mTOR Signaling in Macrophages: All Depends on the Context
Abstract
1. Introduction
2. A Multifaceted Role of mTOR Signaling in Macrophages
2.1. mTOR—The Central Kinase Linking Cellular, Immune, and Metabolic Pathways
2.2. mTOR in Macrophage Differentiation and Polarization
2.3. mTOR—A Master Regulator of Macrophage Activity
2.3.1. mTOR Pathways in the Context of TLR and Cytokine Signaling in Macrophages
2.3.2. mTOR and Macrophage-Mediated Trained Immunity
2.3.3. mTOR as Key Responder to Metabolic and Environmental Stimuli
2.3.4. The Relationship Between Autophagy, Nutritional Status, and mTOR Activity in Macrophages
2.3.5. mTOR and Macrophage-Driven Inflammation and Immune Response Induction
2.3.6. The Autoimmune Context of mTOR Activity in Macrophages
3. Epigenetic Regulation of the mTOR Pathway in Macrophages via miRNAs—Current State-of-the-Art and Future Perspectives
3.1. miRNAs
3.2. Regulation of Macrophage mTOR Pathways by miRNAs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
DNA | Deoxyribonucleic acid |
IFNγ | Interferon gamma |
IL- | Interleukin- |
NO | Nitric oxide |
PPARγ | Peroxisome proliferator-activated receptor gamma |
RNA | Ribonucleic acid |
STAT | Signal transducer and activator of transcription |
TGFβ | Transforming growth factor beta |
TNFα | Tumor necrosis factor alpha |
References
- Brancewicz, J.; Wójcik, N.; Sarnowska, Z.; Robak, J.; Król, M. The Multifaceted Role of Macrophages in Biology and Diseases. Int. J. Mol. Sci. 2025, 26, 2107. [Google Scholar] [CrossRef] [PubMed]
- Guan, F.; Wang, R.; Yi, Z.; Luo, P.; Liu, W.; Xie, Y.; Liu, Z.; Xia, Z.; Zhang, H.; Cheng, Q. Tissue Macrophages: Origin, Heterogenity, Biological Functions, Diseases and Therapeutic Targets. Signal Transduct. Target. Ther. 2025, 10, 93. [Google Scholar] [CrossRef] [PubMed]
- Lendeckel, U.; Venz, S.; Wolke, C. Macrophages: Shapes and Functions. ChemTexts 2022, 8, 12. [Google Scholar] [CrossRef]
- Nazimek, K.; Bryniarski, K. Macrophage Functions in Psoriasis: Lessons from Mouse Models. Int. J. Mol. Sci. 2024, 25, 5306. [Google Scholar] [CrossRef]
- Chen, B.; Li, R.; Kubota, A.; Alex, L.; Frangogiannis, N.G. Identification of Macrophages in Normal and Injured Mouse Tissues Using Reporter Lines and Antibodies. Sci. Rep. 2022, 12, 4542. [Google Scholar] [CrossRef]
- Mafi, S.; Mansoori, B.; Taeb, S.; Sadeghi, H.; Abbasi, R.; Cho, W.C.; Rostamzadeh, D. mTOR-Mediated Regulation of Immune Responses in Cancer and Tumor Microenvironment. Front. Immunol. 2022, 12, 774103. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Ma, M.; Zhuang, X.; Lu, Y.; Miao, L.; Lu, X.; Cui, Y.; Cui, W. Mechanisms Underlying the Involvement of Peritoneal Macrophages in the Pathogenesis and Novel Therapeutic Strategies for Dialysis-Induced Peritoneal Fibrosis. Front. Immunol. 2024, 15, 1507265. [Google Scholar] [CrossRef]
- Dibble, C.C.; Manning, B.D. Signal Integration by mTORC1 Coordinates Nutrient Input with Biosynthetic Output. Nat. Cell Biol. 2013, 15, 555–564. [Google Scholar] [CrossRef]
- Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell 2017, 168, 960–976. [Google Scholar] [CrossRef]
- Panwar, V.; Singh, A.; Bhatt, M.; Tonk, R.K.; Azizov, S.; Raza, A.S.; Sengupta, S.; Kumar, D.; Garg, M. Multifaceted Role of mTOR (Mammalian Target of Rapamycin) Signaling Pathway in Human Health and Disease. Signal Transduct. Target. Ther. 2023, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Linde-Garelli, K.Y.; Rogala, K.B. Structural Mechanisms of the mTOR Pathway. Curr. Opin. Struct. Biol. 2023, 82, 102663. [Google Scholar] [CrossRef] [PubMed]
- Makhoul, C.; Houghton, F.J.; Hinde, E.; Gleeson, P.A. Arf5-Mediated Regulation of mTORC1 at the Plasma Membrane. Mol. Biol. Cell 2023, 34, ar23. [Google Scholar] [CrossRef]
- Ebner, M.; Sinkovics, B.; Szczygieł, M.; Ribeiro, D.W.; Yudushkin, I. Localization of mTORC2 Activity inside Cells. J. Cell Biol. 2017, 216, 343–353. [Google Scholar] [CrossRef]
- Yu, Z.; Chen, J.; Takagi, E.; Wang, F.; Saha, B.; Liu, X.; Joubert, L.-M.; Gleason, C.E.; Jin, M.; Li, C.; et al. Interactions between mTORC2 Core Subunits Rictor and mSin1 Dictate Selective and Context-Dependent Phosphorylation of Substrate Kinases SGK1 and Akt. J. Biol. Chem. 2022, 298, 102288. [Google Scholar] [CrossRef]
- Zou, Z.; Tao, T.; Li, H.; Zhu, X. mTOR Signaling Pathway and mTOR Inhibitors in Cancer: Progress and Challenges. Cell Biosci. 2020, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Deng, X.; Luo, J.; Chen, Y.; Bi, G.; Gong, F.; Wei, Z.; Liu, N.; Li, H.; Laurence, A.; et al. ATP6V0d2 Mediates Leucine-Induced mTORC1 Activation and Polarization of Macrophages. Protein Cell 2019, 10, 615–619. [Google Scholar] [CrossRef]
- Weichhart, T.; Hengstschläger, M.; Linke, M. Regulation of Innate Immune Cell Function by mTOR. Nat. Rev. Immunol. 2015, 15, 599–614. [Google Scholar] [CrossRef] [PubMed]
- Jhanwar-Uniyal, M.; Wainwright, J.V.; Mohan, A.L.; Tobias, M.E.; Murali, R.; Gandhi, C.D.; Schmidt, M.H. Diverse Signaling Mechanisms of mTOR Complexes: mTORC1 and mTORC2 in Forming a Formidable Relationship. Adv. Biol. Regul. 2019, 72, 51–62. [Google Scholar] [CrossRef]
- Suto, T.; Karonitsch, T. The Immunobiology of mTOR in Autoimmunity. J. Autoimmun. 2020, 110, 102373. [Google Scholar] [CrossRef]
- Dai, H.; Thomson, A.W. The “Other” mTOR Complex: New Insights into mTORC2 Immunobiology and Their Implications. Am. J. Transplant. 2019, 19, 1614–1621. [Google Scholar] [CrossRef]
- Diz-Muñoz, A.; Thurley, K.; Chintamen, S.; Altschuler, S.J.; Wu, L.F.; Fletcher, D.A.; Weiner, O.D. Membrane Tension Acts Through PLD2 and mTORC2 to Limit Actin Network Assembly During Neutrophil Migration. PLoS Biol. 2016, 14, e1002474. [Google Scholar] [CrossRef]
- Bar-Peled, L.; Schweitzer, L.D.; Zoncu, R.; Sabatini, D.M. Ragulator Is a GEF for the Rag GTPases That Signal Amino Acid Levels to mTORC1. Cell 2012, 150, 1196–1208. [Google Scholar] [CrossRef] [PubMed]
- Pacitto, R.; Gaeta, I.; Swanson, J.A.; Yoshida, S. CXCL12-Induced Macropinocytosis Modulates Two Distinct Pathways to Activate mTORC1 in Macrophages. J. Leukoc. Biol. 2017, 101, 683–692. [Google Scholar] [CrossRef]
- Powell, J.D.; Pollizzi, K.N.; Heikamp, E.B.; Horton, M.R. Regulation of Immune Responses by mTOR. Annu. Rev. Immunol. 2012, 30, 39–68. [Google Scholar] [CrossRef]
- Foster, D.A. Phosphatidic Acid and Lipid-Sensing by mTOR. Trends Endocrinol. Metab. 2013, 24, 272–278. [Google Scholar] [CrossRef]
- Smiles, W.J.; Ovens, A.J.; Kemp, B.E.; Galic, S.; Petersen, J.; Oakhill, J.S. New Developments in AMPK and mTORC1 Cross-Talk. Essays Biochem. 2024, 68, 321–336. [Google Scholar] [CrossRef]
- Dash, S.P.; Gupta, S.; Sarangi, P.P. Monocytes and Macrophages: Origin, Homing, Differentiation, and Functionality during Inflammation. Heliyon 2024, 10, e29686. [Google Scholar] [CrossRef]
