Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration
Abstract
1. Introduction
2. Mechanistic Foundations of Skeletal Muscle Aging
2.1. Structural and Cellular Organization of Skeletal Muscle
2.2. Mechanisms of Muscle Aging and Regeneration Decline
2.3. Key Regulators of Regeneration and Their Age-Related Decline
- Wnt and Notch signaling regulate satellite cell fate decisions.
- Hypoxia-inducible factor 1-alpha (HIF-1α) and Vascular Endothelial Growth Factor (VEGF) control hypoxia adaptation and angiogenesis.
- mTOR and AKT promote anabolic signaling and protein synthesis.
- SIRT1, an NAD+-dependent deacetylase, modulates mitochondrial biogenesis, inflammation, and autophagy.
2.4. Prerequisites for Muscle Repair
3. Functional Roles of Nicotinamide and Pyridoxine
3.1. Biochemical Structure and Classification
3.1.1. Nicotinamide (Vitamin B3)
3.1.2. Pyridoxine (Vitamin B6)
3.2. Absorption, Transport, and TISSUE Distribution
3.2.1. Nicotinamide (Vitamin B3)
3.2.2. Pyridoxine (Vitamin B6)
3.3. Metabolic, Redox, and Immune-Modulatory Functions in Muscle Aging
3.3.1. Nicotinamide (Vitamin B3)
3.3.2. Pyridoxine (Vitamin B6)
3.3.3. Synergistic Antioxidant and Anti-Inflammatory Effects in Muscle Aging
4. Clinical and Preclinical Relevance and Therapeutic Implications
5. Dietary Sources, Supplementation, and Formulation Strategies
5.1. Natural Dietary Sources
5.2. Fortification and Supplementation Strategies
6. Nutrient Interactions and Personalized Nutrition Strategies
7. Future Directions
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barone, M.; Baccaro, P.; Molfino, A. An Overview of Sarcopenia: Focusing on Nutritional Treatment Approaches. Nutrients 2025, 17, 1237. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Pandey, V.K.; Singh, A.; Dar, A.H. Exploring the Potential of Treating Sarcopenia through Dietary Interventions. J. Food Biochem. 2024, 2024, 3018760. [Google Scholar] [CrossRef]
- Chung, J.O.K.; Kim, S.; Kim, S.H.; Park, C.H. Sarcopenia: How to Determine and Manage. Knee Surg. Relat. Res. 2025, 37, 12. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wang, Y.; Deng, S.; Lian, Z.; Yu, K. Skeletal Muscle Oxidative Stress and Inflammation in Aging: Focus on Antioxidant and Anti-Inflammatory Therapy. Front. Cell Dev. Biol. 2022, 10, 964130. [Google Scholar] [CrossRef] [PubMed]
- Bouredji, Z.; Argaw, A.; Frenette, J. The Inflammatory Response, a Mixed Blessing for Muscle Homeostasis and Plasticity. Front. Physiol. 2022, 13, 1032450. [Google Scholar] [CrossRef] [PubMed]
- Kunz, H.; Lanza, I.R. Age-Associated Inflammation and Implications for Skeletal Muscle Responses to Exercise. Exp. Gerontol. 2023, 177, 112177. [Google Scholar] [CrossRef] [PubMed]
- Bodine, S.C.; Sinha, I.; Sweeney, H.L. Mechanisms of Skeletal Muscle Atrophy and Molecular Circuitry of Stem Cell Fate in Skeletal Muscle Regeneration and Aging. J. Gerontol. Ser. A 2023, 78, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Shieh, J.; Qin, L.; Guo, J.J. Mitochondrial Mechanisms in the Pathogenesis of Chronic Inflammatory Musculoskeletal Disorders. Cell Biosci. 2024, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Wang, X.; Wang, Y. Factors, Mechanisms and Improvement Methods of Muscle Strength Loss. Front. Cell Dev. Biol. 2024, 12, 1509519. [Google Scholar] [CrossRef] [PubMed]
- Agostini, D.; Gervasi, M.; Ferrini, F.; Bartolacci, A.; Stranieri, A.; Piccoli, G.; Barbieri, E.; Sestili, P.; Patti, A.; Stocchi, V.; et al. An Integrated Approach to Skeletal Muscle Health in Aging. Nutrients 2023, 15, 1802. [Google Scholar] [CrossRef] [PubMed]
- Ro, D.; Lee, J.; Lee, G.; Shin, S.; Kim, Y. Effect of Interactive Multitouch Game-Based Cognitive Intervention on Cognitive Function in Older Adults: A Randomized Controlled Trial. Digit. Health 2023, 9, 20552076231176648. [Google Scholar] [CrossRef] [PubMed]
- Tezze, C.; Sandri, M.; Tessari, P. Anabolic Resistance in the Pathogenesis of Sarcopenia in the Elderly: Role of Nutrition and Exercise in Young and Old People. Nutrients 2023, 15, 4073. [Google Scholar] [CrossRef] [PubMed]
- Tøien, T.; Berg, O.K.; Modena, R.; Brobakken, M.F.; Wang, E. Heavy Strength Training in Older Adults: Implications for Health, Disease and Physical Performance. J. Cachexia Sarcopenia Muscle 2025, 16, 13804. [Google Scholar] [CrossRef] [PubMed]
- Papa, E.V.; Dong, X.; Hassan, M. Resistance Training for Activity Limitations in Older Adults with Skeletal Muscle Function Deficits: A Systematic Review. Clin. Interv. Aging 2017, 12, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Santilli, V.; Bernetti, A.; Mangone, M.; Paoloni, M. Clinical Definition of Sarcopenia. Clin. Cases Miner. Bone Metab. 2014, 11, 177–180. [Google Scholar] [CrossRef] [PubMed]
- McKay, B.R.; Ogborn, D.I.; Bellamy, L.M.; Tarnopolsky, M.A.; Parise, G. Myostatin Is Associated with Age-related Human Muscle Stem Cell Dysfunction. FASEB J. 2012, 26, 2509–2521. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef] [PubMed]
- Careccia, G.; Mangiavini, L.; Cirillo, F. Regulation of Satellite Cells Functions during Skeletal Muscle Regeneration: A Critical Step in Physiological and Pathological Conditions. Int. J. Mol. Sci. 2024, 25, 512. [Google Scholar] [CrossRef] [PubMed]
- Xiang, S.; Li, Y.; Li, Y.; Zhang, J.; Pan, W.; Lu, Y.; Liu, S. Increased Dietary Niacin Intake Improves Muscle Strength, Quality, and Glucose Homeostasis in Adults over 40 Years of Age. J. Nutr. Health Aging 2023, 27, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, C.; Crews, R. Nicotinamide Mononucleotide Supplementation: Understanding Metabolic Variability and Clinical Implications. Metabolites 2024, 14, 341. [Google Scholar] [CrossRef] [PubMed]
- Giacosa, A.; Barrile, G.C.; Mansueto, F.; Rondanelli, M. The Nutritional Support to Prevent Sarcopenia in the Elderly. Front. Nutr. 2024, 11, 1379814. [Google Scholar] [CrossRef] [PubMed]
- Ancel, S.; Michaud, J.; Migliavacca, E.; Jomard, C.; Fessard, A.; Garcia, P.; Karaz, S.; Raja, S.; Jacot, G.; Desgeorges, T.; et al. Nicotinamide and Pyridoxine Stimulate Muscle Stem Cell Expansion and Enhance Regenerative Capacity during Aging. J. Clin. Investig. 2024, 134, e163648. [Google Scholar] [CrossRef] [PubMed]
- Alegre, G.F.S.; Pastore, G.M. NAD+ Precursors Nicotinamide Mononucleotide (NMN) and Nicotinamide Riboside (NR): Potential Dietary Contribution to Health. Curr. Nutr. Rep. 2023, 12, 445–464. [Google Scholar] [CrossRef] [PubMed]
