Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,035)

Search Parameters:
Keywords = target of rapamycin (TOR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 1032 KiB  
Review
mTOR Signaling in Macrophages: All Depends on the Context
by Angelika Fedor, Krzysztof Bryniarski and Katarzyna Nazimek
Int. J. Mol. Sci. 2025, 26(15), 7598; https://doi.org/10.3390/ijms26157598 - 6 Aug 2025
Abstract
Macrophages are undoubtedly one of the most widely studied cells of the immune system, among other reasons, because they are involved in a wide variety of biological processes. Deregulation of their activity is observed in a number of different disorders, including autoimmune diseases. [...] Read more.
Macrophages are undoubtedly one of the most widely studied cells of the immune system, among other reasons, because they are involved in a wide variety of biological processes. Deregulation of their activity is observed in a number of different disorders, including autoimmune diseases. At the same time, mammalian target of rapamycin (mTOR) is attracting increasing research attention because the pathways dependent on this kinase are activated by a variety of signals, including cytokines and proinflammatory mediators, mediate essential processes for cell survival and metabolism, and can be regulated epigenetically via microRNAs. Therefore, our narrative review aimed to summarize and discuss recent advances in the knowledge of the activation of mTOR signaling in macrophages, with a special focus on autoimmune disorders and the possibility of mTOR control by microRNAs. The summarized research observations allowed us to conclude that the effects of activity and/or inhibition of individual mTOR complexes in macrophages are largely context dependent, and therefore, these broad immunological contexts and other specific conditions should always be taken into account when attempting to modulate these pathways for therapeutic purposes. Full article
(This article belongs to the Special Issue From Macrophage Biology to Cell and EV-Based Immunotherapies)
Show Figures

Figure 1

18 pages, 2164 KiB  
Article
The Fanconi Anemia Pathway Inhibits mTOR Signaling and Prevents Accelerated Translation in Head and Neck Cancer Cells
by Bianca Ruffolo, Sara Vicente-Muñoz, Khyati Y. Mehta, Cosette M. Rivera-Cruz, Xueheng Zhao, Lindsey Romick, Kenneth D. R. Setchell, Adam Lane and Susanne I. Wells
Cancers 2025, 17(15), 2583; https://doi.org/10.3390/cancers17152583 - 6 Aug 2025
Abstract
Background/Objectives: The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks and maintenance of genomic stability. Germline loss of FA pathway function in the inherited Fanconi anemia syndrome leads to increased DNA damage and a range of clinical phenotypes, [...] Read more.
Background/Objectives: The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks and maintenance of genomic stability. Germline loss of FA pathway function in the inherited Fanconi anemia syndrome leads to increased DNA damage and a range of clinical phenotypes, including a heightened risk of head and neck squamous cell carcinoma (HNSCC). Non-synonymous FA gene mutations are also observed in up to 20% of sporadic HNSCCs. The mechanistic target of rapamycin (mTOR) is known to stimulate cell growth, anabolic metabolism including protein synthesis, and survival following genotoxic stress. Methods/Results: Here, we demonstrate that FA− deficient (FA−) HNSCC cells exhibit elevated intracellular amino acid levels, increased total protein content, and an increase in protein synthesis indicative of enhanced translation. These changes are accompanied by hyperactivation of the mTOR effectors translation initiation factor 4E Binding Protein 1 (4E-BP1) and ribosomal protein S6. Treatment with the mTOR inhibitor rapamycin reduced the phosphorylation of these targets and blocked translation specifically in FA− cells but not in their isogenic FA− proficient (FA+) counterparts. Rapamycin-mediated mTOR inhibition sensitized FA− but not FA+ cells to rapamycin under nutrient stress, supporting a therapeutic metabolism-based vulnerability in FA− cancer cells. Conclusions: These findings uncover a novel role for the FA pathway in suppressing mTOR signaling and identify mTOR inhibition as a potential strategy for targeting FA− HNSCCs. Full article
(This article belongs to the Special Issue Targeted Therapy in Head and Neck Cancer)
Show Figures