- Zhao, Y.; Shen, X.; Na, N.; Chu, Z.; Su, H.; Chao, S.; Shi, L.; Xu, Y.; Zhang, L.; Shi, B.; et al. mTOR Masters Monocyte Development in Bone Marrow by Decreasing the Inhibition of STAT5 on IRF8. Blood 2018, 131, 1587–1599. [Google Scholar] [CrossRef]
- Jones, R.G.; Pearce, E.J. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells. Immunity 2017, 46, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Karmaus, P.W.F.; Herrada, A.A.; Guy, C.; Neale, G.; Dhungana, Y.; Long, L.; Vogel, P.; Avila, J.; Clish, C.B.; Chi, H. Critical Roles of mTORC1 Signaling and Metabolic Reprogramming for M-CSF-Mediated Myelopoiesis. J. Exp. Med. 2017, 214, 2629–2647. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.Y.; Sykes, D.B.; Ameri, S.; Kalaitzidis, D.; Charles, J.F.; Nelson-Maney, N.; Wei, K.; Cunin, P.; Morris, A.; Cardona, A.E.; et al. The Metabolic Regulator mTORC1 Controls Terminal Myeloid Differentiation. Sci. Immunol. 2017, 2, eaam6641. [Google Scholar] [CrossRef] [PubMed]
- Erra Diaz, F.; Mazzitelli, I.; Bleichmar, L.; Melucci, C.; Thibodeau, A.; Dalotto Moreno, T.; Marches, R.; Rabinovich, G.A.; Ucar, D.; Geffner, J. Concomitant Inhibition of PPARγ and mTORC1 Induces the Differentiation of Human Monocytes into Highly Immunogenic Dendritic Cells. Cell Rep. 2023, 42, 112156. [Google Scholar] [CrossRef]
- Hu, Y.; Wen, J.; Zhang, B.; Xiao, H. Precision Control of mTORC1 Is Crucial for the Maintenance and IL-13 Responsiveness of Alveolar Macrophages. Int. Immunopharmacol. 2021, 95, 107552. [Google Scholar] [CrossRef] [PubMed]
- Evren, E.; Ringqvist, E.; Willinger, T. Origin and Ontogeny of Lung Macrophages: From Mice to Humans. Immunology 2020, 160, 126–138. [Google Scholar] [CrossRef]
- Deng, W.; Yang, J.; Lin, X.; Shin, J.; Gao, J.; Zhong, X.-P. Essential Role of mTORC1 in Self-Renewal of Murine Alveolar Macrophages. J. Immunol. 2017, 198, 492–504. [Google Scholar] [CrossRef]
- Gangoiti, P.; Arana, L.; Ouro, A.; Granado, M.H.; Trueba, M.; Gómez-Muñoz, A. Activation of mTOR and RhoA Is a Major Mechanism by Which Ceramide 1-Phosphate Stimulates Macrophage Proliferation. Cell Signal 2011, 23, 27–34. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, F.; Zhou, P.; Wang, Q.; Xu, C.; Li, Y.; Bian, L.; Liu, Y.; Zhou, J.; Wang, F.; et al. The MTOR Signaling Pathway Regulates Macrophage Differentiation from Mouse Myeloid Progenitors by Inhibiting Autophagy. Autophagy 2019, 15, 1150–1162. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ghosh, P.; Singh, A.; Ghosh, A.; Bhowmick, A.; Sinha, D.K.; Ghosh, A.; Sen, P. Delineating the Complex Mechanistic Interplay between NF-Κβ Driven mTOR Depedent Autophagy and Monocyte to Macrophage Differentiation: A Functional Perspective. Cell Signal 2021, 88, 110150. [Google Scholar] [CrossRef]
- Fang, Y.; Ma, K.; Huang, Y.-M.; Dang, Y.; Liu, Z.; Xu, Y.; Zheng, X.-L.; Yang, X.; Huo, Y.; Dai, X. Fibronectin Leucine-Rich Transmembrane Protein 2 Drives Monocyte Differentiation into Macrophages via the UNC5B-Akt/mTOR Axis. Front. Immunol. 2023, 14, 1162004. [Google Scholar] [CrossRef]
- Wang, L.; Hong, W.; Zhu, H.; He, Q.; Yang, B.; Wang, J.; Weng, Q. Macrophage Senescence in Health and Diseases. Acta Pharm. Sin. B 2024, 14, 1508–1524. [Google Scholar] [CrossRef] [PubMed]
- Mangione, M.C.; Wen, J.; Cao, D.J. Mechanistic Target of Rapamycin in Regulating Macrophage Function in Inflammatory Cardiovascular Diseases. J. Mol. Cell Cardiol. 2024, 186, 111–124. [Google Scholar] [CrossRef]
- Rocher, C.; Singla, D.K. SMAD-PI3K-Akt-mTOR Pathway Mediates BMP-7 Polarization of Monocytes into M2 Macrophages. PLoS ONE 2013, 8, e84009. [Google Scholar] [CrossRef]
- Chen, W.; Ma, T.; Shen, X.; Xia, X.; Xu, G.; Bai, X.; Liang, T. Macrophage-Induced Tumor Angiogenesis Is Regulated by the TSC2-mTOR Pathway. Cancer Res. 2012, 72, 1363–1372. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Gao, Y.; Gao, J.; Yang, W.; Liang, H.; Ji, Q.; Li, Y.; Liu, H.; Huang, J.; et al. Rheb1-mTORC1 Maintains Macrophage Differentiation and Phagocytosis in Mice. Exp. Cell Res. 2016, 344, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Chen, Y.; Schwarz, H. CD137 Induces Proliferation of Murine Hematopoietic Progenitor Cells and Differentiation to Macrophages. J. Immunol. 2008, 181, 3923–3932. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-K.; Lee, S.C.; Lee, H.-W. CD137 Ligand-Mediated Reverse Signals Increase Cell Viability and Cytokine Expression in Murine Myeloid Cells: Involvement of mTOR/p70S6 Kinase and Akt. Eur. J. Immunol. 2009, 39, 2617–2628. [Google Scholar] [CrossRef]
- Dello Russo, C.; Lisi, L.; Tringali, G.; Navarra, P. Involvement of mTOR Kinase in Cytokine-Dependent Microglial Activation and Cell Proliferation. Biochem. Pharmacol. 2009, 78, 1242–1251. [Google Scholar] [CrossRef] [PubMed]
- Hiraiwa, M.; Ozaki, K.; Yamada, T.; Iezaki, T.; Park, G.; Fukasawa, K.; Horie, T.; Kamada, H.; Tokumura, K.; Motono, M.; et al. mTORC1 Activation in Osteoclasts Prevents Bone Loss in a Mouse Model of Osteoporosis. Front. Pharmacol. 2019, 10, 684. [Google Scholar] [CrossRef]
- Huynh, H.; Wan, Y. mTORC1 Impedes Osteoclast Differentiation via Calcineurin and NFATc1. Commun. Biol. 2018, 1, 29. [Google Scholar] [CrossRef]
- Shi, Q.; Chang, C.; Saliba, A.; Bhat, M.A. Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the 5XFAD Alzheimer’s Disease Model. J. Neurosci. 2022, 42, 5294–5313. [Google Scholar] [CrossRef]
- Sun, X.; Ni, Y.; Lu, Q.; Liang, Y.; Gu, M.; Xue, X.; Dai, C. Mechanistic Target of Rapamycin Complex 1 Orchestrates the Interplay between Hepatocytes and Kupffer Cells to Determine the Outcome of Immune-Mediated Hepatitis. Cell Death Dis. 2022, 13, 1031. [Google Scholar] [CrossRef]
- Oh, M.-H.; Collins, S.L.; Sun, I.-H.; Tam, A.J.; Patel, C.H.; Arwood, M.L.; Chan-Li, Y.; Powell, J.D.; Horton, M.R. mTORC2 Signaling Selectively Regulates the Generation and Function of Tissue-Resident Peritoneal Macrophages. Cell Rep. 2017, 20, 2439–2454. [Google Scholar] [CrossRef]
- Jangani, M.; Vuononvirta, J.; Yamani, L.; Ward, E.; Capasso, M.; Nadkarni, S.; Balkwill, F.; Marelli-Berg, F. Loss of mTORC2-Induced Metabolic Reprogramming in Monocytes Uncouples Migration and Maturation from Production of Proinflammatory Mediators. J. Leukoc. Biol. 2022, 111, 967–980. [Google Scholar] [CrossRef]
- Hallowell, R.W.; Collins, S.L.; Craig, J.M.; Zhang, Y.; Oh, M.; Illei, P.B.; Chan-Li, Y.; Vigeland, C.L.; Mitzner, W.; Scott, A.L.; et al. mTORC2 Signalling Regulates M2 Macrophage Differentiation in Response to Helminth Infection and Adaptive Thermogenesis. Nat. Commun. 2017, 8, 14208. [Google Scholar] [CrossRef]