- Højfeldt, G.; Michaud, J.; Damgaard, A.; Karlog, K.; Migliavacca, E.; Karaz, S.; Micol, E.P.; Johansen, O.E.; Karagounis, L.G.; Helge, B.W.; et al. Nicotinamide and Pyridoxine Supplementation Stimulates Muscle Stem Cells in a Randomized Clinical Trial on Muscle Repair. medRxiv 2025. [Google Scholar] [CrossRef]
- Parra, M.; Stahl, S.; Hellmann, H. Vitamin B6 and Its Role in Cell Metabolism and Physiology. Cells 2018, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- de Gonçalves, A.C.; Portari, G.V. The B-Complex Vitamins Related to Energy Metabolism and Their Role in Exercise Performance: A Narrative Review. Sci. Sports 2021, 36, 433–440. [Google Scholar] [CrossRef]
- Muhamad, R.; Akrivaki, A.; Papagiannopoulou, G.; Zavridis, P.; Zis, P. The Role of Vitamin B6 in Peripheral Neuropathy: A Systematic Review. Nutrients 2023, 15, 2823. [Google Scholar] [CrossRef] [PubMed]
- Turunc Bayrakdar, E.; Uyanikgil, Y.; Kanit, L.; Koylu, E.; Yalcin, A. Nicotinamide Treatment Reduces the Levels of Oxidative Stress, Apoptosis, and PARP-1 Activity in A b (1–42)-Induced Rat Model of Alzheimer’ s Disease. Free Radic Res. 2014, 48, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Kamat, J.P.; Devasagayam, T.P.A. Nicotinamide (Vitamin B3) as an Effective Antioxidant against Oxidative Damage in Rat Brain Mitochondria. Redox Rep. 1999, 4, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Y.; Wu, Z.; Zhu, Y.; Liu, L.; Li, F. Effects of Dietary Vitamin B6 on the Skeletal Muscle Protein Metabolism of Growing Rabbits. Anim. Prod. Sci. 2016, 57, 2007–2015. [Google Scholar] [CrossRef]
- Boo, Y.C. Mechanistic Basis and Clinical Evidence for the Applications of Nicotinamide (Niacinamide) to Control Skin Aging and Pigmentation. Antioxidants 2021, 10, 1315. [Google Scholar] [CrossRef] [PubMed]
- Relaix, F.; Bencze, M.; Borok, M.J.; Vartanian, A.D.; Gattazzo, F.; Mademtzoglou, D.; Pérez-Díaz, S.; Prola, A.; Fernández, P.C.R.; Rotini, A.; et al. Perspectives on Skeletal Muscle Stem Cells. Nat. Commun. 2021, 12, 692. [Google Scholar] [CrossRef] [PubMed]
- Hindi, S.M.; Millay, D.P. All for One and One for All: Regenerating Skeletal Muscle. Cold Spring Harb. Perspect. Biol. 2022, 14, a040824. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Sakiyama, K.; Kitamura, K.; Yamamoto, Y.; Takagi, T.; Sekiya, S.; Watanabe, G.; Taniguchi, S.; Ogawa, Y.; Ishizuka, S.; et al. Development and Regeneration of Muscle, Tendon, and Myotendinous Junctions in Striated Skeletal Muscle. Int. J. Mol. Sci. 2022, 23, 3006. [Google Scholar] [CrossRef] [PubMed]
- Cutler, A.A.; Pawlikowski, B.; Wheeler, J.; Betta, N.D.; Elston, T.; O’Rourke, R.; Jones, K.L.; Olwin, B.B. The Regenerating Skeletal Muscle Niche Drives Satellite Cell Return to Quiescence. iScience 2022, 25, 104444. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Zhuang, C.; Hu, P. Regulation of Muscle Stem Cell Fate. Cell Regen. 2022, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Victor, P.; García-Prat, L.; Muñoz-Cánoves, P. Control of Satellite Cell Function in Muscle Regeneration and Its Disruption in Ageing. Nat. Rev. Mol. Cell Biol. 2021, 23, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Manole, E.; Găină, G.; Ceafalan, L.C.; Hinescu, M.E. Skeletal Muscle Stem Cells in Aging: Asymmetric/Symmetric Division Switching. Symmetry 2022, 14, 2676. [Google Scholar] [CrossRef]
- Pang, K.T.; Loo, L.S.W.; Chia, S.; Ong, F.; Yu, H.; Walsh, I. Insight into Muscle Stem Cell Regeneration and Mechanobiology. Stem Cell Res. Ther. 2023, 14, 129. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.-J.; Sattler, K.M.; Lepper, C. Molecular Regulation of Satellite Cells via Intercellular Signaling. Gene 2023, 858, 147172. [Google Scholar] [CrossRef] [PubMed]
- Memczak, S.; Belmonte, J.C. Overcoming Muscle Stem Cell Aging. Curr. Opin. Genet. Dev. 2023, 83, 102127. [Google Scholar] [CrossRef] [PubMed]
- Sahinyan, K.; Lazure, F.; Blackburn, D.M.; Soleimani, V.D. Decline of Regenerative Potential of Old Muscle Stem Cells: Contribution to Muscle Aging. FEBS J. 2022, 290, 1267–1289. [Google Scholar] [CrossRef] [PubMed]
- Weng, Z.; Wang, Y.; Ouchi, T.; Liu, H.; Qiao, X.; Wu, C.; Zhao, Z.; Li, L.; Li, B. Mesenchymal Stem/Stromal Cell Senescence: Hallmarks, Mechanisms, and Combating Strategies. Stem Cells Transl. Med. 2022, 11, 356–371. [Google Scholar] [CrossRef] [PubMed]
- Huo, F.; Liu, Q.; Liu, H. Contribution of Muscle Satellite Cells to Sarcopenia. Front. Physiol. 2022, 13, 892749. [Google Scholar] [CrossRef] [PubMed]
- Moiseeva, V.; Cisneros, A.; Sica, V.; Deryagin, O.; Lai, Y.; Jung, S.; Andrés, E.; An, J.; Segalés, J.; Ortet, L.; et al. Senescence Atlas Reveals an Aged-like Inflamed Niche That Blunts Muscle Regeneration. Nature 2023, 613, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.-X.; Liu, K.; Bauer, C.; Bendner, G.; Dietrich, H.; Slivka, J.P.; Wink, M.; Wong, M.B.; Chan, M.K.S.; Skutella, T. Modulation of Cellular Senescence in HEK293 and HepG2 Cells by Ultrafiltrates UPla and ULu Is Partly Mediated by Modulation of Mitochondrial Homeostasis under Oxidative Stress. Int. J. Mol. Sci. 2023, 24, 6748. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Datzkiw, D.; Rudnicki, M.A. Satellite Cells in Ageing: Use It or Lose It. Open Biol. 2020, 10, 200048. [Google Scholar] [CrossRef] [PubMed]
- Tidball, J.G.; Flores, I.; Welc, S.S.; Wehling-Henricks, M.; Ochi, E. Aging of the Immune System and Impaired Muscle Regeneration: A Failure of Immunomodulation of Adult Myogenesis. Exp. Gerontol. 2020, 145, 111200. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Lin, I.; Lee, C.; Chen, Y. Aged Skeletal Muscle Retains the Ability to Remodel Extracellular Matrix for Degradation of Collagen Deposition after Muscle Injury. Int. J. Mol. Sci. 2021, 22, 2123. [Google Scholar] [CrossRef] [PubMed]
- Schüler, S.C.; Kirkpatrick, J.; Schmidt, M.; Santinha, D.; Koch, P.; Sanzo, S.D.; Cirri, E.; Hemberg, M.; Ori, A.; von Maltzahn, J. Extensive Remodeling of the Extracellular Matrix during Aging Contributes to Age-Dependent Impairments of Muscle Stem Cell Functionality. Cell Rep. 2021, 35, 109223. [Google Scholar] [CrossRef] [PubMed]
- Selman, M.; Pardo, A. Fibroageing: An Ageing Pathological Feature Driven by Dysregulated Extracellular Matrix-Cell Mechanobiology. Ageing Res. Rev. 2021, 70, 101393. [Google Scholar] [CrossRef] [PubMed]
- Olson, L.C.; Nguyen, T.; Heise, R.L.; Boyan, B.D.; Schwartz, Z.; McClure, M.J. Advanced Glycation End Products Are Retained in Decellularized Muscle Matrix Derived from Aged Skeletal Muscle. Int. J. Mol. Sci. 2021, 22, 8832. [Google Scholar] [CrossRef] [PubMed]