Figure 1

27 pages, 1869 KiB  
Review
Understanding the Molecular Basis of Miller–Dieker Syndrome
by Gowthami Mahendran and Jessica A. Brown
Int. J. Mol. Sci. 2025, 26(15), 7375; https://doi.org/10.3390/ijms26157375 - 30 Jul 2025
Viewed by 422
Abstract
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological [...] Read more.
Miller–Dieker Syndrome (MDS) is a rare neurodevelopmental disorder caused by a heterozygous deletion of approximately 26 genes within the MDS locus of human chromosome 17. MDS, which affects 1 in 100,000 babies, can lead to a range of phenotypes, including lissencephaly, severe neurological defects, distinctive facial abnormalities, cognitive impairments, seizures, growth retardation, and congenital heart and liver abnormalities. One hallmark feature of MDS is an unusually smooth brain surface due to abnormal neuronal migration during early brain development. Several genes located within the MDS locus have been implicated in the pathogenesis of MDS, including PAFAH1B1, YWHAE, CRK, and METTL16. These genes play a role in the molecular and cellular pathways that are vital for neuronal migration, the proper development of the cerebral cortex, and protein translation in MDS. Improved model systems, such as MDS patient-derived organoids and multi-omics analyses indicate that WNT/β-catenin signaling, calcium signaling, S-adenosyl methionine (SAM) homeostasis, mammalian target of rapamycin (mTOR) signaling, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and others are dysfunctional in MDS. This review of MDS integrates details at the clinical level alongside newly emerging details at the molecular and cellular levels, which may inform the development of novel therapeutic strategies for MDS. Full article
(This article belongs to the Special Issue Rare Diseases and Neuroscience)
Show Figures

Figure 1

21 pages, 5034 KiB  
Article
The Activation of the Microglial NLRP3 Inflammasome Is Involved in Tuberous Sclerosis Complex-Related Neuroinflammation
by Ran Ding, Shengxuan Zhang, Linxue Meng, Lingman Wang, Ziyao Han, Jianxiong Gui, Jiaxin Yang, Li Cheng, Lingling Xie and Li Jiang
Int. J. Mol. Sci. 2025, 26(15), 7244; https://doi.org/10.3390/ijms26157244 - 26 Jul 2025
Viewed by 379
Abstract
Tuberous sclerosis complex (TSC) is a systemic disease caused by mutations in either the TSC1 (encoding hamartin) or TSC2 (encoding tuberin) gene, with mutations in the TSC2 gene potentially leading to more severe clinical symptoms. Neurological symptoms are a common clinical manifestation of [...] Read more.
Tuberous sclerosis complex (TSC) is a systemic disease caused by mutations in either the TSC1 (encoding hamartin) or TSC2 (encoding tuberin) gene, with mutations in the TSC2 gene potentially leading to more severe clinical symptoms. Neurological symptoms are a common clinical manifestation of TSC, and neuroinflammation is thought to play an important role. Glial cells are a major source of neuroinflammation, but whether microglia are involved in the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and the expression of interleukin-1β (IL-1β) in TSC patients remains unclear. We used a transcriptome sequencing dataset for bioinformatics analysis to explore the differences in the expression of microglial inflammasome-associated hub genes. TSC2 knockdown (TSC2 KD) microglia (HMC3 cell line) were generated by lentivirus, and the expression of inflammasome-associated hub genes, microglial activation, and NLRP3 inflammasome activation were verified. In addition, experiments were performed to explore the regulatory effects of rapamycin. Bioinformatics analysis identified a total of eight inflammasome-associated hub genes. By detecting GFP fluorescence, TSC2 mRNA, TSC2 protein expression, and the phosphorylation of the mammalian target of rapamycin (p-mTOR)/mTOR, we confirmed that the TSC2 KD microglia model was successfully established. Compared with the control group, the TSC2 KD group presented higher mRNA levels and fluorescence intensities of microglia AIF1 and CD68, as well as greater reactive oxygen species (ROS) production. Eight inflammasome-associated hub gene mRNA assays revealed that the expression of the NLRP3 and IL1B genes was increased. Compared with the control group, the TSC2 KD group presented increased levels of NLRP3 and Pro-IL-1β proteins in cells and Cleaved-Caspase 1 and Cleaved-IL-1β proteins in the supernatant, suggesting NLRP3 inflammasome activation. Rapamycin intervention alleviated these changes, demonstrating that the TSC2 gene regulation of microglial activation and NLRP3 inflammasome activation are correlated with mTOR phosphorylation. In conclusion, microglia are activated in TSC patients and participate in the NLRP3 inflammasome-associated neuroinflammatory response, and rapamycin treatment can alleviate these changes. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

