polymers-logo

Journal Browser

Journal Browser

Advances in Cellulose-Based Polymers and Composites, 2nd Edition

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Circular and Green Sustainable Polymer Science".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 11699

Special Issue Editors


E-Mail Website
Guest Editor
Petru Poni Institute of Macromolecular Chemistry, Romanian Academy, 700487 Iasi, Romania
Interests: nanotechnology; synthesis of bio-nanocomposite materials; bio-based (nano)composite formulations
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley 41A, 700487 Iasi, Romania
Interests: polymer surface functionalization by various methods; cellulosic materials; bioactive materials (active, bioactive, smart, and (bio)degradable); polymer blends and composites; physico-chemical characterization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Green chemistry and renewable natural resources have received considerable interest due to their compliance with environmental requirements as well as their possible applications.

Cellulose has demonstrated its utility in many fields; however, it does not possess the special characteristics needed for certain applications without further treatment. The pre-treatment of cellulosic materials can involve various techniques such as the use of enzymes, physical or chemical methods, dissolution, fractionation, etc. Native cellulose is scarcely used due to its strong hydrophilic nature, pure solubility, and high crystallinity. Hence, cellulose-based polymers (i.e., cellulose fibers, cellulose membranes, cellulose nanomaterials, or bacterial cellulose) have found a large spectrum of applications. They are either used as synthetized or chemically modified in different composite materials in order to improve or modify the properties of the final product for the desired application.

In recent years, the research community has demonstrated a great deal of interest in finding and using unconventional sources as well as more eco-friendly methods for the extraction and modification of cellulose and cellulose nanomaterials.

This Special Issue on “Advances in Cellulose-Based Polymers and Composites” is dedicated to the most recent research regarding the preparation, properties, and applications of cellulose-based polymers, as well as their use in different composite formulations.

Both original contributions and comprehensive reviews are welcome.

Dr. Carmen-Mihaela Popescu
Dr. Anamaria Irimia
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cellulose fibers
  • cellulose nanomaterials
  • bacterial cellulose
  • cellulose membranes
  • extraction methods
  • structural modification
  • cellulose-based (nano)composites
  • biomaterials
  • (bio)degradability
  • functional materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 7164 KiB  
Article
Development of Antimicrobial Blends of Bacteria Nanocellulose Derived from Plastic Waste and Polyhydroxybutyrate Enhanced with Essential Oils
by Everton Henrique Da Silva Pereira, Marija Nicevic, Eduardo Lanzagorta Garcia, Vicente Fróes Moritz, Zeliha Ece Ozcelik, Buket Alkan Tas and Margaret Brennan Fournet
Polymers 2024, 16(24), 3490; https://doi.org/10.3390/polym16243490 - 14 Dec 2024
Viewed by 1088
Abstract
The escalating global concern regarding plastic waste accumulation and its detrimental environmental impact has driven the exploration of sustainable alternatives to conventional petroleum-based plastics. This study investigates the development of antimicrobial blends of bacterial nanocellulose (BNC) derived from plastic waste and polyhydroxyalkanoates (PHB), [...] Read more.
The escalating global concern regarding plastic waste accumulation and its detrimental environmental impact has driven the exploration of sustainable alternatives to conventional petroleum-based plastics. This study investigates the development of antimicrobial blends of bacterial nanocellulose (BNC) derived from plastic waste and polyhydroxyalkanoates (PHB), further enhanced with essential oils. The antimicrobial activity of the resulting BNC/PHB blends was tested in vitro against Escherichia coli, Staphylococcus aureus, and Candida albicans. The incorporation of essential oils, particularly cinnamon oil, significantly enhanced the antimicrobial properties of the BNC/PHB blends. The BNC with 5% PHB blend exhibited the highest antifungal inhibition against C. albicans at 90.25%. Additionally, blends with 2% and 10% PHB also showed antifungal activity, inhibiting 68% of C. albicans growth. These findings highlight the potential of incorporating essential oils into BNC/PHB blends to create effective antimicrobial materials. The study concludes that enhancing the antimicrobial properties of BNC/PHB significantly broadens its potential applications across various sectors, including wound dressings, nanofiltration masks, controlled-release fertilizers, and active packaging. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