- Haroon, M.; Boers, H.E.; Bakker, A.D.; Bloks, N.G.C.; Hoogaars, W.M.H.; Giordani, L.; Musters, R.J.P.; Deldicque, L.; Koppo, K.; Grand, F.L.; et al. Reduced Growth Rate of Aged Muscle Stem Cells Is Associated with Impaired Mechanosensitivity. Aging 2022, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Beaudry, K.M.; Binet, E.; Collao, N.; Lisio, M.D. Nutritional Regulation of Muscle Stem Cells in Exercise and Disease: The Role of Protein and Amino Acid Dietary Supplementation. Front. Physiol. 2022, 13, 915390. [Google Scholar] [CrossRef] [PubMed]
- Lu, A.; Tseng, C.; Guo, P.; Gao, Z.; Whitney, K.E.; Kolonin, M.G.; Huard, J. The Role of the Aging Microenvironment on the Fate of PDGFRβ Lineage Cells in Skeletal Muscle Repair. Stem Cell Res. Ther. 2022, 13, 405. [Google Scholar] [CrossRef] [PubMed]
- Dzobo, K.; Dandara, C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics 2023, 8, 146. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Zhou, H.; Zhang, W.; Wang, T.; Swamiappan, S.; Peng, X.; Zhou, Y. Effects of Advanced Glycation End Products on Stem Cell. Front. Cell Dev. Biol. 2024, 12, 1532614. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, L.; Yang, M.; Li, B.; Hu, S. From Skeletal Muscle to Myocardium: Molecular Mechanisms of Exercise-Induced Irisin Regulation of Cardiac Fibrosis. Int. J. Mol. Sci. 2025, 26, 3550. [Google Scholar] [CrossRef] [PubMed]
- Thorley, M.; Malatras, A.; Duddy, W.; Gall, L.L.; Mouly, V.; Butler-Browne, G.; Duguez, S. Changes in Communication between Muscle Stem Cells and Their Environment with Aging. J. Neuromuscul. Dis. 2015, 2, 205–207. [Google Scholar] [CrossRef] [PubMed]
- Brack, A.S.; Muñoz-Cánoves, P. The Ins and Outs of Muscle Stem Cell Aging. Skelet. Muscle 2015, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- Osorio, F.G.; Soria-Valles, C.; Santiago-Fernández, O.; Freije, J.M.P.; López-Otín, C. NF-κB Signaling as a Driver of Ageing. Int. Rev. Cell Mol. Biol. 2016, 133–174. [Google Scholar] [CrossRef]
- Mashinchian, O.; Pisconti, A.; Moal, E.L.; Bentzinger, C.F. The Muscle Stem Cell Niche in Health and Disease. Curr. Top. Dev. Biol. 2018, 126, 23–65. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, Q.; Luan, H.; Yang, M.; Li, Y.; Tian, G.; He, W. A Novel Target TAX1BP1 and P38/Nrf2 Pathway Independently Involved in the Anti-Neuroinflammatory Effect of Isobavachalcone. Free Radic. Biol. Med. 2020, 153, 132–139. [Google Scholar] [CrossRef] [PubMed]
- García-García, V.A.; Alameda, J.P.; Page, A.; Casanova, M. Role of NF-κB in Ageing and Age-Related Diseases: Lessons from Genetically Modified Mouse Models. Cells 2021, 10, 1906. [Google Scholar] [CrossRef] [PubMed]
- Songkiatisak, P.; Rahman, S.M.T.; Aqdas, M.; Sung, M. NF-κB, a Culprit of Both Inflamm-Ageing and Declining Immunity? Immun. Ageing 2022, 19, 20. [Google Scholar] [CrossRef] [PubMed]
- Ma, K.; Huang, F.; Qiao, R.; Miao, L. Pathogenesis of Sarcopenia in Chronic Obstructive Pulmonary Disease. Front. Physiol. 2022, 13, 850964. [Google Scholar] [CrossRef] [PubMed]
- Surma, S.; Sahebkar, A.; Banach, M. Nutrition, Nutraceuticals and Bioactive Compounds in the Prevention and Fight against Inflammation. Nutrients 2023, 15, 2629. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, C.; Zhang, W.; Wang, Y.; Qian, P.; Huang, H. Inflammation and Aging: Signaling Pathways and Intervention Therapies. Signal Transduct. Target. Ther. 2023, 8, 239. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.; Cameron-Smith, D.; Wessner, B.; Franzke, B. Biomarkers of Aging: From Function to Molecular Biology. Nutrients 2016, 8, 338. [Google Scholar] [CrossRef] [PubMed]
- Hwang, A.B.; Brack, A.S. Muscle Stem Cells and Aging. Curr. Top. Dev. Biol. 2018, 126, 299–322. [Google Scholar] [CrossRef] [PubMed]
- Nacarelli, T.; Zhang, R. NAD+ Metabolism Controls Inflammation during Senescence. Mol. Cell. Oncol. 2019, 6, 1605819. [Google Scholar] [CrossRef] [PubMed]
- Kudryashova, K.S.; Burka, K.; Kulaga, A.; Vorobyeva, N.S.; Kennedy, B.K. Aging Biomarkers: From Functional Tests to Multi-Omics Approaches. Proteomics 2020, 20, 1900408. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.; Hartmann, A.; Secci, R.; Hermann, A.; Fuellen, G.; Walter, M. Ranking Biomarkers of Aging by Citation Profiling and Effort Scoring. Front. Genet. 2021, 12, 686320. [Google Scholar] [CrossRef] [PubMed]
- Hunt, S.L.; Graça, A.F.; Pagala, V.; Wang, Y.; Li, Y.; Yuan, Z.; Fan, Y.; Labelle, M.; Peng, J.; Demontis, F. Integrated Genomic and Proteomic Analyses Identify Stimulus-Dependent Molecular Changes Associated with Distinct Modes of Skeletal Muscle Atrophy. Cell Rep. 2021, 37, 109971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wu, J.; Zhu, Z.; He, Y.; Fang, R. Mitochondrion: A Bridge Linking Aging and Degenerative Diseases. Life Sci. 2023, 322, 121666. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Zhu, Z.; Wang, L.; Li, C.; Sun, L.; Wang, W.; Gong, W. Biomarkers of Aging and Relevant Evaluation Techniques: A Comprehensive Review. Aging Dis. 2024, 15, 977–1005. [Google Scholar] [CrossRef] [PubMed]
- Devrajani, T.; Abid, S.; Shaikh, H.; Shaikh, I.; Devrajani, D.B.; Memon, S.M.; Waryah, A.M.; Ujjan, I.D.; Syed, B.M. Relationship between Aging and Control of Metabolic Syndrome with Telomere Shortening: A Cross-Sectional Study. Sci. Rep. 2023, 13, 17878. [Google Scholar] [CrossRef] [PubMed]
- Muthamil, S.; Kim, H.; Jang, H.; Lyu, J.; Shin, U.C.; Go, Y.; Park, S.; Lee, H.G.; Park, J.H. Biomarkers of Cellular Senescence and Aging: Current State-of-the-Art, Challenges and Future Perspectives. Adv. Biol. 2024, 8, 2400079. [Google Scholar] [CrossRef] [PubMed]
- Miwa, S.; Kashyap, S.; Chini, E.N.; von Zglinicki, T. Mitochondrial Dysfunction in Cell Senescence and Aging. J. Clin. Investig. 2022, 132, e158447. [Google Scholar] [CrossRef] [PubMed]
- Thorne, N.J.; Tumbarello, D.A. The Relationship of Alpha-Synuclein to Mitochondrial Dynamics and Quality Control. Front. Mol. Neurosci. 2022, 15, 947191. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Venkatesan, J.K.; Madry, H.; Cucchiarini, M. Advances in Human Mitochondria-Based Therapies. Int. J. Mol. Sci. 2022, 24, 608. [Google Scholar] [CrossRef] [PubMed]
- Chatzinikita, E.; Maridaki, Μ.; Palikaras, K.; Koutsilieris, M.; Philippou, A. The Role of Mitophagy in Skeletal Muscle Damage and Regeneration. Cells 2023, 12, 716. [Google Scholar] [CrossRef] [PubMed]
- Alway, S.E.; Paez, H.G.; Pitzer, C.R. The Role of Mitochondria in Mediation of Skeletal Muscle Repair. Muscles 2023, 2, 119–163. [Google Scholar] [CrossRef]