39 pages, 1806 KiB  
Review
Microglia-Mediated Neuroinflammation Through Phosphatidylinositol 3-Kinase Signaling Causes Cognitive Dysfunction
by Mohammad Nazmul Hasan Maziz, Srikumar Chakravarthi, Thidar Aung, Phone Myint Htoo, Wana Hla Shwe, Sergey Gupalo, Manglesh Waran Udayah, Hardev Singh, Mohammed Shahjahan Kabir, Rajesh Thangarajan and Maheedhar Kodali
Int. J. Mol. Sci. 2025, 26(15), 7212; https://doi.org/10.3390/ijms26157212 - 25 Jul 2025
Viewed by 429
Abstract
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting [...] Read more.
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting in accelerated cognitive decline. Phosphoinositol 3-kinase (PI3K) has emerged as a critical driver, connecting inflammation to neurodegeneration, serving as the nexus of numerous intracellular processes that govern microglial activation. This review focuses on the relationship between PI3K signaling and microglial activation, which might lead to cognitive impairment, inflammation, or even neurodegeneration. The review delves into the components of the PI3K signaling cascade, isoforms, and receptors of PI3K, as well as the downstream effects of PI3K signaling, including its effectors such as protein kinase B (Akt) and mammalian target of rapamycin (mTOR) and the negative regulator phosphatase and tensin homolog (PTEN). Experiments have shown that the overproduction of certain cytokines, coupled with abnormal oxidative stress, is a consequence of poor PI3K regulation, resulting in excessive synapse pruning and, consequently, impacting learning and memory functions. The review also highlights the implications of autonomously activated microglia exhibiting M1/M2 polarization driven by PI3K on hippocampal, cortical, and subcortical circuits. Conclusions from behavioral studies, electrophysiology, and neuroimaging linking cognitive performance and PI3K activity were evaluated, along with new approaches to therapy using selective inhibitors or gene editing. The review concludes by highlighting important knowledge gaps, including the specific effects of different isoforms, the risks associated with long-term pathway modulation, and the limitations of translational potential, underscoring the crucial role of PI3K in mitigating cognitive impairment driven by neuroinflammation. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

24 pages, 2301 KiB  
Review
Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration
by Agnieszka Nowacka, Maciej Śniegocki, Martyna Śniegocka and Ewa A. Ziółkowska
Antioxidants 2025, 14(8), 911; https://doi.org/10.3390/antiox14080911 - 25 Jul 2025
Viewed by 739
Abstract
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms [...] Read more.
Sarcopenia, the progressive loss of muscle mass, strength, and regenerative capacity with age, is driven by interconnected processes such as oxidative stress, chronic inflammation, mitochondrial dysfunction, and reduced activity of muscle stem cells. As the population ages, nutritional strategies that target these mechanisms are becoming increasingly important. This review focuses on nicotinamide (vitamin B3) and pyridoxine (vitamin B6), two essential micronutrients found in functional foods, which play complementary roles in redox regulation, immune balance, and muscle repair. Nicotinamide supports nicotinamide adenine dinucleotide (NAD+) metabolism, boosts mitochondrial function, and activates sirtuin pathways involved in autophagy and stem cell maintenance. Pyridoxine, via its active form pyridoxal 5′-phosphate (PLP), is key to amino acid metabolism, antioxidant defense, and the regulation of inflammatory cytokines. We summarize how these vitamins influence major molecular pathways such as Sirtuin1 (SIRT1), protein kinase B (AKT)/mechanistic target of rapamycin (mTOR), Nuclear factor-κB (NF-κB), and Nrf2, contributing to improved myogenic differentiation and protection of the aging muscle environment. We also highlight emerging preclinical and clinical data, including studies suggesting possible synergy between B3 and B6. Finally, we discuss how biomarkers such as PLP, nicotinamide mononucleotide (NMN), and C-reactive protein (CRP) may support the development of personalized nutrition strategies using these vitamins. Safe, accessible, and mechanistically grounded, nicotinamide and pyridoxine offer promising tools for sarcopenia prevention and healthy aging. Full article
(This article belongs to the Topic Functional Food and Anti-Inflammatory Function)
Show Figures