17 pages, 68807 KiB  
Article
Structural and Viscoelastic Properties of Bacterial Cellulose Composites: Implications for Prosthetics
by Natalia Pogorelova, Daniil Parshin, Anna Lipovka, Alexey Besov, Ilya Digel and Pyotr Larionov
Polymers 2024, 16(22), 3200; https://doi.org/10.3390/polym16223200 - 18 Nov 2024
Viewed by 1155
Abstract
This study investigates the morphological, mechanical, and viscoelastic properties of bacterial cellulose (BC) hydrogels synthesized by the microbial consortium Medusomyces gisevii. BC gel films were produced under static (S) or bioreactor (BioR) conditions. Additionally, an anisotropic sandwich-like composite BC film was developed [...] Read more.
This study investigates the morphological, mechanical, and viscoelastic properties of bacterial cellulose (BC) hydrogels synthesized by the microbial consortium Medusomyces gisevii. BC gel films were produced under static (S) or bioreactor (BioR) conditions. Additionally, an anisotropic sandwich-like composite BC film was developed and tested, consisting of a rehydrated (S-RDH) BC film synthesized under static conditions, placed between two BioR-derived BC layers. Sample characterization was performed using scanning electron microscopy (SEM), atomic force microscopy (AFM), rheometry, and uniaxial stretching tests. To our knowledge, this is the first study to combine uniaxial and rheological tests for BC gels. AFM and SEM revealed that the organization of BC fibrils (80±20 nm in diameter) was similar to that of collagen fibers (96±31 nm) found in human dura mater, suggesting potential implications for neurosurgical practice. Stretching tests demonstrated that the drying and rehydration of BC films resulted in a 2- to 8-fold increase in rigidity compared to other samples. This trend was consistent across both small and large deformations, regardless of direction. Mechanically, the composite (BioR+S-RDH) outperformed BC hydrogels synthesized under static and bioreactor conditions by approx. 26%. The composite material (BioR+S-RDH) exhibited greater anisotropy in the stretching tests compared to S-RDH, but less than the BioR-derived hydrogels, which had anisotropy coefficients ranging from 1.29 to 2.03. BioR+S-RDH also demonstrated the most consistent viscoelastic behavior, indicating its suitability for withstanding shear stress and potential use in prosthetic applications. These findings should provide opportunities for further research and medical applications. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

17 pages, 6604 KiB  
Article
Preparation of Lyocell Fibers from Solutions of Miscanthus Cellulose
by Igor S. Makarov, Vera V. Budaeva, Yulia A. Gismatulina, Ekaterina I. Kashcheyeva, Vladimir N. Zolotukhin, Polina A. Gorbatova, Gennady V. Sakovich, Markel I. Vinogradov, Ekaterina E. Palchikova, Ivan S. Levin and Mikhail V. Azanov
Polymers 2024, 16(20), 2915; https://doi.org/10.3390/polym16202915 - 16 Oct 2024
Cited by 2 | Viewed by 1372
Abstract
Both annual (cotton, flax, hemp, etc.) and perennial (trees and grasses) plants can serve as a source of cellulose for fiber production. In recent years, the perennial herbaceous plant miscanthus has attracted particular interest as a popular industrial plant with enormous potential. This [...] Read more.
Both annual (cotton, flax, hemp, etc.) and perennial (trees and grasses) plants can serve as a source of cellulose for fiber production. In recent years, the perennial herbaceous plant miscanthus has attracted particular interest as a popular industrial plant with enormous potential. This industrial crop, which contains up to 57% cellulose, serves as a raw material in the chemical and biotechnology sectors. This study proposes for the first time the utilization of miscanthus, namely Miscanthus Giganteus “KAMIS”, to generate spinning solutions in N-methylmorpholine-N-oxide. Miscanthus cellulose’s properties were identified using standard methods for determining the constituent composition, including also IR and atomic emission spectroscopy. The dry-jet wet method was used to make fibers from cellulose solutions with an appropriate viscosity/elasticity ratio. The structural characteristics of the fibers were studied using IR and scanning electron microscopy, as well as via X-ray structural analysis. The mechanical and thermal properties of the novel type of hydrated cellulose fibers demonstrated the possibility of producing high-quality fibers from miscanthus. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

19 pages, 5919 KiB  
Article
Bacterial Cellulose Production within a Circular Economy Framework: Utilizing Organic Waste
by Cristina Moreno-Díaz, Salvador González-Arranz and Carmen Martínez-Cerezo
Polymers 2024, 16(19), 2735; https://doi.org/10.3390/polym16192735 - 27 Sep 2024
Cited by 3 | Viewed by 2880
Abstract
Bacterial cellulose (BC) has emerged as a sustainable biomaterial with diverse industrial applications. This paper examines BC production through a circular economy framework, focusing on organic waste as a primary feedstock. It compares static and agitated cultivation methods for BC production, highlighting their [...] Read more.
Bacterial cellulose (BC) has emerged as a sustainable biomaterial with diverse industrial applications. This paper examines BC production through a circular economy framework, focusing on organic waste as a primary feedstock. It compares static and agitated cultivation methods for BC production, highlighting their advantages and limitations. Static cultivation using Gluconacetobacter xylinum yields high-quality cellulose films but is constrained by lower yields and longer incubation times. Agitated cultivation accelerates production but may affect fiber uniformity. This paper emphasizes sustainability by exploring organic waste materials such as coffee grounds, tea leaves, and food scraps as cost-effective nitrogen and carbon sources. These materials not only lower production costs but also support circular economy principles by converting waste into valuable products. BC produced from these waste sources retains key properties, making it suitable for applications in the textile and other industries. In addition, BC production can align with vegan principles, provided that all additives and processing methods are free of animal-derived components. The paper discusses BC’s potential to replace synthetic fibers in textiles and reduce environmental impact. Case studies show successful BC integration into textile products. In conclusion, this paper calls for more research to optimize BC production processes and explore new industrial applications. Using organic waste in BC production can help industries adopt sustainable practices, reduce environmental footprints, and create high-value materials. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

