Hydrogel, Antimicrobial, and Controlled Oxygen Release Properties for Rapid Wound Healing. Polym. Sci. 2022, 139, 51974. [Google Scholar] [CrossRef]
- Roberts, E.L.; Abdollahi, S.; Oustadi, F.; Stephens, E.D.; Badv, M. Bacterial-Nanocellulose-Based Biointerfaces and Biomimetic Constructs for Blood-Contacting Medical Applications. ACS Mater. Au 2023, 3, 418–441. [Google Scholar] [CrossRef]
- Towne, J.; Carter, N.; Neivandt, D.J. COMSOL Multiphysics® Modelling of Oxygen Diffusion through a Cellulose Nanofibril Conduit Employed for Peripheral Nerve Repair. Biomed. Eng. Online 2021, 20, 60. [Google Scholar] [CrossRef] [PubMed]
- Sutrisno, T.; Suryanto, H.; Wulandari, R.; Muhajir, M.; Shikh Mohd Shahrul Nizan, S.Z. The Effect of Chemical Pretreatment Process on Mechanical Properties and Porosity of Cellulose Bacterial Film. J. Mech. Eng. Sci. Technol. 2019, 3, 8–17. [Google Scholar] [CrossRef]
No | Thickness, mm | Tensile, % | Tensile Strength, N | Young’s Modulus, MPa |
---|---|---|---|---|
1 | 0.709 | 43.50 | 2.761 | 8.952 |
2 | 0.506 | 43.50 | 1.879 | 8.537 |
3 | 0.867 | 53.10 | 3.608 | 7.837 |
4 | 0.546 | 38.40 | 1.591 | 7.588 |
5 | 0.692 | 46.50 | 2.432 | 7.558 |
6 | 0.704 | 47.50 | 2.486 | 7.434 |
7 | 0.55 | 30.10 | 1.163 | 7.025 |
8 | 0.692 | 43.50 | 2.005 | 6.661 |
9 | 0.534 | 47.5 | 1.585 | 6.249 |
10 | 0.546 | 57.5 | 1.639 | 5.221 |
M ± m | 0.617 ± 0.083 | 43.8 ± 5.4 | 1.918 ± 0.514 | 7.147 ± 0.777 |
No | Oxygen Permeability of BC-Based Conduits | |
---|---|---|
% | mg/L | |
1 | 44.4 | 3.95 |
2 | 44.6 | 3.95 |
3 | 44.6 | 3.97 |
4 | 44.8 | 3.97 |
5 | 45.4 | 3.98 |
6 | 46.4 | 4.15 |
7 | 46.4 | 4.15 |
8 | 47.1 | 4.20 |
9 | 47.2 | 4.23 |
10 | 47.2 | 4.22 |
M ± m | 45.8 ± 0.01 | 4.07 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parchaykina, M.V.; Baykov, M.A.; Revina, E.S.; Shchankin, M.V.; Revin, V.V. Study of the Physico-Mechanical Properties and Oxygen Permeability of Bacterial-Cellulose-Based Conduits. Polymers 2025, 17, 2123. https://doi.org/10.3390/polym17152123
Parchaykina MV, Baykov MA, Revina ES, Shchankin MV, Revin VV. Study of the Physico-Mechanical Properties and Oxygen Permeability of Bacterial-Cellulose-Based Conduits. Polymers. 2025; 17(15):2123. https://doi.org/10.3390/polym17152123
Chicago/Turabian StyleParchaykina, Marina V., Mikhail A. Baykov, Elvira S. Revina, Mikhail V. Shchankin, and Viktor V. Revin. 2025. "Study of the Physico-Mechanical Properties and Oxygen Permeability of Bacterial-Cellulose-Based Conduits" Polymers 17, no. 15: 2123. https://doi.org/10.3390/polym17152123
APA StyleParchaykina, M. V., Baykov, M. A., Revina, E. S., Shchankin, M. V., & Revin, V. V. (2025). Study of the Physico-Mechanical Properties and Oxygen Permeability of Bacterial-Cellulose-Based Conduits. Polymers, 17(15), 2123. https://doi.org/10.3390/polym17152123