Figure 1

16 pages, 848 KiB  
Review
Current Data on the Role of Amino Acids in the Management of Obesity in Children and Adolescents
by Diana Zamosteanu, Nina Filip, Laura Mihaela Trandafir, Elena Ţarcă, Mihaela Pertea, Gabriela Bordeianu, Jana Bernic, Anne Marie Heredea and Elena Cojocaru
Int. J. Mol. Sci. 2025, 26(15), 7129; https://doi.org/10.3390/ijms26157129 - 24 Jul 2025
Viewed by 1371
Abstract
Childhood obesity is a major global health problem, and its management involves a multidisciplinary approach that includes lifestyle changes, dietary interventions, and the use of dietary supplements. In this review, we summarize current findings on the role of amino acids in pediatric obesity, [...] Read more.
Childhood obesity is a major global health problem, and its management involves a multidisciplinary approach that includes lifestyle changes, dietary interventions, and the use of dietary supplements. In this review, we summarize current findings on the role of amino acids in pediatric obesity, with a particular focus on their involvement in metabolic pathways and weight regulation. The involvement of branched-chain and aromatic amino acids in the pathophysiology and potential management of pediatric obesity is highlighted in recent studies. Both experimental and clinical studies have shown that obese children often exhibit altered plasma amino acid profiles, including increased levels of leucine, isoleucine, valine, phenylalanine, and tyrosine, as well as decreased levels of glycine and serine. These imbalances are correlated with insulin resistance, inflammation, and early metabolic dysfunction. One of the mechanisms through which branched-chain amino acids can promote insulin resistance is the activation of the mammalian target of rapamycin (mTOR) signaling pathway. Metabolomic profiling has demonstrated the potential of specific amino acid patterns to predict obesity-related complications before they become clinically evident. Early identification of these biomarkers could be of great help for individualized interventions. Although clinical studies indicate that changes in dietary amino acids could lead to modest weight loss, improved metabolic profiles, and increased satiety, further studies are needed to establish standardized recommendations. Full article
(This article belongs to the Special Issue New Insights into the Treatment of Metabolic Syndrome and Diabetes)
Show Figures