- Ren, J.; Li, J.; Feng, Y.; Shu, B.; Gui, Y.; Wei, W.; He, W.; Yang, J.; Dai, C. Rictor/Mammalian Target of Rapamycin Complex 2 Promotes Macrophage Activation and Kidney Fibrosis. J. Pathol. 2017, 242, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Babaev, V.R.; Huang, J.; Ding, L.; Zhang, Y.; May, J.M.; Linton, M.F. Loss of Rictor in Monocyte/Macrophages Suppresses Their Proliferation and Viability Reducing Atherosclerosis in LDLR Null Mice. Front. Immunol. 2018, 9, 215. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.E.; Chung, E.; Son, Y. A Neuropeptide, Substance-P, Directly Induces Tissue-Repairing M2 like Macrophages by Activating the PI3K/Akt/mTOR Pathway Even in the Presence of IFNγ. Sci. Rep. 2017, 7, 9417. [Google Scholar] [CrossRef]
- Ahmed, I.; Ismail, N. M1 and M2 Macrophages Polarization via mTORC1 Influences Innate Immunity and Outcome of Ehrlichia Infection. J. Cell Immunol. 2020, 2, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Festuccia, W.T. Regulation of Adipocyte and Macrophage Functions by mTORC1 and 2 in Metabolic Diseases. Mol. Nutr. Food Res. 2021, 65, e1900768. [Google Scholar] [CrossRef]
- Byles, V.; Covarrubias, A.J.; Ben-Sahra, I.; Lamming, D.W.; Sabatini, D.M.; Manning, B.D.; Horng, T. The TSC-mTOR Pathway Regulates Macrophage Polarization. Nat. Commun. 2013, 4, 2834. [Google Scholar] [CrossRef]
- Haloul, M.; Oliveira, E.R.A.; Kader, M.; Wells, J.Z.; Tominello, T.R.; El Andaloussi, A.; Yates, C.C.; Ismail, N. mTORC1-Mediated Polarization of M1 Macrophages and Their Accumulation in the Liver Correlate with Immunopathology in Fatal Ehrlichiosis. Sci. Rep. 2019, 9, 14050. [Google Scholar] [CrossRef]
- Shen, X.; Sun, C.; Cheng, Y.; Ma, D.; Sun, Y.; Lin, Y.; Zhao, Y.; Yang, M.; Jing, W.; Cui, X.; et al. cGAS Mediates Inflammation by Polarizing Macrophages to M1 Phenotype via the mTORC1 Pathway. J. Immunol. 2023, 210, 1098–1107. [Google Scholar] [CrossRef]
- Yang, K.; Xu, C.; Zhang, Y.; He, S.; Li, D. Sestrin2 Suppresses Classically Activated Macrophages-Mediated Inflammatory Response in Myocardial Infarction through Inhibition of mTORC1 Signaling. Front. Immunol. 2017, 8, 728. [Google Scholar] [CrossRef] [PubMed]
- Mercalli, A.; Calavita, I.; Dugnani, E.; Citro, A.; Cantarelli, E.; Nano, R.; Melzi, R.; Maffi, P.; Secchi, A.; Sordi, V.; et al. Rapamycin Unbalances the Polarization of Human Macrophages to M1. Immunology 2013, 140, 179–190. [Google Scholar] [CrossRef]
- Collins, S.L.; Oh, M.-H.; Sun, I.-H.; Chan-Li, Y.; Zhao, L.; Powell, J.D.; Horton, M.R. mTORC1 Signaling Regulates Proinflammatory Macrophage Function and Metabolism. J. Immunol. 2021, 207, 913–922. [Google Scholar] [CrossRef]
- Bögel, G.; Sváb, G.; Murányi, J.; Szokol, B.; Kukor, Z.; Kardon, T.; Őrfi, L.; Tretter, L.; Hrabák, A. The Role of PI3K-Akt-mTOR Axis in Warburg Effect and Its Modification by Specific Protein Kinase Inhibitors in Human and Rat Inflammatory Macrophages. Int. Immunopharmacol. 2024, 141, 112957. [Google Scholar] [CrossRef]
- Kimura, T.; Nada, S.; Takegahara, N.; Okuno, T.; Nojima, S.; Kang, S.; Ito, D.; Morimoto, K.; Hosokawa, T.; Hayama, Y.; et al. Polarization of M2 Macrophages Requires Lamtor1 That Integrates Cytokine and Amino-Acid Signals. Nat. Commun. 2016, 7, 13130. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Liu, Y.; Li, X.; Yu, B.; He, J.; Mao, X.; Yu, J.; Huang, Z.; Luo, Y.; Luo, J.; et al. Leucine Alleviates Cytokine Storm Syndrome by Regulating Macrophage Polarization via the mTORC1/LXRα Signaling Pathway. Elife 2024, 12, RP89750. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, Y.; Li, C.; Yang, X.; Ji, C.; Li, W.; Song, M.; Yang, Z.; Liu, G.; Liang, X.; et al. INSL3 Promotes Macrophage Polarization to an Immunosuppressive Phenotype via the cAMP Downstream Signaling Pathway and Akt/mTOR Pathway. Int. Immunopharmacol. 2025, 154, 114540. [Google Scholar] [CrossRef]
- Qin, X.; Hu, D.; Li, Q.; Zhang, S.; Qin, Z.; Wang, L.; Liao, R.; Wu, Z.; Liu, Y. LXRα Agonists Ameliorates Acute Rejection after Liver Transplantation via ABCA1/MAPK and PI3K/AKT/mTOR Signaling Axis in Macrophages. Mol. Med. 2025, 31, 99. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Lu, X.; Huang, L.; He, Y.; Liu, X.; Wang, Y.; Duan, C. Castor1 Overexpression Regulates Microglia M1/M2 Polarization via Inhibiting mTOR Pathway. Metab. Brain Dis. 2023, 38, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Koike-Kumagai, M.; Wataya-Kaneda, M. Neuroinflammation and Microglial Polarity: Sirolimus Shifts Microglial Polarity to M2 Phenotype in a Mouse Model of Tuberous Sclerosis Complex. J. Exp. Neurol. 2022, 3, 63–70. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, X.-Y.; Dong, Y.-H.; Dong, H.-R.; Zhou, L.-N.; Ding, Y.-Q.; Chen, G.; Zhao, J.-L.; Xie, R. Pre-Treatment of Rapamycin Transformed M2 Microglia Alleviates Traumatic Cervical Spinal Cord Injury via AIM2 Signaling Pathway in vitro and in vivo. Int. Immunopharmacol. 2023, 121, 110394. [Google Scholar] [CrossRef]
- He, T.; Li, W.; Song, Y.; Li, Z.; Tang, Y.; Zhang, Z.; Yang, G.-Y. Sestrin2 Regulates Microglia Polarization through mTOR-Mediated Autophagic Flux to Attenuate Inflammation during Experimental Brain Ischemia. J. Neuroinflamm. 2020, 17, 329. [Google Scholar] [CrossRef]
- Dumas, A.A.; Pomella, N.; Rosser, G.; Guglielmi, L.; Vinel, C.; Millner, T.O.; Rees, J.; Aley, N.; Sheer, D.; Wei, J.; et al. Microglia Promote Glioblastoma via mTOR-Mediated Immunosuppression of the Tumour Microenvironment. EMBO J. 2020, 39, e103790. [Google Scholar] [CrossRef]
- Lisi, L.; Ciotti, G.M.P.; Chiavari, M.; Pizzoferrato, M.; Mangiola, A.; Kalinin, S.; Feinstein, D.L.; Navarra, P. Phospho-mTOR Expression in Human Glioblastoma Microglia-Macrophage Cells. Neurochem. Int. 2019, 129, 104485. [Google Scholar] [CrossRef]
- Lisi, L.; Laudati, E.; Navarra, P.; Dello Russo, C. The mTOR Kinase Inhibitors Polarize Glioma-Activated Microglia to Express a M1 Phenotype. J. Neuroinflamm. 2014, 11, 125. [Google Scholar] [CrossRef]
- Lisi, L.; Pizzoferrato, M.; Ciotti, G.M.P.; Martire, M.; Navarra, P. mTOR Inhibition Is Effective against Growth, Survival and Migration, but Not against Microglia Activation in Preclinical Glioma Models. Int. J. Mol. Sci. 2023, 24, 9834. [Google Scholar] [CrossRef]
- Zheng, Y.; Graeber, M.B. Microglia and Brain Macrophages as Drivers of Glioma Progression. Int. J. Mol. Sci. 2022, 23, 15612. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liao, Y.; Morgan, S.; Mathur, R.; Feustel, P.; Mazurkiewicz, J.; Qian, J.; Chang, J.; Mathern, G.W.; Adamo, M.A.; et al. Noninflammatory Changes of Microglia Are Sufficient to Cause Epilepsy. Cell Rep. 2018, 22, 2080–2093. [Google Scholar] [CrossRef]
- Li, K.; Zhang, Y.; Liang, K.Y.; Xu, S.; Zhou, X.J.; Tan, K.; Lin, J.; Bai, X.C.; Yang, C.L. Rheb1 Deletion in Myeloid Cells Aggravates OVA-Induced Allergic Inflammation in Mice. Sci. Rep. 2017, 7, 42655. [Google Scholar] [CrossRef]