- Picca, A.; Lozanoska-Ochser, B.; Calvani, R.; Coelho-Júnior, H.J.; Leewenburgh, C.; Marzetti, E. Inflammatory, Mitochondrial, and Senescence-Related Markers: Underlying Biological Pathways of Muscle Aging and New Therapeutic Targets. Exp. Gerontol. 2023, 178, 112204. [Google Scholar] [CrossRef] [PubMed]
- Espino-Gonzalez, E.; Dalbram, E.; Mounier, R.; Gondin, J.; Farup, J.; Jessen, N.; Treebak, J. Review Impaired Skeletal Muscle Regeneration in Diabetes: From Cellular and Molecular Mechanisms to Novel Treatments. Cell Metab. 2024, 36, 1204–1236. [Google Scholar] [CrossRef] [PubMed]
- Da, W.; Chen, Q.; Shen, B. The Current Insights of Mitochondrial Hormesis in the Occurrence and Treatment of Bone and Cartilage Degeneration. Biol. Res. 2024, 57, 37. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pang, Y.; Fan, X. Mitochondria in oxidative stress, inflammation and aging: From mechanisms to therapeutic advances. Signal Transduct. Target. Ther. 2025, 10, 190. [Google Scholar] [CrossRef] [PubMed]
- Caballero, N.; Alonso-Alonso, S.; Nagy, L. Regenerative Inflammation: When Immune Cells Help to Re-build Tissues. FEBS J. 2022, 291, 1597–1614. [Google Scholar] [CrossRef] [PubMed]
- Tu, H.; Li, Y. Inflammation Balance in Skeletal Muscle Damage and Repair. Front. Immunol. 2023, 14, 1133355. [Google Scholar] [CrossRef] [PubMed]
- Bartold, P.M.; Ivanovski, S. Biological Processes and Factors Involved in Soft and Hard Tissue Healing. Periodontology 2000 2025, 97, 16–42. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, K.B.; Rodrigues, M.F.S.D.; de Santos, D.S.; Mesquita-Ferrari, R.A.; Nunes, F.D.; de Fátima Teixeira da Silva, D.; Bussadori, S.K.; Fernandes, K.P.S. Differential Expression of Inflammatory and Anti-Inflammatory Mediators by M1 and M2 Macrophages after Photobiomodulation with Red or Infrared Lasers. Lasers Med. Sci. 2019, 35, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Dort, J.; Fabre, P.; Molina, T.; Dumont, N.A. Macrophages Are Key Regulators of Stem Cells during Skeletal Muscle Regeneration and Diseases. Stem Cells Int. 2019, 2019, 4761427. [Google Scholar] [CrossRef] [PubMed]
- Chazaud, B. Inflammation and Skeletal Muscle Regeneration: Leave It to the Macrophages! Trends Immunol. 2020, 41, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Forcina, L.; Cosentino, M.; Musarò, A. Mechanisms Regulating Muscle Regeneration: Insights into the Interrelated and Time-Dependent Phases of Tissue Healing. Cells 2020, 9, 1297. [Google Scholar] [CrossRef] [PubMed]
- Mierzejewski, B.; Archacka, K.; Grabowska, I.; Florkowska, A.; Ciemerych, M.A.; Brzóska, E. Human and Mouse Skeletal Muscle Stem and Progenitor Cells in Health and Disease. Semin. Cell Dev. Biol. 2020, 104, 93–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhou, L. The Many Roles of Macrophages in Skeletal Muscle Injury and Repair. Front. Cell Dev. Biol. 2022, 10, 952249. [Google Scholar] [CrossRef] [PubMed]
- Contreras, O.; Rossi, F.; Théret, M. Origins, Potency, and Heterogeneity of Skeletal Muscle Fibro-Adipogenic Progenitors—Time for New Definitions. Skelet. Muscle 2021, 11, 16. [Google Scholar] [CrossRef] [PubMed]
- Molina, T.; Fabre, P.; Dumont, N.A. Fibro-Adipogenic Progenitors in Skeletal Muscle Homeostasis, Regeneration and Diseases. Open Biol. 2021, 11, 210110. [Google Scholar] [CrossRef] [PubMed]
- Négroni, E.; Kondili, M.; Muraine, L.; Bensalah, M.; Butler-Browne, G.; Mouly, V.; Bigot, A.; Trollet, C. Muscle Fibro-Adipogenic Progenitors from a Single-Cell Perspective: Focus on Their “Virtual” Secretome. Front. Cell Dev. Biol. 2022, 10, 952041. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, J.; Homma, S.; Wang, Y.; Smith, G.R.; Ruf-Zamojski, F.; Sealfon, S.C.; Zhou, L. Diverse Effector and Regulatory Functions of Fibro/Adipogenic Progenitors during Skeletal Muscle Fibrosis in Muscular Dystrophy. iScience 2022, 26, 105775. [Google Scholar] [CrossRef] [PubMed]
- Morbidelli, L.; Terzuoli, E.; Donnini, S. Use of Nutraceuticals in Angiogenesis-Dependent Disorders. Molecules 2018, 23, 2676. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Gong, X.; Wang, X.; Li, M. Role of Active Components of Medicinal Food in the Regulation of Angiogenesis. Front. Pharmacol. 2021, 11, 594050. [Google Scholar] [CrossRef] [PubMed]
- Hutchings, G.; Kruszyna, Ł.; Nawrocki, M.J.; Strauss, E.; Bryl, R.; Spaczyńska, J.; Perek, B.; Jemielity, M.; Mozdziak, P.; Kempisty, B.; et al. Molecular Mechanisms Associated with ROS-Dependent Angiogenesis in Lower Extremity Artery Disease. Antioxidants 2021, 10, 735. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, C.; Oprea, B.; Ciobanu, G.; Georgescu, M.; Bică, R.; Mateescu, O.G.; Huseynova, F.; Barragan-Montero, V. The Angiogenic Balance and Its Implications in Cancer and Cardiovascular Diseases: An Overview. Medicina 2022, 58, 903. [Google Scholar] [CrossRef] [PubMed]
- Nakajo, T.; Kitajima, N.; Katayoshi, T.; Tsuji, K. Nicotinamide Mononucleotide Inhibits Oxidative Stress-Induced Damage in a SIRT1/NQO-1-Dependent Manner. Toxicol. Vitr. 2023, 93, 105683. [Google Scholar] [CrossRef] [PubMed]
- Moresi, V.; Renzini, A.; Cavioli, G.; Seelaender, M.; Coletti, D.; Gigli, G.; Cedola, A. Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022, 12, 1149. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, M.; Deng, C.; Qiu, J.; Wang, K.; Chang, M.; Zhou, S.; Gu, Y.; Shen, Y.; Wang, W.; et al. Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants 2022, 12, 44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Qi, G.; Wang, K.; Yang, J.; Shen, Y.; Yang, X.; Chen, X.; Yao, X.; Gu, X.; Qi, L.; et al. Oxidative Stress: Roles in Skeletal Muscle Atrophy. Biochem. Pharmacol. 2023, 214, 115664. [Google Scholar] [CrossRef] [PubMed]
- Gasperi, V.; Sibilano, M.; Savini, I.; Catani, M.V. Niacin in the Central Nervous System: An Update of Biological Aspects and Clinical Applications. Int. J. Mol. Sci. 2019, 20, 974. [Google Scholar] [CrossRef] [PubMed]
- Babighian, S.; Gattazzo, I.; Zanella, M.S.; Galan, A.; D’Esposito, F.; Musa, M.; Gagliano, C.; Lapenna, L.; Zeppieri, M. Nicotinamide: Bright Potential in Glaucoma Management. Biomedicines 2024, 12, 1655. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Han, Q.; Tan, Y.; Ding, H.; Li, J. Current Advances on Structure-Function Relationships of Pyridoxal 5′-Phosphate-Dependent Enzymes. Front. Mol. Biosci. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Hemminger, A.; Wills, B.K. Vitamin B6 Toxicity. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar] [PubMed]
- Bunik, V.I. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot–Marie–Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. Biology 2023, 12, 897. [Google Scholar] [CrossRef] [PubMed]