Figure 1

11 pages, 231 KiB  
Article
Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines
by Gorkem Ozdemir and Halil Mahir Kaplan
Curr. Issues Mol. Biol. 2025, 47(7), 574; https://doi.org/10.3390/cimb47070574 - 21 Jul 2025
Viewed by 270
Abstract
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers [...] Read more.
Tempol is a synthetic antioxidant that shows promise in preclinical cancer studies by inhibiting growth and inducing apoptosis. Given that the Mitogen-Activated Protein Kinase (MAPK) and Protein Kinase B/Mammalian Target of Rapamycin (Akt/mTOR) signaling pathways are frequently dysregulated in gastric and colon cancers and contribute to their progression, we investigated Tempol’s anti-cancer potential in HT29 (colon) and CRL-1739 (gastric) cancer cells. Cells were treated with 2 mM Tempol for 48 h, with untreated cells as controls. We evaluated apoptosis (Bax, cleaved caspase-3, and Bcl-2), key signaling pathway activity (p-ERK, p-JNK, p-AKT, and p-mTOR), and levels of stress- and apoptosis-related proteins (WEE1, GADD153, GRP78, and AIF). Tempol significantly increased pro-apoptotic Bax and cleaved caspase-3 (p < 0.0001) and decreased anti-apoptotic Bcl-2 (p < 0.0001) in both cell lines. Furthermore, Tempol markedly reduced the activity of p-ERK, p-JNK, p-AKT, and p-mTOR (p < 0.0001) and significantly increased the protein levels of WEE1, GADD153, GRP78, and AIF (p < 0.0001). Tempol treatment also led to a significant increase in total oxidant status and a decrease in total antioxidant status. In conclusion, our findings suggest that Tempol exhibits its anti-cancer activity through multiple interconnected mechanisms, primarily inducing apoptosis and oxidative stress, while concurrently suppressing pro-survival signaling pathways. These results highlight Tempol’s potential as a therapeutic agent for gastric and colon cancers. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
19 pages, 401 KiB  
Review
The Role of Protein Kinases in the Suppressive Phenotype of Myeloid-Derived Suppressor Cells
by Aikyn Kali, Nurshat Abdolla, Yuliya V. Perfilyeva, Yekaterina O. Ostapchuk and Raikhan Tleulieva
Int. J. Mol. Sci. 2025, 26(14), 6936; https://doi.org/10.3390/ijms26146936 - 19 Jul 2025
Viewed by 369
Abstract
Inflammation is a self-defense mechanism that controls the homeostasis of an organism, and its alteration by persistent noxious stimuli could lead to an imbalance in the regulation of inflammatory responses mediated by innate and adaptive immunity. During chronic inflammation, sustained exposure of myeloid [...] Read more.
Inflammation is a self-defense mechanism that controls the homeostasis of an organism, and its alteration by persistent noxious stimuli could lead to an imbalance in the regulation of inflammatory responses mediated by innate and adaptive immunity. During chronic inflammation, sustained exposure of myeloid cells to the various inflammatory signals derived from inflamed tissue could lead to the generation of myeloid cells with an immunosuppressive state, called myeloid-derived suppressor cells (MDSCs), which can exert protective or deleterious functions depending on the nature of signals and the specific inflammatory conditions created by different pathophysiological contexts. Initially identified in various tumor models and cancer patient samples, these cells have long been recognized as negative regulators of anti-tumor immunity. Consequently, researchers have focused on elucidating the molecular mechanisms underlying their potent immunosuppressive activity. As a key component of the signal transducing processes, protein kinases play a central role in regulating the signal transduction mechanisms of many cellular activities, including differentiation and immunosuppression. Over the past decade, at least a dozen kinases, including mechanistic target of rapamycin (mTOR), phosphoinositide 3-kinases (PI3Ks), TAM (Tyro3, Axl, Mer) family of receptor tyrosine kinases (TAM RTKs), mitogen-activated protein kinases (MAPKs), and others, have emerged as key contributors to the generation and differentiation of MDSCs. Here, we discuss the recent findings on these kinases that directly contribute to the immunosuppressive functions of MDSCs. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

19 pages, 2781 KiB  
Review
From Control to Cure: Insights into the Synergy of Glycemic and Antibiotic Management in Modulating the Severity and Outcomes of Diabetic Foot Ulcers
by Idris Ajibola Omotosho, Noorasyikin Shamsuddin, Hasniza Zaman Huri, Wei Lim Chong and Inayat Ur Rehman
Int. J. Mol. Sci. 2025, 26(14), 6909; https://doi.org/10.3390/ijms26146909 - 18 Jul 2025
Viewed by 578
Abstract
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the [...] Read more.
Diabetic foot ulcers (DFUs), which affect approximately 15% of individuals with diabetes mellitus (DM), result from complex molecular disturbances involving chronic hyperglycemia, immune dysfunction, and infection. At the molecular level, chronic hyperglycemia promotes the formation of advanced glycation end products (AGEs), activates the AGE-RAGE-NF-κB axis, increases oxidative stress, and impairs macrophage polarization from the pro-inflammatory M1 to the reparative M2 phenotype, collectively disrupting normal wound healing processes. The local wound environment is further worsened by antibiotic-resistant polymicrobial infections, which sustain inflammatory signaling and promote extracellular matrix degradation. The rising threat of antimicrobial resistance complicates infection management even further. Recent studies emphasize that optimal glycemic control using antihyperglycemic agents such as metformin, Glucagon-like Peptide 1 receptor agonists (GLP-1 receptor agonists), and Dipeptidyl Peptidase 4 enzyme inhibitors (DPP-4 inhibitors) improves overall metabolic balance. These agents also influence angiogenesis, inflammation, and tissue regeneration through pathways including AMP-activated protein kinase (AMPK), mechanistic target of rapamycin (mTOR), and vascular endothelial growth factor (VEGF) signaling. Evidence indicates that maintaining glycemic stability through continuous glucose monitoring (CGM) and adherence to antihyperglycemic treatment enhances antibiotic effectiveness by improving immune cell function and reducing bacterial virulence. This review consolidates current molecular evidence on the combined effects of glycemic and antibiotic therapies in DFUs. It advocates for an integrated approach that addresses both metabolic and microbial factors to restore wound homeostasis and minimize the risk of severe outcomes such as amputation. Full article
Show Figures