- Wang, X.; Gu, J.; Tang, H.; Gu, L.; Bi, Y.; Kong, Y.; Shan, Q.; Yin, J.; Lou, M.; Li, S.; et al. Single-Cell Profiling and Proteomics-Based Insights Into mTORC1-Mediated Angio+TAMs Polarization in Recurrent IDH-Mutant Gliomas. CNS Neurosci. Ther. 2025, 31, e70371. [Google Scholar] [CrossRef]
- Shrivastava, R.; Asif, M.; Singh, V.; Dubey, P.; Ahmad Malik, S.; Lone, M.-U.-D.; Tewari, B.N.; Baghel, K.S.; Pal, S.; Nagar, G.K.; et al. M2 Polarization of Macrophages by Oncostatin M in Hypoxic Tumor Microenvironment Is Mediated by mTORC2 and Promotes Tumor Growth and Metastasis. Cytokine 2019, 118, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Li, W.; Hager, S.; Wilson, J.L.; Afjehi-Sadat, L.; Heiss, E.H.; Weichhart, T.; Heffeter, P.; Weckwerth, W. Targeting PHGDH Reverses the Immunosuppressive Phenotype of Tumor-Associated Macrophages through α-Ketoglutarate and mTORC1 Signaling. Cell Mol. Immunol. 2024, 21, 448–465. [Google Scholar] [CrossRef]
- Wei, Y.; Liang, M.; Xiong, L.; Su, N.; Gao, X.; Jiang, Z. PD-L1 Induces Macrophage Polarization toward the M2 Phenotype via Erk/Akt/mTOR. Exp. Cell Res. 2021, 402, 112575. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhang, C.-S.; Fang, B.-B.; Li, Z.-D.; Li, L.; Bi, X.-J.; Li, W.-D.; Zhang, N.; Lin, R.-Y.; Wen, H. Thioredoxin Peroxidase Secreted by Echinococcus Granulosus (Sensu Stricto) Promotes the Alternative Activation of Macrophages via PI3K/AKT/mTOR Pathway. Parasit. Vectors 2019, 12, 542. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, Y.; Yang, Z.; Jiang, Y.; Sun, L.; Huang, D.; Tian, M.; Shen, Y.; Deng, J.; Hou, J.; et al. Echinococcus Multilocularis Protoscoleces Enhance Glycolysis to Promote M2 Macrophages through PI3K/Akt/mTOR Signaling Pathway. Pathog. Glob. Health 2023, 117, 409–416. [Google Scholar] [CrossRef]
- Frank, B.; Marcu, A.; de Oliveira Almeida Petersen, A.L.; Weber, H.; Stigloher, C.; Mottram, J.C.; Scholz, C.J.; Schurigt, U. Autophagic Digestion of Leishmania Major by Host Macrophages Is Associated with Differential Expression of BNIP3, CTSE, and the miRNAs miR-101c, miR-129, and miR-210. Parasit. Vectors 2015, 8, 404. [Google Scholar] [CrossRef]
- Rashidi, S.; Mansouri, R.; Ali-Hassanzadeh, M.; Ghani, E.; Karimazar, M.; Muro, A.; Nguewa, P.; Manzano-Román, R. miRNAs in the Regulation of mTOR Signaling and Host Immune Responses: The Case of Leishmania Infections. Acta Trop. 2022, 231, 106431. [Google Scholar] [CrossRef]
- Sha, S.; Shi, Y.; Tang, Y.; Jia, L.; Han, X.; Liu, Y.; Li, X.; Ma, Y. Mycobacterium Tuberculosis Rv1987 Protein Induces M2 Polarization of Macrophages through Activating the PI3K/Akt1/mTOR Signaling Pathway. Immunol. Cell Biol. 2021, 99, 570–585. [Google Scholar] [CrossRef]
- Chaparro, V.; Leroux, L.-P.; Masvidal, L.; Lorent, J.; Graber, T.E.; Zimmermann, A.; Arango Duque, G.; Descoteaux, A.; Alain, T.; Larsson, O.; et al. Translational Profiling of Macrophages Infected with Leishmania Donovani Identifies mTOR- and eIF4A-Sensitive Immune-Related Transcripts. PLoS Pathog. 2020, 16, e1008291. [Google Scholar] [CrossRef]
- Penas, F.N.; Carta, D.; Cevey, Á.C.; Rada, M.J.; Pieralisi, A.V.; Ferlin, M.G.; Sales, M.E.; Mirkin, G.A.; Goren, N.B. Pyridinecarboxylic Acid Derivative Stimulates Pro-Angiogenic Mediators by PI3K/AKT/mTOR and Inhibits Reactive Nitrogen and Oxygen Species and NF-κB Activation Through a PPARγ-Dependent Pathway in T. Cruzi-Infected Macrophages. Front. Immunol. 2019, 10, 2955. [Google Scholar] [CrossRef] [PubMed]
- Ganguli, G.; Pattanaik, K.P.; Jagadeb, M.; Sonawane, A. Mycobacterium Tuberculosis Rv3034c Regulates mTORC1 and PPAR-γ Dependant Pexophagy Mechanism to Control Redox Levels in Macrophages. Cell Microbiol. 2020, 22, e13214. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-R.; Gao, Z.-X.; Lin, Y.; Zhu, X.-Z.; Liu, W.; Liu, D.; Gao, K.; Tong, M.-L.; Zhang, H.-L.; Liu, L.-L.; et al. Akt, mTOR and NF-κB Pathway Activation in Treponema Pallidum Stimulates M1 Macrophages. Int. Immunopharmacol. 2018, 59, 181–186. [Google Scholar] [CrossRef]
- Felkle, D.; Zięba, K.; Kaleta, K.; Czaja, J.; Zyzdorf, A.; Sobocińska, W.; Jarczyński, M.; Bryniarski, K.; Nazimek, K. Overreactive Macrophages in SARS-CoV-2 Infection: The Effects of ACEI. Int. Immunopharmacol. 2023, 124, 110858. [Google Scholar] [CrossRef]
- Xie, D.-L.; Zheng, M.-M.; Zheng, Y.; Gao, H.; Zhang, J.; Zhang, T.; Guo, J.-C.; Yang, X.F.; Zhong, X.-P.; Lou, Y.-L. Vibrio Vulnificus Induces mTOR Activation and Inflammatory Responses in Macrophages. PLoS ONE 2017, 12, e0181454. [Google Scholar] [CrossRef]
- Toner, Y.C.; Munitz, J.; Prevot, G.; Morla-Folch, J.; Wang, W.; van Elsas, Y.; Priem, B.; Deckers, J.; Anbergen, T.; Beldman, T.J.; et al. Targeting mTOR in Myeloid Cells Prevents Infection-Associated Inflammation. iScience 2025, 28, 112163. [Google Scholar] [CrossRef] [PubMed]
- Nowak, W.; Grendas, L.N.; Sanmarco, L.M.; Estecho, I.G.; Arena, Á.R.; Eberhardt, N.; Rodante, D.E.; Aoki, M.P.; Daray, F.M.; Carrera Silva, E.A.; et al. Pro-Inflammatory Monocyte Profile in Patients with Major Depressive Disorder and Suicide Behaviour and How Ketamine Induces Anti-Inflammatory M2 Macrophages by NMDAR and mTOR. EBioMedicine 2019, 50, 290–305. [Google Scholar] [CrossRef]
- Brown, J.; Wang, H.; Suttles, J.; Graves, D.T.; Martin, M. Mammalian Target of Rapamycin Complex 2 (mTORC2) Negatively Regulates Toll-like Receptor 4-Mediated Inflammatory Response via FoxO1. J. Biol. Chem. 2011, 286, 44295–44305. [Google Scholar] [CrossRef]
- Sun, X.; Gao, S.; Chang, R.; Jia, H.; Xu, Q.; Mauck, J.; Loor, J.J.; Li, X.; Xu, C. Fatty Acids Promote M1 Polarization of Monocyte-Derived Macrophages in Healthy or Ketotic Dairy Cows and a Bovine Macrophage Cell Line by Impairing mTOR-Mediated Autophagy. J. Dairy. Sci. 2024, 107, 7423–7434. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Aksoylar, H.I.; Yu, J.; Snyder, N.W.; Worth, A.J.; Iyer, S.S.; Wang, J.; Ben-Sahra, I.; Byles, V.; Polynne-Stapornkul, T.; et al. Akt-mTORC1 Signaling Regulates Acly to Integrate Metabolic Input to Control of Macrophage Activation. Elife 2016, 5, e11612. [Google Scholar] [CrossRef]
- Huang, S.C.-C.; Smith, A.M.; Everts, B.; Colonna, M.; Pearce, E.L.; Schilling, J.D.; Pearce, E.J. Metabolic Reprogramming Mediated by the mTORC2-IRF4 Signaling Axis Is Essential for Macrophage Alternative Activation. Immunity 2016, 45, 817–830. [Google Scholar] [CrossRef]
- Wculek, S.K.; Dunphy, G.; Heras-Murillo, I.; Mastrangelo, A.; Sancho, D. Metabolism of Tissue Macrophages in Homeostasis and Pathology. Cell Mol. Immunol. 2022, 19, 384–408. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, Z.; Li, P.; Zhang, Z.; Zeng, M.; Liang, Z.; Li, D.; Wang, L.; Chen, Y.; Liang, Y.; et al. Reprogramming of Glutamine Metabolism and Its Impact on Immune Response in the Tumor Microenvironment. Cell Commun. Signal 2022, 20, 114. [Google Scholar] [CrossRef]