- Pawar, R.R.; Chaudhran, P.; Pandey, D.K.; Sharma, A. Chemical Modifications of Pyridoxine for Biological Applications: An Overview. Curr. Top. Med. Chem. 2022, 23, 98–113. [Google Scholar] [CrossRef]
- Moustafa, A.; Abdel-Gawad, S.A.; Shehata, M.R.; El-Kamel, R.S.; Fekry, A.M. Electrochemical Sensing of Vitamin B6 (Pyridoxine) by Adapted Carbon Paste Electrode. Sci. Rep. 2024, 14, 21972. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yuan, L.; Chen, B.; Chang, H.; Luo, J.; Zhang, H.; Chen, Z.; Kong, J.; Yi, Y.; Bai, M.; et al. SLC29A1 and SLC29A2 Are Human Nicotinamide Cell Membrane Transporters. Nat. Commun. 2025, 16, 1181. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.G.; Holmgren, A.; Arnér, E.S.J.; Schmidt, E.E. NADPH-Dependent and -Independent Disulfide Reductase Systems. Free Radic. Biol. Med. 2018, 127, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Georgiou-Siafis, S.K.; Tsiftsoglou, A.S. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants 2023, 12, 1953. [Google Scholar] [CrossRef] [PubMed]
- Mooney, S.; Leuendorf, J.-E.; Hendrickson, C.L.; Hellmann, H. Vitamin B6: A Long Known Compound of Surprising Complexity. Molecules 2009, 14, 329–351. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, H.; Mooney, S. Vitamin B6: A Molecule for Human Health? Molecules 2010, 15, 442–459. [Google Scholar] [CrossRef] [PubMed]
- Mackey, A.L.; Rasmussen, L.K.; Kadi, F.; Schjerling, P.; Helmark, I.C.; Ponsot, E.; Aagaard, P.; Durigan, J.L.Q.; Kjær, M. Activation of Satellite Cells and the Regeneration of Human Skeletal Muscle Are Expedited by Ingestion of Nonsteroidal Anti-inflammatory Medication. FASEB J. 2016, 30, 2266. [Google Scholar] [CrossRef] [PubMed]
- Mascolo, E.; Liguori, F.; Merigliano, C.; Schiano, L.; Gnocchini, E.; Pilesi, E.; Volonté, C.; di Salvo, M.L.; Contestabile, R.; Tramonti, A.; et al. Vitamin B6 Rescues Insulin Resistance and Glucose-induced DNA Damage Caused by Reduced Activity of Drosophila PI3K. J. Cell. Physiol. 2022, 237, 3578–3586. [Google Scholar] [CrossRef] [PubMed]
- Chini, E.N.; Chini, C.C.S.; Netto, J.M.E.; de Oliveira, G.C.; van Schooten, W. The Pharmacology of CD38/NADase: An Emerging Target in Cancer and Diseases of Aging. Trends Pharmacol. Sci. 2018, 39, 424–436. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, P.; Tse, D.Y.; Di Ronza, A.; Seymour, M.L.; Martano, G.; Cooper, J.D.; Pereira, F.A.; Passafaro, M.; Wu, S.M.; Sardiello, M. Trehalose Reduces Retinal Degeneration, Neuroinflammation and Storage Burden Caused by a Lysosomal Hydrolase Deficiency. Autophagy 2018, 14, 1419–1434. [Google Scholar] [CrossRef] [PubMed]
- Hogan, K.A.; Chini, C.C.S.; Chini, E.N. The Multi-Faceted Ecto-Enzyme CD38: Roles in Immunomodulation, Cancer, Aging, and Metabolic Diseases. Front. Immunol. 2019, 10, 1187. [Google Scholar] [CrossRef] [PubMed]
- McReynolds, M.R.; Chellappa, K.; Baur, J.A. Age-Related NAD+ Decline. Exp. Gerontol. 2020, 134, 110888. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.L.; Yeo, D. Maintenance of NAD+ Homeostasis in Skeletal Muscle during Aging and Exercise. Cells 2022, 11, 710. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.; Manickam, R.; Brotto, M.; Tipparaju, S.M. NAD+ Centric Mechanisms and Molecular Determinants of Skeletal Muscle Disease and Aging. Mol. Cell. Biochem. 2022, 477, 1829–1848. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xiao, W. NAD+: An Old but Promising Therapeutic Agent for Skeletal Muscle Ageing. Ageing Res. Rev. 2023, 92, 102106. [Google Scholar] [CrossRef] [PubMed]
- Serrano, J.; Boyd, J.; Brown, I.; Mason, C.; Smith, K.R.; Károlyi, K.; Maurya, S.K.; Meshram, N.; Serna, V.A.; Link, G.M.; et al. The TAS1R2 G-Protein-Coupled Receptor Is an Ambient Glucose Sensor in Skeletal Muscle That Regulates NAD Homeostasis and Mitochondrial Capacity. Nat. Commun. 2024, 15, 4915. [Google Scholar] [CrossRef] [PubMed]
- Campagna, R.; Vignini, A. NAD+ Homeostasis and NAD+-Consuming Enzymes: Implications for Vascular Health. Antioxidants 2023, 12, 376. [Google Scholar] [CrossRef] [PubMed]
- Campagna, R.; Mazzanti, L.; Pompei, V.; Alia, S.; Vignini, A.; Emanuelli, M. The Multifaceted Role of Endothelial Sirt1 in Vascular Aging: An Update. Cells 2024, 13, 1469. [Google Scholar] [CrossRef] [PubMed]
- van Haren, M.J.; Gao, Y.; Buijs, N.; Campagna, R.; Sartini, D.; Emanuelli, M.; Mateuszuk, L.; Kij, A.; Chlopicki, S.; Escudé Martinez de Castilla, P.; et al. Esterase-Sensitive Prodrugs of a Potent Bisubstrate Inhibitor of Nicotinamide N-Methyltransferase (NNMT) Display Cellular Activity. Biomolecules 2021, 11, 1357. [Google Scholar] [CrossRef] [PubMed]
- van Haren, M.J.; Zhang, Y.; Thijssen, V.; Buijs, N.; Gao, Y.; Mateuszuk, L.; Fedak, F.A.; Kij, A.; Campagna, R.; Sartini, D.; et al. Macrocyclic peptides as allosteric inhibitors of nicotinamide N-methyltransferase (NNMT). RSC Chem. Biol. 2021, 2, 1546–1555. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; van Haren, M.J.; Buijs, N.; Innocenti, P.; Zhang, Y.; Sartini, D.; Campagna, R.; Emanuelli, M.; Parsons, R.B.; Jespers, W.; et al. Potent Inhibition of Nicotinamide N-Methyltransferase by Alkene-Linked Bisubstrate Mimics Bearing Electron Deficient Aromatics. J. Med. Chem. 2021, 64, 12938–12963. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhao, Y.; Zhou, H.; Luo, H.; Zhan, C. Catalytic Roles of Coenzyme Pyridoxal-5′-Phosphate (PLP) in PLP-Dependent Enzymes: Reaction Pathway for Methionine-γ-Lyase-Catalyzed l-Methionine Depletion. ACS Catal. 2020, 10, 2198–2210. [Google Scholar] [CrossRef] [PubMed]
- di Salvo, M.L.; Safo, M.K.; Contestabile, R. Biomedical Aspects of Pyridoxal 5’-Phosphate Availability. Front. Biosci. 2012, 4, 897–913. [Google Scholar] [CrossRef]
- Seldeen, K.L.; Shahini, A.; Thiyagarajan, R.; Redae, Y.; Leiker, M.M.; Rajabian, N.; Dynka, A.; Andreadis, S.T.; Troen, B.R. Short-Term Nicotinamide Riboside Treatment Improves Muscle Quality and Function in Mice and Increases Cellular Energetics and Differentiating Capacity of Myogenic Progenitors. Nutrition 2021, 87, 111189. [Google Scholar] [CrossRef] [PubMed]
- Igarashi, M.; Nakagawa-Nagahama, Y.; Miura, M.; Kashiwabara, K.; Yaku, K.; Sawada, M.; Sekine, R.; Fukamizu, Y.; Sato, T.; Sakurai, T.; et al. Chronic Nicotinamide Mononucleotide Supplementation Elevates Blood Nicotinamide Adenine Dinucleotide Levels and Alters Muscle Function in Healthy Older Men. NPJ Aging 2022, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shen, J.; Liu, C.; Kuang, Z.; Tang, Y.; Qian, Z.; Guan, M.; Yang, Y.; Zhan, Y.; Li, N.; et al. Nicotine Rebalances NAD+ Homeostasis and Improves Aging-Related Symptoms in Male Mice by Enhancing NAMPT Activity. Nat. Commun. 2023, 14, 900. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, J.; Baur, J.A.; Imai, S. NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab. 2017, 27, 513–528. [Google Scholar] [CrossRef] [PubMed]