Figure 1

27 pages, 1730 KiB  
Review
Harnessing Liquiritigenin: A Flavonoid-Based Approach for the Prevention and Treatment of Cancer
by Anjana Sajeev, Babu Santha Aswani, Mohammed S. Alqahtani, Mohamed Abbas, Gautam Sethi and Ajaikumar B. Kunnumakkara
Cancers 2025, 17(14), 2328; https://doi.org/10.3390/cancers17142328 - 13 Jul 2025
Viewed by 390
Abstract
Background/Objectives: The integration of natural compounds in cancer research marked a crucial shift in the modern medical landscape, through a growing acknowledgment of their potential as efficient, less toxic, and cost-effective alternatives to contemporary chemotherapeutics. Liquiritigenin (LIQ) is a compound obtained from different [...] Read more.
Background/Objectives: The integration of natural compounds in cancer research marked a crucial shift in the modern medical landscape, through a growing acknowledgment of their potential as efficient, less toxic, and cost-effective alternatives to contemporary chemotherapeutics. Liquiritigenin (LIQ) is a compound obtained from different plants, the most important being the Glycyrrhiza species, commonly known as licorice. Methods: This review compiles findings from previously published preclinical studies and experimental research articles focusing on LIQ’s pharmacological effects, with particular attention to its anticancer potential. The relevant literature was identified using established scientific databases and selected based on relevance to cancer biology and LIQ-associated signaling pathways. Results: LIQ demonstrates anti-oxidant, anti-inflammatory, and anti-proliferative effects. It exerts its potential anticancer activities by inducing apoptosis, preventing cell proliferation, and modulating various signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and so on. Conclusions: LIQ represents a promising natural agent for cancer therapy, with evidence supporting its multifunctional role in targeting tumor growth and survival mechanisms. By providing a detailed analysis of LIQ, this review aims to highlight its therapeutic efficacy across various cancer types and emphasize its importance as a promising compound in cancer research. In addition, this review seeks to bridge the gap between traditional medicine and modern pharmacology and paves the way for LIQ’s clinical application in cancer therapy. Full article
(This article belongs to the Special Issue Recent Updates and Future Perspectives of Anti-Cancer Agents)
Show Figures