17 pages, 2819 KiB  
Article
Isolation and Characterization of Spherical Cellulose Nanocrystals Extracted from the Higher Cellulose Yield of the Jenfokie Plant: Morphological, Structural, and Thermal Properties
by Solomon Estifo Wossine, Ganesh Thothadri, Habtamu Beri Tufa, Wakshum Mekonnen Tucho, Adil Murtaza, Abhilash Edacherian and Gulam Mohammed Sayeed Ahmed
Polymers 2024, 16(12), 1629; https://doi.org/10.3390/polym16121629 - 8 Jun 2024
Cited by 1 | Viewed by 2558
Abstract
Scholars are looking for solutions to substitute hazardous substances in manufacturing nanocellulose from bio-sources to preserve the world’s growing environmental consciousness. During the past decade, there has been a notable increase in the use of cellulose nanocrystals (CNCs) in modern science and nanotechnology [...] Read more.
Scholars are looking for solutions to substitute hazardous substances in manufacturing nanocellulose from bio-sources to preserve the world’s growing environmental consciousness. During the past decade, there has been a notable increase in the use of cellulose nanocrystals (CNCs) in modern science and nanotechnology advancements because of their abundance, biocompatibility, biodegradability, renewability, and superior mechanical properties. Spherical cellulose nanocrystals (J–CNCs) were successfully synthesized from Jenfokie micro-cellulose (J–MC) via sulfuric acid hydrolysis in this study. The yield (up to 58.6%) and specific surface area (up to 99.64 m2/g) of J–CNCs were measured. A field emission gun–scanning electron microscope (FEG-SEM) was used to assess the morphology of the J–MC and J–CNC samples. The spherical shape nanoparticles with a mean nano-size of 34 nm for J–CNCs were characterized using a transmission electron microscope (TEM). X-ray diffraction (XRD) was used to determine the crystallinity index and crystallinity size of J–CNCs, up to 98.4% and 6.13 nm, respectively. The chemical composition was determined using a Fourier transform infrared (FT–IR) spectroscope. Thermal characterization of thermogravimetry analysis (TGA), derivative thermogravimetry (DTG), and differential thermal analysis (DTA) was conducted to identify the thermal stability and cellulose pyrolysis behavior of both J–MC and J–CNC samples. The thermal analysis of J–CNC indicated lower thermal stability than J–MC. It was noted that J–CNC showed higher levels of crystallinity and larger crystallite sizes than J–MC, indicating a successful digestion and an improvement of the main crystalline structure of cellulose. The X-ray diffraction spectra and TEM images were utilized to establish that the nanocrystals’ size was suitable. The novelty of this work is the synthesis of spherical nanocellulose with better properties, chosen with a rich source of cellulose from an affordable new plant (studied for the first time) by stepwise water-retted extraction, continuing from our previous study. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

11 pages, 5565 KiB  
Article
Green Strong Cornstalk Rind-Based Cellulose-PVA Aerogel for Oil Adsorption and Thermal Insulation
by Xiaoyang Yi, Zhongxu Zhang, Junfeng Niu, Hongyan Wang, Tiankun Li, Junjie Gong and Rongbo Zheng
Polymers 2024, 16(9), 1260; https://doi.org/10.3390/polym16091260 - 1 May 2024
Cited by 1 | Viewed by 1758
Abstract
Cellulose-based aerogel has attracted considerable attention for its excellent adsorption capacity, biodegradability, and renewability. However, it is considered eco-unfriendly due to defibrillation of agriculture waste and requires harmful/expensive chemical agents. In this study, cornstalk rind-based aerogel was obtained via the following steps: green [...] Read more.
Cellulose-based aerogel has attracted considerable attention for its excellent adsorption capacity, biodegradability, and renewability. However, it is considered eco-unfriendly due to defibrillation of agriculture waste and requires harmful/expensive chemical agents. In this study, cornstalk rind-based aerogel was obtained via the following steps: green H2O2/HAc delignification of cornstalk rind to obtain cellulose fibers, binding with carboxymethyl cellulose (CMC)/polyvinyl alcohol (PVA) and freeze-drying treatment, and hydrophobic modification with stearic acid. The obtained aerogel showed high compressive strength (200 KPa), which is apparently higher (about 32 kPa) than NaClO-delignified cornstalk-based cellulose/PVA aerogel. Characterization of the obtained aerogel through SEM, water contact angle, etc., showed high porosity (95%), low density (0.0198 g/cm−3), and hydrophobicity (water contact angle, 159°), resulting in excellent n-hexane adsorption capacity (35 g/g), higher (about 29.5 g/g) than NaClO-delignified cornstalk-based cellulose/PVA aerogel. The adsorbed oil was recovered by the extrusion method, and the aerogel showed excellent recyclability in oil adsorption. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

Back to TopTop