- Peach, T.; Quattrocelli, M. The Muscle Stem Cell Case of Benjamin Button: Rejuvenating Muscle Regenerative Capacity through Nutraceuticals. J. Clin. Investig. 2024, 134, e185054. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ryu, D.; Wu, Y.; Gariani, K.; Wang, X.; Luan, P.; D’Amico, D.; Ropelle, E.R.; Lutolf, M.P.; Aebersold, R.; et al. NAD+ Repletion Improves Mitochondrial and Stem Cell Function and Enhances Life Span in Mice. Science 2016, 352, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Ding, D.; Ma, Y.; Zhang, H.; Wang, N.; Zhang, C.; Yang, G. Nicotinamide Mononucleotide: Research Process in Cardiovascular Diseases. Int. J. Mol. Sci. 2024, 25, 9526. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Sun, Y.; Pi, C.; Yu, X.; Gao, X.; Zhang, C.; Sun, H.; Zhang, H.; Shi, Y.; He, X. Nicotinamide Mononucleotide Supplementation Improves Mitochondrial Dysfunction and Rescues Cellular Senescence by NAD+/Sirt3 Pathway in Mesenchymal Stem Cells. Int. J. Mol. Sci. 2022, 23, 14739. [Google Scholar] [CrossRef] [PubMed]
- Margier, M.; Kuehnemann, C.; Hulo, N.; Morales, J.; Kumaar, P.V.A.; Cros, C.; Cannelle, H.; Charmetant, J.; Verdin, E.; Canault, M.; et al. Nicotinamide Mononucleotide Administration Prevents Doxorubicin-Induced Cardiotoxicity and Loss in Physical Activity in Mice. Cells 2022, 12, 108. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, J.; Wang, H.; Gasior, F.; Lee, C.; Lin, S.; Justice, C.N.; O’Donnell, J.M.; Hoek, T.L.V. Nicotinamide Restores Tissue NAD+ and Improves Survival in Rodent Models of Cardiac Arrest. PLoS ONE 2023, 18, e0291598. [Google Scholar] [CrossRef] [PubMed]
- Klaidman, L.K.; Morales, M.P.; Kem, S.; Yang, J.; Chang, M.; Adams, J.D. Nicotinamide Offers Multiple Protective Mechanisms in Stroke as a Precursor for NAD+, as a PARP Inhibitor and by Partial Restoration of Mitochondrial Function. Pharmacology 2003, 69, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Martens, C.R.; Denman, B.A.; Mazzo, M.R.; Armstrong, M.; Reisdorph, N.; McQueen, M.B.; Chonchol, M.; Seals, D.R. Chronic Nicotinamide Riboside Supplementation Is Well-Tolerated and Elevates NAD+ in Healthy Middle-Aged and Older Adults. Nat. Commun. 2018, 9, 1286. [Google Scholar] [CrossRef] [PubMed]
- Elhassan, Y.; Kľučková, K.; Fletcher, R.S.; Schmidt, M.S.; Garten, A.; Doig, C.; Cartwright, D.M.; Oakey, L.; Burley, C.V.; Jenkinson, N.; et al. Nicotinamide Riboside Augments the Aged Human Skeletal Muscle NAD+ Metabolome and Induces Transcriptomic and Anti-Inflammatory Signatures. Cell Rep. 2019, 28, 1717–1728. [Google Scholar] [CrossRef] [PubMed]
- Lapatto, H.A.K.; Kuusela, M.; Heikkinen, A.; Muniandy, M.; van der Kolk, B.W.; Gopalakrishnan, S.; Pöllänen, N.; Sandvik, M.; Schmidt, M.S.; Heinonen, S.; et al. Nicotinamide Riboside Improves Muscle Mitochondrial Biogenesis, Satellite Cell Differentiation, and Gut Microbiota in a Twin Study. Sci. Adv. 2023, 9, eadd5163. [Google Scholar] [CrossRef] [PubMed]
- Remie, C.M.E.; Roumans, K.H.M.; Moonen, M.P.B.; Connell, N.J.; Havekes, B.; Mevenkamp, J.; Lindeboom, L.; de Wit, V.H.; van de Weijer, T.; Aarts, S.A.B.M.; et al. Nicotinamide Riboside Supplementation Alters Body Composition and Skeletal Muscle Acetylcarnitine Concentrations in Healthy Obese Humans. Am. J. Clin. Nutr. 2020, 112, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Grootswagers, P.; Mensink, M.; Berendsen, A.A.M.; Deen, C.P.J.; Kema, I.P.; Bakker, S.J.L.; Santoro, A.; Franceschi, C.; Meunier, N.; Malpuech-Brugère, C.; et al. Vitamin B-6 Intake Is Related to Physical Performance in European Older Adults: Results of the New Dietary Strategies Addressing the Specific Needs of the Elderly Population for Healthy Aging in Europe (NU-AGE) Study. Am. J. Clin. Nutr. 2020, 113, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Komaru, T.; Yanaka, N.; Kumrungsee, T. Satellite Cells Exhibit Decreased Numbers and Impaired Functions on Single Myofibers Isolated from Vitamin B6-Deficient Mice. Nutrients 2021, 13, 4531. [Google Scholar] [CrossRef] [PubMed]
- Katô, N.; Kimoto, A.; Zhang, P.; Bumrungkit, C.; Karunaratne, S.; Yanaka, N.; Kumrungsee, T. Relationship of Low Vitamin B6 Status with Sarcopenia, Frailty, and Mortality: A Narrative Review. Nutrients 2024, 16, 177. [Google Scholar] [CrossRef] [PubMed]
- Katô, N.; Yang, Y.; Bumrungkit, C.; Kumrungsee, T. Does Vitamin B6 Act as an Exercise Mimetic in Skeletal Muscle? Int. J. Mol. Sci. 2024, 25, 9962. [Google Scholar] [CrossRef] [PubMed]
- Leklem, J.; Shultz, T. Increased Plasma Pyridoxal 5′-Phosphate and Vitamin B6 in Male Adolescents after a 4500-Meter Run. Am. J. Clin. Nutr. 1983, 38, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Manore, M.M.; Leklem, J.E. Effect of Carbohydrate and Vitamin B6 on Fuel Substrates during Exercise in Women. Med. Sci. Sports Exerc. 1988, 20, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Manore, M.; Leklem, J.; Walter, M. Vitamin B-6 Metabolism as Affected by Exercise in Trained and Untrained Women Fed Diets Differing in Carbohydrate and Vitamin B-6 Content. Am. J. Clin. Nutr. 1987, 46, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, A.F.; Reynolds, R.; Smoak, B.; Villanueva, V.; Deuster, P.A. Plasma Pyridoxal and Pyridoxal 5′-Phosphate Concentrations in Response to Ingestion of Water or Glucose Polymer during a 2-h Run. Am. J. Clin. Nutr. 1991, 53, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Crozier, P.; Cordain, L.; Sampson, D.A. Exercise-Induced Changes in Plasma Vitamin B−6 Concentrations Do Not Vary with Exercise Intensity. Am. J. Clin. Nutr. 1994, 60, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Venta, R.; Cruz, E.P.; Piedra, G.V.; Terrados, N. Plasma Vitamins, Amino Acids, and Renal Function in Postexercise Hyperhomocysteinemia. Med. Sci. Sports Exerc. 2009, 41, 1646. [Google Scholar] [CrossRef] [PubMed]
- Deiana, M.; Malerba, G.; Carbonare, L.D.; Cheri, S.; Patuzzo, C.; Tsenov, G.; Tor, L.M.D.; Mori, A.; Saviola, G.; Zipeto, D.; et al. Physical Activity Prevents Cartilage Degradation: A Metabolomics Study Pinpoints the Involvement of Vitamin B6. Cells 2019, 8, 1374. [Google Scholar] [CrossRef] [PubMed]