Figure 1

23 pages, 4624 KiB  
Review
Farnesoid X Receptor (FXR) Agonists and Protein Kinase Regulation in NAFLD and NASH: Mechanisms and Therapeutic Potential
by Ayan Saha, Emily Wood, Luna Omeragic, Maya Minkara, Kethain Marma, Shipan Das Gupta and Jannatul Ferdoush
Kinases Phosphatases 2025, 3(3), 16; https://doi.org/10.3390/kinasesphosphatases3030016 - 11 Jul 2025
Viewed by 766
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic condition characterized by hepatic lipid deposits, insulin resistance, and inflammation which may progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Protein kinases play an important role in NAFLD development by regulating metabolic and inflammatory pathways. [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic condition characterized by hepatic lipid deposits, insulin resistance, and inflammation which may progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Protein kinases play an important role in NAFLD development by regulating metabolic and inflammatory pathways. Mitogen-activated protein kinases (MAPKs), protein kinase C (PKC), AMP-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K)/AKT, and mechanistic target of rapamycin (mTOR) are all involved in NAFLD and NASH progression. Emerging evidence indicates that Farnesoid X Receptor (FXR) agonists have therapeutic potential by modulating bile acid metabolism, lipid balance, and inflammatory responses. This review examines the mechanistic interplay between FXR agonists and important protein kinases in NAFLD and NASH. FXR agonists activate AMPK, which promotes fatty acid oxidation and reduces hepatic steatosis. They also regulate MAPK signaling, which reduces c-Jun NH2-terminal kinase (JNK)- and p38 MAPK-mediated inflammation. Furthermore, FXR agonists activate the PI3K/AKT pathway, enhancing insulin sensitivity and modulating mTOR signaling to reduce hepatic fibrosis. Clinical studies in NAFLD/NASH indicate that FXR agonists confer metabolic and anti-inflammatory benefits, although optimizing efficacy and minimizing adverse effects remain challenging. Future studies should focus on combination therapies targeting FXR alongside specific kinases to improve therapeutic outcomes. This review highlights the potential of FXR agonists to modulate protein kinase signaling, opening new avenues for targeted NAFLD/NASH therapy. Full article
Show Figures

Figure 1

16 pages, 3666 KiB  
Article
Horse Meat Hydrolysate Ameliorates Dexamethasone-Induced Muscle Atrophy in C57BL/6 Mice via the AKT/FoxO3a/mTOR Pathway
by Hee-Jeong Lee, Dongwook Kim, Yousung Jung, Soomin Oh, Cho Hee Kim and Aera Jang
Cells 2025, 14(14), 1050; https://doi.org/10.3390/cells14141050 - 9 Jul 2025
Viewed by 501
Abstract
As life expectancy increases, muscle atrophy, characterized by a decline in muscle mass and strength that can impair mobility, has become a growing concern, highlighting the potential of protein supplementation as a promising intervention strategy. A horse meat hydrolysate, with a molecular weight [...] Read more.
As life expectancy increases, muscle atrophy, characterized by a decline in muscle mass and strength that can impair mobility, has become a growing concern, highlighting the potential of protein supplementation as a promising intervention strategy. A horse meat hydrolysate, with a molecular weight of less than 3 kDa, derived from m. biceps femoris and produced using the food-grade enzyme Alcalase® (A4 < 3kDa) was evaluated for its efficacy in mitigating dexamethasone-induced muscle atrophy, a widely accepted model for studying catabolic muscle loss. Administered orally to C57BL/6 mice at dosages of 200 mg/kg or 500 mg/kg body weight for 35 days, A4 < 3kDa effectively countered the weight loss induced by dexamethasone in the whole body, quadriceps, tibialis anterior, and gastrocnemius muscles. Moreover, it increased muscle fiber cross-sectional area and grip strength. These effects were attributed to increased protein synthesis via the protein kinase B (AKT)/forkhead box O3 (FoxO3a)/mammalian target of rapamycin (mTOR) signaling pathway. A4 < 3kDa augmented the phosphorylation of key components of the signaling pathways associated with muscle atrophy, resulting in reduced mRNA expression of Atrogin-1 and MuRF-1. These findings demonstrate the potential of A4 < 3kDa as a functional food ingredient for preventing muscle atrophy. Full article
Show Figures