- Szwed, A.; Kim, E.; Jacinto, E. Regulation and Metabolic Functions of mTORC1 and mTORC2. Physiol. Rev. 2021, 101, 1371–1426. [Google Scholar] [CrossRef]
- Wang, L.; Sun, X.; Chen, J.; Li, Y.; He, Y.; Wei, J.; Shen, Z.; Yoshida, S. Macropinocytic Cups Function as Signal Platforms for the mTORC2-AKT Pathway to Modulate LPS-Induced Cytokine Expression in Macrophages. J. Leukoc. Biol. 2024, 116, 738–752. [Google Scholar] [CrossRef] [PubMed]
- Hackstein, H.; Taner, T.; Logar, A.J.; Thomson, A.W. Rapamycin Inhibits Macropinocytosis and Mannose Receptor-Mediated Endocytosis by Bone Marrow-Derived Dendritic Cells. Blood 2002, 100, 1084–1087. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, T.; Wu, H. Heterogeneity of Macrophage Activation Syndrome and Treatment Progression. Front. Immunol. 2024, 15, 1389710. [Google Scholar] [CrossRef]
- Huang, Z.; You, X.; Chen, L.; Du, Y.; Brodeur, K.; Jee, H.; Wang, Q.; Linder, G.; Darbousset, R.; Cunin, P.; et al. mTORC1 Links Pathology in Experimental Models of Still’s Disease and Macrophage Activation Syndrome. Nat. Commun. 2022, 13, 6915. [Google Scholar] [CrossRef] [PubMed]
- Salh, B.; Wagey, R.; Marotta, A.; Tao, J.S.; Pelech, S. Activation of Phosphatidylinositol 3-Kinase, Protein Kinase B, and P70 S6 Kinases in Lipopolysaccharide-Stimulated Raw 264.7 Cells: Differential Effects of Rapamycin, Ly294002, and Wortmannin on Nitric Oxide Production. J. Immunol. 1998, 161, 6947–6954. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, S.L.; Finn, A.J.; Davé, S.H.; Meng, F.; Lowell, C.A.; Sanghera, J.S.; DeFranco, A.L. Phosphatidylinositol 3-Kinase and mTOR Mediate Lipopolysaccharide-Stimulated Nitric Oxide Production in Macrophages via Interferon-Beta. J. Leukoc. Biol. 2000, 67, 405–414. [Google Scholar] [CrossRef]
- Dos Santos, S.; Delattre, A.-I.; De Longueville, F.; Bult, H.; Raes, M. Gene Expression Profiling of LPS-Stimulated Murine Macrophages and Role of the NF-kappaB and PI3K/mTOR Signaling Pathways. Ann. N. Y. Acad. Sci. 2007, 1096, 70–77. [Google Scholar] [CrossRef]
- Jin, H.K.; Ahn, S.H.; Yoon, J.W.; Park, J.W.; Lee, E.K.; Yoo, J.S.; Lee, J.C.; Choi, W.S.; Han, J.-W. Rapamycin Down-Regulates Inducible Nitric Oxide Synthase by Inducing Proteasomal Degradation. Biol. Pharm. Bull. 2009, 32, 988–992. [Google Scholar] [CrossRef]
- Chou, Y.-Y.; Gao, J.-I.; Chang, S.-F.; Chang, P.-Y.; Lu, S.-C. Rapamycin Inhibits Lipopolysaccharide Induction of Granulocyte-Colony Stimulating Factor and Inducible Nitric Oxide Synthase Expression in Macrophages by Reducing the Levels of Octamer-Binding Factor-2. FEBS J. 2011, 278, 85–96. [Google Scholar] [CrossRef]
- Mendes, S.D.S.; Candi, A.; Vansteenbrugge, M.; Pignon, M.-R.; Bult, H.; Boudjeltia, K.Z.; Munaut, C.; Raes, M. Microarray Analyses of the Effects of NF-kappaB or PI3K Pathway Inhibitors on the LPS-Induced Gene Expression Profile in RAW264.7 Cells: Synergistic Effects of Rapamycin on LPS-Induced MMP9-Overexpression. Cell Signal 2009, 21, 1109–1122. [Google Scholar] [CrossRef]
- Potter, M.W.; Shah, S.A.; Elbirt, K.K.; Callery, M.P. Endotoxin (LPS) Stimulates 4E-BP1/PHAS-I Phosphorylation in Macrophages. J. Surg. Res. 2001, 97, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Schaeffer, V.; Arbabi, S.; Garcia, I.A.; Knoll, M.L.; Cuschieri, J.; Bulger, E.M.; Maier, R.V. Role of the mTOR Pathway in LPS-Activated Monocytes: Influence of Hypertonic Saline. J. Surg. Res. 2011, 171, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.K.; Wang, R.; Mackman, N.; Luyendyk, J.P. Rapamycin Enhances LPS Induction of Tissue Factor and Tumor Necrosis Factor-Alpha Expression in Macrophages by Reducing IL-10 Expression. Mol. Immunol. 2009, 46, 2249–2255. [Google Scholar] [CrossRef]
- Li, X.; Han, X.; Llano, J.; Bole, M.; Zhou, X.; Swan, K.; Anandaiah, A.; Nelson, B.; Patel, N.R.; Reinach, P.S.; et al. Mammalian Target of Rapamycin Inhibition in Macrophages of Asymptomatic HIV+ Persons Reverses the Decrease in TLR-4-Mediated TNF-α Release through Prolongation of MAPK Pathway Activation. J. Immunol. 2011, 187, 6052–6058. [Google Scholar] [CrossRef]
- Van den Bosch, M.W.M.; Palsson-Mcdermott, E.; Johnson, D.S.; O’Neill, L.A.J. LPS Induces the Degradation of Programmed Cell Death Protein 4 (PDCD4) to Release Twist2, Activating c-Maf Transcription to Promote Interleukin-10 Production. J. Biol. Chem. 2014, 289, 22980–22990. [Google Scholar] [CrossRef] [PubMed]
- Xia, T.-T.; Hu, R.; Shao, C.-J.; Feng, Y.; Yang, X.-L.; Xie, Y.-P.; Shi, J.-X.; Li, J.-S.; Li, X.-M. Stanniocalcin-1 Secreted by Human Umbilical Mesenchymal Stem Cells Regulates Interleukin-10 Expression via the PI3K/AKT/mTOR Pathway in Alveolar Macrophages. Cytokine 2023, 162, 156114. [Google Scholar] [CrossRef]
- Kim, S.O.; Jing, Q.; Hoebe, K.; Beutler, B.; Duesbery, N.S.; Han, J. Sensitizing Anthrax Lethal Toxin-Resistant Macrophages to Lethal Toxin-Induced Killing by Tumor Necrosis Factor-Alpha. J. Biol. Chem. 2003, 278, 7413–7421. [Google Scholar] [CrossRef]
- Kaneda, M.M.; Messer, K.S.; Ralainirina, N.; Li, H.; Leem, C.J.; Gorjestani, S.; Woo, G.; Nguyen, A.V.; Figueiredo, C.C.; Foubert, P.; et al. PI3Kγ Is a Molecular Switch That Controls Immune Suppression. Nature 2016, 539, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Lenart, M.; Rutkowska-Zapala, M.; Baj-Krzyworzeka, M.; Szatanek, R.; Węglarczyk, K.; Smallie, T.; Ziegler-Heitbrock, L.; Zembala, M.; Siedlar, M. Hyaluronan Carried by Tumor-Derived Microvesicles Induces IL-10 Production in Classical (CD14++CD16-) Monocytes via PI3K/Akt/mTOR-Dependent Signalling Pathway. Immunobiology 2017, 222, 1–10. [Google Scholar] [CrossRef]
- Li, R.; Zhou, R.; Wang, H.; Li, W.; Pan, M.; Yao, X.; Zhan, W.; Yang, S.; Xu, L.; Ding, Y.; et al. Gut Microbiota-Stimulated Cathepsin K Secretion Mediates TLR4-Dependent M2 Macrophage Polarization and Promotes Tumor Metastasis in Colorectal Cancer. Cell Death Differ. 2019, 26, 2447–2463. [Google Scholar] [CrossRef] [PubMed]
- Do, M.H.; Shi, W.; Ji, L.; Ladewig, E.; Zhang, X.; Srivastava, R.M.; Capistrano, K.J.; Edwards, C.; Malik, I.; Nixon, B.G.; et al. Reprogramming Tumor-Associated Macrophages to Outcompete Endovascular Endothelial Progenitor Cells and Suppress Tumor Neoangiogenesis. Immunity 2023, 56, 2555–2569.e5. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Bai, Y.; Qiu, J.; He, X.; Xiong, J.; Dai, Q.; Wang, X.; Li, Y.; Sheng, H.; Xin, R.; et al. Pseudomonas Aeruginosa PcrV Enhances the Nitric Oxide-Mediated Tumoricidal Activity of Tumor-Associated Macrophages via a TLR4/PI3K/AKT/mTOR-Glycolysis-Nitric Oxide Circuit. Front. Oncol. 2021, 11, 736882. [Google Scholar] [CrossRef]