- Hadj-Saad, F.; Lhuissier, M.; Guilland, J.C. Effects of Acute, Submaximal Exercise on Vitamin B6 Metabolism in the Rat. Nutr. Res. 1995, 15, 1181–1189. [Google Scholar] [CrossRef]
- Hadj-Saad, F.; Lhuissier, M.; Guilland, J.-C. Chronic Exercise Affects Vitamin B-6 Metabolism but Not Requirement of Growing Rats. J. Nutr. 1997, 127, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Okada, M.; Goda, H.; Kondo, Y.; Murakami, Y.; Shibuya, M. Effect of Exercise on the Metabolism of Vitamin B6 and Some PLP-Dependent Enzymes in Young Rats Fed a Restricted Vitamin B6 Diet. J. Nutr. Sci. Vitaminol. 2001, 47, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Gaume, V.; Figard, H.; Mougin, F.; Guilland, J.-C.; Alberto, J.; Guéant, J.; Alber, D.; Demougeot, C.; Berthelot, A. Effect of a Swim Training on Homocysteine and Cysteine Levels in Rats. Amino Acids 2005, 28, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.J.; Williams, A.C. Meat Intake and the Dose of Vitamin B3-Nicotinamide: Cause of the Causes of Disease Transitions, Health Divides, and Health Futures? Int. J. Tryptophan Res. 2017, 10, 1178646917704662. [Google Scholar] [CrossRef] [PubMed]
- Freese, R.; Lysne, V. Niacin—A Scoping Review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67, 10299. [Google Scholar] [CrossRef] [PubMed]
- Peechakara, B.V.; Gupta, M. Vitamin B3. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Mikkelsen, K.; Apostolopoulos, V. B Vitamins and Ageing. In Biochemistry and Cell Biology of Ageing: Part I Biomedical Science; Sub-cellular biochemistry; Spinger: Heidelberg, Germany, 2018; pp. 451–470. [Google Scholar] [CrossRef]
- Calderón-Ospina, C.; Nava-Mesa, M.O. B Vitamins in the Nervous System: Current Knowledge of the Biochemical Modes of Action and Synergies of Thiamine, Pyridoxine, and Cobalamin. CNS Neurosci. Ther. 2019, 26, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Bonrath, W.; Peng, K.; Zhang, Q.; Pauling, H.; Weimann, B. Vitamins, 10. VitaminB6. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2020; Volume 1. [Google Scholar] [CrossRef]
- Sharma, P.; Han, S.M.; Gillies, N.; Thorstensen, E.B.; Goy, M.F.; Barnett, M.P.G.; Roy, N.C.; Cameron-Smith, D.; Milan, A.M. Circulatory and Urinary B-Vitamin Responses to Multivitamin Supplement Ingestion Differ between Older and Younger Adults. Nutrients 2020, 12, 3529. [Google Scholar] [CrossRef] [PubMed]
- Bode, W.; Mocking, J.A.; van den Berg, H. Influence of age and sex on vitamin B-6 vitamer distribution and on vitamin B-6 metabolizing enzymes in Wistar rats. J. Nutr. 1991, 121, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Platel, K.; Srinivasan, K. Bioavailability of Micronutr ients from Plant Foods: An Update. Crit. Rev. Food Sci. Nutr. 2015, 56, 1608–1619. [Google Scholar] [CrossRef] [PubMed]
- Moura, F.F.D.; Moursi, M.; Angel, M.D.; Angeles-Agdeppa, I.; Atmarita, A.; Gironella, G.; Muslimatun, S.; Carriquiry, A.L. Biofortified β-Carotene Rice Improves Vitamin A Intake and Reduces the Prevalence of Inadequacy among Women and Young Children in a Simulated Analysis in Bangladesh, Indonesia, and the Philippines. Am. J. Clin. Nutr. 2016, 104, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Chungchunlam, S.M.S.; Moughan, P.J. Comparative Bioavailability of Vitamins in Human Foods Sourced from Animals and Plants. Crit. Rev. Food Sci. Nutr. 2023, 64, 11590–11625. [Google Scholar] [CrossRef] [PubMed]
- Ray, M. Niacinamide and Osteoarthritis: An Overlooked Micronutrient? CPQ Orthop. 2021, 5, 1–14. [Google Scholar]
- Kwon, J.; Idoine, R.; Ishtiaq, Y.; Nkrumah-Elie, Y.; Rosene, M.; Shao, A. The Clinical Effects of Nicotinamide Riboside on Inflammatory Parameters. Curr. Dev. Nutr. 2022, 6, 987. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bhadra, R.; Schols, A.M.W.J.; van Helvoort, A.; Sambashivaiah, S. Nutrition in the Prevention and Management of Sarcopenia-A Special Focus on Asian Indians. Osteoporos. Sarcopenia 2022, 8, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Pan, T.; Tong, X.; Yang, Y.; Zhang, Z. The Effects of Nutritional Supplementation on Older Sarcopenic Individuals Who Engage in Resistance Training: A Meta-Analysis. Front. Nutr. 2023, 10, 1109789. [Google Scholar] [CrossRef] [PubMed]
- Calvani, R.; Picca, A.; Coelho-Júnior, H.J.; Tosato, M.; Marzetti, E.; Landi, F. Diet for the Prevention and Management of Sarcopenia. Metabolism 2023, 146, 155637. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Shiraishi, R.; Nakayama, Y.; Taira, Y. Can Nutrition Contribute to a Reduction in Sarcopenia, Frailty, and Comorbidities in a Super-Aged Society? Nutrients 2023, 15, 2991. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, L.; Li, S. Advances in Nutritional Supplementation for Sarcopenia Management. Front. Nutr. 2023, 10, 1189522. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, K.; Hamada, K.; Yamaguchi, A.; Aoi, W. Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells 2023, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- Fallon, C.M.; Corish, C.; Horner, K.; Cunningham, C. Personalized Approaches to the Prescription of Protein-Based Oral Nutritional Supplements in Older Adults: A Scoping Review. Clin. Nutr. Open Sci. 2024, 58, 80–103. [Google Scholar] [CrossRef]
- Taheri, M.; Chilibeck, P.D.; Cornish, S.M. A Brief Narrative Review of the Underlying Mechanisms Whereby Omega-3 Fatty Acids May Influence Skeletal Muscle: From Cell Culture to Human Interventions. Nutrients 2023, 15, 2926. [Google Scholar] [CrossRef] [PubMed]
- Townsend, J.R.; Kirby, T.O.; Sapp, P.A.; Gonzalez, A.M.; Marshall, T.M.; Esposito, R. Nutrient Synergy: Definition, Evidence, and Future Directions. Front. Nutr. 2023, 10, 1279925. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Meng, Q.; Su, C.-H. From Food Supplements to Functional Foods: Emerging Perspectives on Post-Exercise Recovery Nutrition. Nutrients 2024, 16, 4081. [Google Scholar] [CrossRef] [PubMed]
- Campelj, D.G.; Philp, A. NAD+ Therapeutics and Skeletal Muscle Adaptation to Exercise in Humans. Sports Med. 2022, 52, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, T.; Ancel, S.; Karaz, S.; Cichosz, P.; Jacot, G.; Giner, M.P.; Sánchez, J.L.; Pannérec, A.; Moco, S.; Sorrentino, V.; et al. Nicotinamide Riboside Kinases Regulate Skeletal Muscle Fiber-Type Specification and Are Rate-Limiting for Metabolic Adaptations during Regeneration. Front. Cell Dev. Biol. 2022, 10, 1049653. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Chabloz, S.; Lapides, R.A.; Roider, E.; Ewald, C.Y. Potential Synergistic Supplementation of NAD+ Promoting Compounds as a Strategy for Increasing Healthspan. Nutrients 2023, 15, 445. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zheng, J.; Cheng, J.; Zou, H.; Li, M.; Deng, B.; Luo, R.; Wang, F.; Huang, D.; Li, G.; et al. Personalized Nutrition: A Review of Genotype-Based Nutritional Supplementation. Front. Nutr. 2022, 9, 992986. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Iskandar, M.M.; Baeghbali, V.; Kubow, S. Three-Dimensional Printing of Foods: A Critical Review of the Present State in Healthcare Applications, and Potential Risks and Benefits. Foods 2023, 12, 3287. [Google Scholar] [CrossRef] [PubMed]