Graphical abstract

18 pages, 2156 KiB  
Article
The TOR Regulatory Mechanism Controls the Metabolism of Nitrate and the Fermentation Activity in the Yeast Dekkera bruxellensis GDB 248
by Karolini Miranda, Beatriz Câmara de Melo, Gilberto Henriques Teles, Irina Charlot Peña-Moreno, Rafael Barros de Souza and Marcos Antonio de Morais
Microbiol. Res. 2025, 16(7), 143; https://doi.org/10.3390/microbiolres16070143 - 1 Jul 2025
Viewed by 362
Abstract
Dekkera bruxellensis is already known for its great biotechnological potential, part of this due to the ability to assimilate nitrate during fermentation. Despite the previous works on nitrogen metabolism in this yeast, especially regarding nitrate assimilation, the relation between this metabolism and the [...] Read more.
Dekkera bruxellensis is already known for its great biotechnological potential, part of this due to the ability to assimilate nitrate during fermentation. Despite the previous works on nitrogen metabolism in this yeast, especially regarding nitrate assimilation, the relation between this metabolism and the TOR (Target of Rapamycin) regulatory mechanism remains unexplored. This connection may reveal key regulatory mechanisms to maximize its fermentative performance and biotechnological use. Herein, we evaluated the physiological, metabolic, and gene expression profile of D. bruxellensis GDB 248 cultivated in ammonium and nitrate as nitrogen sources in the presence of TOR complex 1 (TORC1) inhibitor rapamycin. Our results showed that inhibition of the TORC1 significantly reduces cell growth and fermentative capacity, especially in nitrate media. Gene expression analysis revealed that TORC1 plays a central role in regulating genes involved in nitrate assimilation and the adaptive performance of D. bruxellensis in fermentative environments. Therefore, the regulation of nitrate assimilatory genes YNTI, YNRI, and YNI1 responds to a nitrate-dependent mechanism as well as to a TOR-dependent mechanism. These findings expand the understanding of the regulation of nitrogen metabolism in D. bruxellensis, providing valuable information that may aid in the development of future strategies for its use as an industrial yeast. Full article
Show Figures

Graphical abstract

30 pages, 1700 KiB  
Review
The Inflammatory Nexus: Unraveling Shared Pathways and Promising Treatments in Alzheimer’s Disease and Schizophrenia
by Aurelio Pio Russo, Ylenia Pastorello, Lóránd Dénes, Klara Brînzaniuc, Jerzy Krupinski and Mark Slevin
Int. J. Mol. Sci. 2025, 26(13), 6237; https://doi.org/10.3390/ijms26136237 - 27 Jun 2025
Viewed by 647
Abstract
Alzheimer’s disease (AD) and schizophrenia are traditionally considered distinct clinical entities, yet growing evidence highlights substantial overlap in their molecular and neuroinflammatory pathogenesis. This review explores current insights into the shared and divergent mechanisms underlying these disorders, with emphasis on neuroinflammation, autophagy dysfunction, [...] Read more.
Alzheimer’s disease (AD) and schizophrenia are traditionally considered distinct clinical entities, yet growing evidence highlights substantial overlap in their molecular and neuroinflammatory pathogenesis. This review explores current insights into the shared and divergent mechanisms underlying these disorders, with emphasis on neuroinflammation, autophagy dysfunction, blood–brain barrier (BBB) disruption, and cognitive impairment. We examine key signaling pathways, particularly spleen tyrosine kinase (SYK), the mechanistic (or mammalian) target of rapamycin (mTOR), and the S100 calcium-binding protein B (S100B)/receptor for advanced glycation end-products (RAGE) axis, that link glial activation, excitatory/inhibitory neurotransmitter imbalances, and impaired proteostasis across both disorders. Specific biomarkers such as S100B, matrix metalloproteinase 9 (MMP9), and soluble RAGE show promise for stratifying disease subtypes and predicting treatment response. Moreover, psychiatric symptoms frequently precede cognitive decline in both AD and schizophrenia, suggesting that mood and behavioral disturbances may serve as early diagnostic indicators. The roles of autophagic failure, cellular senescence, and impaired glymphatic clearance are also explored as contributors to chronic inflammation and neurodegeneration. Current treatments, including cholinesterase inhibitors and antipsychotics, primarily offer symptomatic relief, while emerging therapeutic approaches target upstream molecular drivers, such as mTOR inhibition and RAGE antagonism. Finally, we discuss the future potential of personalized medicine guided by genetic, neuroimaging, and biomarker profiles to optimize diagnosis and treatment strategies in both AD and schizophrenia. A greater understanding of the pathophysiological convergence between these disorders may pave the way for cross-diagnostic interventions and improved clinical outcomes. Full article
Show Figures

Figure 1

Back to TopTop