- Davies, J.M.; Radford, K.J.; Begun, J.; Levesque, J.-P.; Winkler, I.G. Adhesion to E-Selectin Primes Macrophages for Activation through AKT and mTOR. Immunol. Cell Biol. 2021, 99, 622–639. [Google Scholar] [CrossRef]
- Lim, H.-K.; Choi, Y.-A.; Park, W.; Lee, T.; Ryu, S.H.; Kim, S.-Y.; Kim, J.-R.; Kim, J.-H.; Baek, S.-H. Phosphatidic Acid Regulates Systemic Inflammatory Responses by Modulating the Akt-Mammalian Target of Rapamycin-P70 S6 Kinase 1 Pathway. J. Biol. Chem. 2003, 278, 45117–45127. [Google Scholar] [CrossRef]
- Bao, W.; Wang, Y.; Fu, Y.; Jia, X.; Li, J.; Vangan, N.; Bao, L.; Hao, H.; Wang, Z. mTORC1 Regulates Flagellin-Induced Inflammatory Response in Macrophages. PLoS ONE 2015, 10, e0125910. [Google Scholar] [CrossRef]
- Vangan, N.; Cao, Y.; Jia, X.; Bao, W.; Wang, Y.; He, Q.; Binderiya, U.; Feng, X.; Li, T.; Hao, H.; et al. mTORC1 Mediates Peptidoglycan Induced Inflammatory Cytokines Expression and NF-κB Activation in Macrophages. Microb. Pathog. 2016, 99, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Katholnig, K.; Linke, M.; Pham, H.; Hengstschläger, M.; Weichhart, T. Immune Responses of Macrophages and Dendritic Cells Regulated by mTOR Signalling. Biochem. Soc. Trans. 2013, 41, 927–933. [Google Scholar] [CrossRef]
- López-Pelaéz, M.; Fumagalli, S.; Sanz, C.; Herrero, C.; Guerra, S.; Fernandez, M.; Alemany, S. Cot/Tpl2-MKK1/2-Erk1/2 Controls mTORC1-Mediated mRNA Translation in Toll-like Receptor-Activated Macrophages. Mol. Biol. Cell 2012, 23, 2982–2992. [Google Scholar] [CrossRef]
- Lee, J.-H.; Phelan, P.; Shin, M.; Oh, B.-C.; Han, X.; Im, S.-S.; Osborne, T.F. SREBP-1a-Stimulated Lipid Synthesis Is Required for Macrophage Phagocytosis Downstream of TLR4-Directed mTORC1. Proc. Natl. Acad. Sci. USA 2018, 115, E12228–E12234. [Google Scholar] [CrossRef]
- Gajanayaka, N.; Dong, S.X.M.; Ali, H.; Iqbal, S.; Mookerjee, A.; Lawton, D.A.; Caballero, R.E.; Cassol, E.; Cameron, D.W.; Angel, J.B.; et al. TLR-4 Agonist Induces IFN-γ Production Selectively in Proinflammatory Human M1 Macrophages through the PI3K-mTOR- and JNK-MAPK-Activated p70S6K Pathway. J. Immunol. 2021, 207, 2310–2324. [Google Scholar] [CrossRef]
- Zhang, W.; Zhuang, N.; Liu, X.; He, L.; He, Y.; Mahinthichaichan, P.; Zhang, H.; Kang, Y.; Lu, Y.; Wu, Q.; et al. The Metabolic Regulator Lamtor5 Suppresses Inflammatory Signaling via Regulating mTOR-Mediated TLR4 Degradation. Cell Mol. Immunol. 2020, 17, 1063–1076. [Google Scholar] [CrossRef]
- Freundt, K.; Herzmann, C.; Biedziak, D.; Scheffzük, C.; Gaede, K.I.; Stamme, C. Surfactant Protein A Enhances the Degradation of LPS-Induced TLR4 in Primary Alveolar Macrophages Involving Rab7, β-Arrestin2, and mTORC1. Infect. Immun. 2022, 90, e0025021. [Google Scholar] [CrossRef]
- Yang, C.-S.; Song, C.-H.; Lee, J.-S.; Jung, S.-B.; Oh, J.-H.; Park, J.; Kim, H.-J.; Park, J.-K.; Paik, T.-H.; Jo, E.-K. Intracellular Network of Phosphatidylinositol 3-Kinase, Mammalian Target of the Rapamycin/70 kDa Ribosomal S6 Kinase 1, and Mitogen-Activated Protein Kinases Pathways for Regulating Mycobacteria-Induced IL-23 Expression in Human Macrophages. Cell Microbiol. 2006, 8, 1158–1171. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Dutta, R.K.; Khan, M.A.; Ishaq, M.; Sharma, K.; Malhotra, H.; Majumdar, S. IL-27 Inhibits IFN-γ Induced Autophagy by Concomitant Induction of JAK/PI3 K/Akt/mTOR Cascade and up-Regulation of Mcl-1 in Mycobacterium Tuberculosis H37Rv Infected Macrophages. Int. J. Biochem. Cell Biol. 2014, 55, 335–347. [Google Scholar] [CrossRef]
- Poglitsch, M.; Weichhart, T.; Hecking, M.; Werzowa, J.; Katholnig, K.; Antlanger, M.; Krmpotic, A.; Jonjic, S.; Hörl, W.H.; Zlabinger, G.J.; et al. CMV Late Phase-Induced mTOR Activation Is Essential for Efficient Virus Replication in Polarized Human Macrophages. Am. J. Transplant. 2012, 12, 1458–1468. [Google Scholar] [CrossRef] [PubMed]
- Nouwen, L.V.; Everts, B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells 2020, 9, 161. [Google Scholar] [CrossRef]
- Horng, T. mTOR Trains Heightened Macrophage Responses. Trends Immunol. 2015, 36, 1–2. [Google Scholar] [CrossRef]
- Guo, C.; Xu, P.; Luo, W.; Zhang, J.; Sun, X.; Hoang, H.; Ma, D.; Wu, D.; Zhong, J.; Miao, C. The Role of Dectin-1-Akt-RNF146 Pathway in β-Glucan Induced Immune Trained State of Monocyte in Sepsis. J. Inflamm. Res. 2025, 18, 1147–1165. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-C.; Quintin, J.; Cramer, R.A.; Shepardson, K.M.; Saeed, S.; Kumar, V.; Giamarellos-Bourboulis, E.J.; Martens, J.H.A.; Rao, N.A.; Aghajanirefah, A.; et al. mTOR- and HIF-1α-Mediated Aerobic Glycolysis as Metabolic Basis for Trained Immunity. Science 2014, 345, 1250684. [Google Scholar] [CrossRef]
- Yin, L.; Bing, Z.; Zheng, Y.; Pan, Y.; Dong, Y.; Wang, J.; Luo, R.; Zhao, Y.; Dou, H.; Hou, Y. Oroxylin A-Induced Trained Immunity Promotes LC3-Associated Phagocytosis in Macrophage in Protecting Mice Against Sepsis. Inflammation 2024, 47, 2196–2214. [Google Scholar] [CrossRef]
- Shim, E.-H.; Kim, S.-H.; Kim, D.-J.; Jang, Y.-S. Complement C5a Receptor Signaling in Macrophages Enhances Trained Immunity Through mTOR Pathway Activation. Immune Netw. 2024, 24, e24. [Google Scholar] [CrossRef]
- Chen, H.; Song, J.; Zeng, L.; Zha, J.; Zhu, J.; Chen, A.; Liu, Y.; Dong, Z.; Chen, G. Dietary Sodium Modulates mTORC1-Dependent Trained Immunity in Macrophages to Accelerate CKD Development. Biochem. Pharmacol. 2024, 229, 116505. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kumanogoh, A. The Spectrum of Macrophage Activation by Immunometabolism. Int. Immunol. 2020, 32, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Viola, A.; Munari, F.; Sánchez-Rodríguez, R.; Scolaro, T.; Castegna, A. The Metabolic Signature of Macrophage Responses. Front. Immunol. 2019, 10, 1462. [Google Scholar] [CrossRef]
- Wojtowicz, E.E.; Hampton, K.; Moreno-Gonzalez, M.; Utting, C.L.; Lan, Y.; Ruiz, P.; Beasy, G.; Bone, C.; Hellmich, C.; Maynard, R.; et al. Low Protein Diet Protects the Liver from Salmonella Typhimurium-Mediated Injury by Modulating the mTOR/Autophagy Axis in Macrophages. Commun. Biol. 2024, 7, 1219. [Google Scholar] [CrossRef]
- Owen, K.A.; Meyer, C.B.; Bouton, A.H.; Casanova, J.E. Activation of Focal Adhesion Kinase by Salmonella Suppresses Autophagy via an Akt/mTOR Signaling Pathway and Promotes Bacterial Survival in Macrophages. PLoS Pathog. 2014, 10, e1004159. [Google Scholar] [CrossRef]
- Chen, J.; Su, Z.; Wang, G. Dietary Reprogram of Macrophages for Cell Competition: A Promising Strategy for Malignant Cancer Control. Signal Transduct. Target. Ther. 2023, 8, 411. [Google Scholar] [CrossRef]