- Clemente-Suárez, V.J.; Peris-Ramos, H.C.; Redondo-Flórez, L.; Beltrán-Velasco, A.I.; Martín-Rodríguez, A.; David-Fernandez, S.; Yañéz-Sepúlveda, R.; Tornero-Aguilera, J.F. Personalizing Nutrition Strategies: Bridging Research and Public Health. J. Pers. Med. 2024, 14, 305. [Google Scholar] [CrossRef] [PubMed]
- Román, S.; Campos-Medina, L.; Leal-Mercado, L. Personalized Nutrition: The End of the One-Diet-Fits-All Era. Front. Nutr. 2024, 11, 1370595. [Google Scholar] [CrossRef] [PubMed]
Mechanism/Pathway | Nicotinamide (B3) | Pyridoxine (B6) | Functional Outcome | Reference |
---|---|---|---|---|
NAD+ metabolism | Precursor for NAD+, essential for mitochondrial function | Indirect support via amino acid catabolism | Maintains energy homeostasis and redox balance | [18,54,74,123,124,125,126,127,128,129,130] |
Sirtuin signaling (SIRT1) | Activates SIRT1 and promotes autophagy and mitochondrial biogenesis | Not directly involved | Enhances mitochondrial health and stem cell longevity | [22,24,25,32,54,106,130] |
Redox regulation/Nrf2 pathway | Upregulates antioxidant enzymes via the SIRT1–Nrf2 axis | Scavenges ROS and carbonyl compounds | Reduces oxidative damage | [22,24,25,54,62,85] |
Inflammatory signaling (NF-κB) | Inhibits NF-κB and downregulates IL-6, TNF-α | Reduces levels of pro-inflammatory cytokines | Attenuates inflammaging | [22,24,25,32,41,54,106] |
Muscle stem cell (MuSC) function | Enhances activation via AKT/mTOR and β-catenin | Supports function via redox control and protein metabolism | Improves regeneration and myogenesis | [18,22,24,41,59,145] |
Study Type | Vitamin(s) | Model/Population | Dose | Key Findings | Main Limitations | Reference |
---|---|---|---|---|---|---|
Preclinical (mouse) | Nicotinamide (NR) | Aged C57BL/6 mice | Not specified | ↑ NAD+ levels, ↑ MuSC activation, improved endurance, reversal of aging gene signatures | Limited dosing detail, short-term study | [143] |
Preclinical | NMN | Myoblasts/cardiac tissue/ C57BL6/J mice | 100 μM (in vitro); 100–500 mg/kg/day (in vivo) | ↑ Mitochondrial biogenesis, improved survival via PARP1 inhibition | In vitro relevance, limited muscle-specific outcomes | [144,145,146,147,148] |
Clinical (Twin study) | Nicotinamide (NR) | BMI-discordant monozygotic twins (5 mo) | 250–1000 mg/day | ↑ NAD+ metabolism, ↑ mitochondrial biogenesis, ↑ MuSCs, ↑ microbiota diversity, DNA methylation modulation; no metabolic improvement | Small cohort, short intervention | [151] |
Clinical (RCT) | Nicotinamide (NR) | Adults (55–79 y/o) | 1000 mg/day | ↑ Systemic NAD+, ↓ arterial stiffness | Short duration | [149] |
Clinical (Pilot) | Nicotinamide (NMN) | Healthy older adults (both sexes, ~75 y/o) | 1000 mg/day | ↑ Muscle NAD+ metabolites, altered mitochondrial gene expression, ↓ circulating inflammatory cytokines | Small sample size, no long-term follow-up | [150] |
Clinical | Nicotinamide (NR) | Overweight adults | 1000 mg/day | ↑ NAD+ metabolites and acetylcarnitine in muscle, ↑ lean mass, ↑ sleeping metabolic rate; no major metabolic effects | No exercise/nutrition control, non-aging group | [152] |
Clinical | Nicotinamide + Pyridoxine (NAM + PN) | Older adults | NAM 1000 mg + PN 200 mg | Enhanced MuSC activation, accelerated regeneration, ↑ strength, ↑ walking speed | Preliminary findings, limited mechanistic data | [22] |
Human Exercise Study | Pyridoxine (PLP) | Male adolescent athletes (4500 m run) | Not specified | ↑ PLP and total B6 after exercise | Observational, no long-term effects | [157] |
Human Exercise Study | Pyridoxine (PLP) | Trained/untrained women (cycling) | 8.0–10.4 mg/day | ↑ PLP and 4-PA post-exercise | Small sample, unbalanced baseline activity | [158,159] |
Human Exercise Study | Pyridoxine (PLP) | Men (2 h run at 60–65% VO2max) | Not specified | ↑ Plasma PLP during exercise | Single time point, no control group | [160] |
Human Exercise Study | Pyridoxine (PLP) | Adults (cycling at 60% and 85% VO2max) | Not specified | ↑ PLP concentration, peak within 5 min | Short-term response only, small sample | [161] |
Human Exercise Study | Pyridoxine (PLP) | Male athletes (VO2max exhaustion test) | Not specified | ↑ PLP after maximal aerobic exercise | Acute response, limited generalizability | [162] |
Human Exercise Study | Pyridoxine (PLP) | Male amateur runners (half-marathon) | Not specified | ↑ Serum PLP and PMP post-race | No control group | [163] |
Animal Exercise Study | Pyridoxine (PLP) | Rats (acute forced swimming) | Not specified | ↑ Plasma/muscle/liver B6 vitamers with increasing swim duration | Short exposure, not aged animals | [164] |
Animal Exercise Study | Pyridoxine (PLP) | Rats (9-week swim training) | 7 mg/kg/day | ↑ Muscle and liver PLP, PMP, and PL; no change in plasma PLP | No histological assessment, non-aged rats | [165] |
Animal Exercise Study | Pyridoxine (PLP) | Wistar rats | 1.5 mg/kg/day | Reversal of B6 deficiency effects on mitochondrial enzymes | Limited translational value | [166] |
Animal Exercise Study | Pyridoxine (PLP) | Sprague Dawley rats | Not specified | No change in plasma PLP | No mechanism explored | [167] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowacka, A.; Śniegocki, M.; Śniegocka, M.; Ziółkowska, E.A. Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration. Antioxidants 2025, 14, 911. https://doi.org/10.3390/antiox14080911
Nowacka A, Śniegocki M, Śniegocka M, Ziółkowska EA. Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration. Antioxidants. 2025; 14(8):911. https://doi.org/10.3390/antiox14080911
Chicago/Turabian StyleNowacka, Agnieszka, Maciej Śniegocki, Martyna Śniegocka, and Ewa A. Ziółkowska. 2025. "Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration" Antioxidants 14, no. 8: 911. https://doi.org/10.3390/antiox14080911
APA StyleNowacka, A., Śniegocki, M., Śniegocka, M., & Ziółkowska, E. A. (2025). Nicotinamide and Pyridoxine in Muscle Aging: Nutritional Regulation of Redox, Inflammation, and Regeneration. Antioxidants, 14(8), 911. https://doi.org/10.3390/antiox14080911