- Kaur, H.; Moreau, R. Curcumin Steers THP-1 Cells under LPS and mTORC1 Challenges toward Phenotypically Resting, Low Cytokine-Producing Macrophages. J. Nutr. Biochem. 2021, 88, 108553. [Google Scholar] [CrossRef]
- Covarrubias, A.J.; Aksoylar, H.I.; Horng, T. Control of Macrophage Metabolism and Activation by mTOR and Akt Signaling. Semin. Immunol. 2015, 27, 286–296. [Google Scholar] [CrossRef]
- Kaldirim, M.; Lang, A.; Pfeiler, S.; Fiegenbaum, P.; Kelm, M.; Bönner, F.; Gerdes, N. Modulation of mTOR Signaling in Cardiovascular Disease to Target Acute and Chronic Inflammation. Front. Cardiovasc. Med. 2022, 9, 907348. [Google Scholar] [CrossRef]
- Maya-Monteiro, C.M.; Almeida, P.E.; D’Avila, H.; Martins, A.S.; Rezende, A.P.; Castro-Faria-Neto, H.; Bozza, P.T. Leptin Induces Macrophage Lipid Body Formation by a Phosphatidylinositol 3-Kinase- and Mammalian Target of Rapamycin-Dependent Mechanism. J. Biol. Chem. 2008, 283, 2203–2210. [Google Scholar] [CrossRef]
- Maya-Monteiro, C.M.; Bozza, P.T. Leptin and mTOR: Partners in Metabolism and Inflammation. Cell Cycle 2008, 7, 1713–1717. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, A.; Akifusa, S.; Kamio, N.; Hirofuji, T.; Nonaka, K.; Yamashita, Y. Involvement of mTOR in Globular Adiponectin-Induced Generation of Reactive Oxygen Species. Free Radic. Res. 2010, 44, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Lovren, F.; Pan, Y.; Quan, A.; Szmitko, P.E.; Singh, K.K.; Shukla, P.C.; Gupta, M.; Chan, L.; Al-Omran, M.; Teoh, H.; et al. Adiponectin Primes Human Monocytes into Alternative Anti-Inflammatory M2 Macrophages. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H656–H663. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yang, A.; Fan, X.; Liu, H.; Gu, Y.; Wang, Z.; Guo, H.; Fang, J.; Cui, H.; Gou, L.; et al. Resistin Alleviates Lipopolysaccharide-Induced Inflammation in Bovine Alveolar Macrophages by Activating the AMPK/mTOR Signaling Pathway and Autophagy. Heliyon 2024, 10, e38026. [Google Scholar] [CrossRef]
- Toda, G.; Soeda, K.; Okazaki, Y.; Kobayashi, N.; Masuda, Y.; Arakawa, N.; Suwanai, H.; Masamoto, Y.; Izumida, Y.; Kamei, N.; et al. Insulin- and Lipopolysaccharide-Mediated Signaling in Adipose Tissue Macrophages Regulates Postprandial Glycemia through Akt-mTOR Activation. Mol. Cell 2020, 79, 43–53.e4. [Google Scholar] [CrossRef]
- Barrett, T.J.; Corr, E.M.; van Solingen, C.; Schlamp, F.; Brown, E.J.; Koelwyn, G.J.; Lee, A.H.; Shanley, L.C.; Spruill, T.M.; Bozal, F.; et al. Chronic Stress Primes Innate Immune Responses in Mice and Humans. Cell Rep. 2021, 36, 109595. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-Z.; Chao, R.; Qu, S.-L.; Huang, L.; Zhang, C. ZNF667 Suppressed LPS-Induced Macrophages Inflammation through mTOR-Dependent Aerobic Glycolysis Regulation. Curr. Pharm. Des. 2023, 29, 1361–1369. [Google Scholar] [CrossRef] [PubMed]
- Souza-Moreira, L.; Soares, V.C.; Dias, S.D.S.G.; Bozza, P.T. Adipose-Derived Mesenchymal Stromal Cells Modulate Lipid Metabolism and Lipid Droplet Biogenesis via AKT/mTOR -PPARγ Signalling in Macrophages. Sci. Rep. 2019, 9, 20304. [Google Scholar] [CrossRef] [PubMed]
- Keane, L.; Antignano, I.; Riechers, S.-P.; Zollinger, R.; Dumas, A.A.; Offermann, N.; Bernis, M.E.; Russ, J.; Graelmann, F.; McCormick, P.N.; et al. mTOR-Dependent Translation Amplifies Microglia Priming in Aging Mice. J. Clin. Investig. 2021, 131, e132727. [Google Scholar] [CrossRef]
- Wu, M.; Cong, Y.; Wang, K.; Yu, H.; Zhang, X.; Ma, M.; Duan, Z.; Pei, X. Bisphenol A Impairs Macrophages through Inhibiting Autophagy via AMPK/mTOR Signaling Pathway and Inducing Apoptosis. Ecotoxicol. Environ. Saf. 2022, 234, 113395. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.-P.; Sun, Z.-B.; Deng, W.-H.; Yuan, X.-Y.; Lei, Y.; Cai, Y.; Huang, L.; Zhang, Z.-H. Serum-Derived Exosomes from SD Rats Induce Inflammation in Macrophages through the mTOR Pathway. J. Appl. Toxicol. 2022, 42, 1524–1532. [Google Scholar] [CrossRef]
- Choi, H.-W.; Shin, P.-G.; Lee, J.-H.; Choi, W.-S.; Kang, M.-J.; Kong, W.-S.; Oh, M.-J.; Seo, Y.-B.; Kim, G.-D. Anti-Inflammatory Effect of Lovastatin Is Mediated via the Modulation of NF-κB and Inhibition of HDAC1 and the PI3K/Akt/mTOR Pathway in RAW264.7 Macrophages. Int. J. Mol. Med. 2018, 41, 1103–1109. [Google Scholar] [CrossRef]
- O’Shea, A.E.; Valdera, F.A.; Ensley, D.; Smolinsky, T.R.; Cindass, J.L.; Kemp Bohan, P.M.; Hickerson, A.T.; Carpenter, E.L.; McCarthy, P.M.; Adams, A.M.; et al. Immunologic and Dose Dependent Effects of Rapamycin and Its Evolving Role in Chemoprevention. Clin. Immunol. 2022, 245, 109095. [Google Scholar] [CrossRef]
- Martinet, W.; Verheye, S.; De Meyer, I.; Timmermans, J.-P.; Schrijvers, D.M.; Van Brussel, I.; Bult, H.; De Meyer, G.R.Y. Everolimus Triggers Cytokine Release by Macrophages: Rationale for Stents Eluting Everolimus and a Glucocorticoid. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 1228–1235. [Google Scholar] [CrossRef]
- Shah, S.; Mansour, H.M.; Aguilar, T.M.; Lucke-Wold, B. Advances in Anti-Cancer Drug Development: Metformin as Anti-Angiogenic Supplemental Treatment for Glioblastoma. Int. J. Mol. Sci. 2024, 25, 5694. [Google Scholar] [CrossRef]
- Scafidi, A.; Lind-Holm Mogensen, F.; Campus, E.; Pailas, A.; Neumann, K.; Legrave, N.; Bernardin, F.; Pereira, S.L.; Antony, P.M.A.; Nicot, N.; et al. Metformin Impacts the Differentiation of Mouse Bone Marrow Cells into Macrophages Affecting Tumour Immunity. Heliyon 2024, 10, e37792. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, S.; Nemati, M.; Zandvakili, R.; Jafarzadeh, A. Modulation of M1 and M2 Macrophage Polarization by Metformin: Implications for Inflammatory Diseases and Malignant Tumors. Int. Immunopharmacol. 2025, 151, 114345. [Google Scholar] [CrossRef]
- Dai, J.; Jiang, C.; Chen, H.; Chai, Y. Rapamycin Attenuates High Glucose-Induced Inflammation Through Modulation of mTOR/NF-κB Pathways in Macrophages. Front. Pharmacol. 2019, 10, 1292. [Google Scholar] [CrossRef]
- Rizwan, H.; Mohanta, J.; Si, S.; Pal, A. Gold Nanoparticles Reduce High Glucose-Induced Oxidative-Nitrosative Stress Regulated Inflammation and Apoptosis via Tuberin-mTOR/NF-κB Pathways in Macrophages. Int. J. Nanomed. 2017, 12, 5841–5862. [Google Scholar] [CrossRef]
- Woo, Y.; Kim, H.; Kim, K.-C.; Han, J.A.; Jung, Y.-J. Tumor-Secreted Factors Induce IL-1β Maturation via the Glucose-Mediated Synergistic Axis of mTOR and NF-κB Pathways in Mouse Macrophages. PLoS ONE 2018, 13, e0209653. [Google Scholar] [CrossRef]
- Wu, X.; He, W.; Mu, X.; Liu, Y.; Deng, J.; Liu, Y.; Nie, X. Macrophage Polarization in Diabetic Wound Healing. Burns Trauma 2022, 10, tkac051. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-Y.; Lu, J.-H. Autophagy and Macrophage Functions: Inflammatory Response and Phagocytosis. Cells 2019, 9, 70. [Google Scholar] [CrossRef]
- Wang, B.; Zhong, Y.; Li, Q.; Cui, L.; Huang, G. Autophagy of Macrophages Is Regulated by PI3k/Akt/mTOR Signalling in the Development of Diabetic Encephalopathy. Aging 2018, 10, 2772–2782. [Google Scholar] [CrossRef]
- Dunlop, E.A.; Tee, A.R. mTOR and Autophagy: A Dynamic Relationship Governed by Nutrients and Energy. Semin. Cell Dev. Biol. 2014, 36, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; Guan, K.-L. mTOR: A Pharmacologic Target for Autophagy Regulation. J. Clin. Investig. 2015, 125, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Mugume, Y.; Kazibwe, Z.; Bassham, D.C. Target of Rapamycin in Control of Autophagy: Puppet Master and Signal Integrator. Int. J. Mol. Sci. 2020, 21, 8259. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, H.; Qu, T.; Luo, J.; An, P.; Ren, F.; Luo, Y.; Li, Y. mTORC2: A Multifaceted Regulator of Autophagy. Cell Commun. Signal 2023, 21, 4. [Google Scholar] [CrossRef]
- Larabi, A.; Barnich, N.; Nguyen, H.T.T. New Insights into the Interplay between Autophagy, Gut Microbiota and Inflammatory Responses in IBD. Autophagy 2020, 16, 38–51. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Sulaiman, G.M.; Mohsin, M.H.; Mohammed, H.A.; Dawood, R.A.; Albuhadily, A.K.; Al-Gareeb, A.I.; Albukhaty, S.; Abomughaid, M.M. Targeting of AMPK/MTOR Signaling in the Management of Atherosclerosis: Outmost Leveraging. Int. J. Biol. Macromol. 2025, 309, 142933. [Google Scholar] [CrossRef]
- Owaki, R.; Aoki, H.; Toriuchi, K.; Inoue, Y.; Hayashi, H.; Takeshita, S.; Kakita, H.; Yamada, Y.; Aoyama, M. AMPK Activators Suppress Cholesterol Accumulation in Macrophages via Suppression of the mTOR Pathway. Exp. Cell Res. 2023, 432, 113784. [Google Scholar] [CrossRef]
- Zheng, H.; Cui, D.; Quan, X.; Yang, W.; Li, Y.; Zhang, L.; Liu, E. Lp-PLA2 Silencing Protects against Ox-LDL-Induced Oxidative Stress and Cell Apoptosis via Akt/mTOR Signaling Pathway in Human THP1 Macrophages. Biochem. Biophys. Res. Commun. 2016, 477, 1017–1023. [Google Scholar] [CrossRef]
- Martinet, W.; Verheye, S.; De Meyer, G.R.Y. Everolimus-Induced mTOR Inhibition Selectively Depletes Macrophages in Atherosclerotic Plaques by Autophagy. Autophagy 2007, 3, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, L.; Li, M.; Dang, X.; Wan, L.; Wang, N.; Bi, X.; Gu, C.; Qiu, S.; Niu, X.; et al. Knockdown of mTOR by Lentivirus-mediated RNA Interference Suppresses Atherosclerosis and Stabilizes Plaques via a Decrease of Macrophages by Autophagy in Apolipoprotein E-deficient Mice. Int. J. Mol. Med. 2013, 32, 1215–1221. [Google Scholar] [CrossRef]
- Xia, B.; Lu, Y.-L.; Peng, J.; Liang, J.-W.; Li, F.-Q.; Ding, J.-Y.; Wan, C.-W.; Le, C.-Y.; Dai, J.-L.; Wang, J.; et al. Galactin-8 DNA Methylation Mediates Macrophage Autophagy through the MAPK/mTOR Pathway to Alleviate Atherosclerosis. Sci. Rep. 2025, 15, 603. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Liang, J.; Lu, Y.; Ding, J.; Peng, J.; Li, F.; Dai, J.; Liu, Y.; Wang, J.; Wan, C.; et al. Lactoferrin Influences Atherosclerotic Progression by Modulating Macrophagic AMPK/mTOR Signaling-Dependent Autophagy. Sci. Rep. 2025, 15, 10585. [Google Scholar] [CrossRef]
- Zhang, X.; Ajam, A.; Liu, Z.; Peroumal, D.; Khan, S.R.; Razani, B. Leucine Accelerates Atherosclerosis through Dose-Dependent MTOR Activation in Macrophages. Autophagy 2025, 21, 1618–1620. [Google Scholar] [CrossRef]
- Liu, L.; An, Z.; Zhang, H.; Wan, X.; Zhao, X.; Yang, X.; Tian, J.; Song, X. Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Diabetes-Exacerbated Atherosclerosis via AMPK/mTOR Pathway-Mediated Autophagy-Related Macrophage Polarization. Cardiovasc. Diabetol. 2025, 24, 48. [Google Scholar] [CrossRef]
- Yang, Y.-P.; Ren, Y.-G.; Cai, B.-Q.; Huang, D.-D. Homocysteine Suppresses Autophagy Through AMPK-mTOR-TFEB Signaling in Human THP-1 Macrophages. J. Cardiovasc. Pharmacol. 2022, 79, 730–738. [Google Scholar] [CrossRef]
- Ji, Z.; Guo, J.; Zhang, R.; Zuo, W.; Xu, Y.; Qu, Y.; Tao, Z.; Li, X.; Li, Y.; Yao, Y.; et al. ADAM8 Deficiency in Macrophages Promotes Cardiac Repair after Myocardial Infarction via ANXA2-mTOR-Autophagy Pathway. J. Adv. Res. 2025, 73, 483–499. [Google Scholar] [CrossRef] [PubMed]
- Kanmani, S.; Song, X.-M.; Kanmani, P.; Wu, X.-J.; Tan, X.-D.; Liu, J.; Wang, J.-P.; Minshall, R.D.; Hu, G. Enhancement of Autophagy in Macrophages via the P120-Catenin-Mediated mTOR Signaling Pathway. J. Immunol. 2024, 213, 1666–1675. [Google Scholar] [CrossRef]
- Seo, G.; Kim, S.K.; Byun, Y.J.; Oh, E.; Jeong, S.-W.; Chae, G.T.; Lee, S.-B. Hydrogen Peroxide Induces Beclin 1-Independent Autophagic Cell Death by Suppressing the mTOR Pathway via Promoting the Ubiquitination and Degradation of Rheb in GSH-Depleted RAW 264.7 Cells. Free Radic. Res. 2011, 45, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Zhong, X.-P.; Lee, S. Sustained Activation of mTORC1 in Macrophages Increases AMPKα-Dependent Autophagy to Maintain Cellular Homeostasis. BMC Biochem. 2016, 17, 14. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; He, T.; Yang, M.; Xu, J.; Li, Y.; Wang, X.; Guo, X.; Li, M.; Xu, L. Regulation of Bacillus Calmette-Guérin-Induced Macrophage Autophagy and Apoptosis by the AMPK-mTOR-ULK1 Pathway. Microbiol. Res. 2025, 290, 127952. [Google Scholar] [CrossRef]
- Andersson, A.-M.; Andersson, B.; Lorell, C.; Raffetseder, J.; Larsson, M.; Blomgran, R. Autophagy Induction Targeting mTORC1 Enhances Mycobacterium Tuberculosis Replication in HIV Co-Infected Human Macrophages. Sci. Rep. 2016, 6, 28171. [Google Scholar] [CrossRef]
- Wang, Z.; Zhou, S.; Sun, C.; Lei, T.; Peng, J.; Li, W.; Ding, P.; Lu, J.; Zhao, Y. Interferon-γ Inhibits Nonopsonized Phagocytosis of Macrophages via an mTORC1-c/EBPβ Pathway. J. Innate Immun. 2015, 7, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Torsilieri, H.M.; Upchurch, C.M.; Leitinger, N.; Casanova, J.E. Salmonella-Induced Cholesterol Accumulation in Infected Macrophages Suppresses Autophagy via mTORC1 Activation. Mol. Biol. Cell 2025, 36, ar3. [Google Scholar] [CrossRef] [PubMed]
- Jaggi, U.; Matundan, H.H.; Lee, D.H.; Ghiasi, H. Blocking Autophagy in M1 Macrophages Enhances Virus Replication and Eye Disease in Ocularly Infected Transgenic Mice. J. Virol. 2022, 96, e0140122. [Google Scholar] [CrossRef]
- Ji, C.; Pan, Y.; Liu, B.; Liu, J.; Zhao, C.; Nie, Z.; Liao, S.; Kuang, G.; Wu, X.; Liu, Q.; et al. Thioredoxin C of Streptococcus Suis Serotype 2 Contributes to Virulence by Inducing Antioxidative Stress and Inhibiting Autophagy via the MSR1/PI3K-Akt-mTOR Pathway in Macrophages. Vet. Microbiol. 2024, 298, 110263. [Google Scholar] [CrossRef]
- Jin, X.; Zhang, C.; Lin, S.; Gao, T.; Qian, H.; Qu, L.; Yao, J.; Du, X.; Feng, G. Pec 1 of Pseudomonas Aeruginosa Inhibits Bacterial Clearance of Host by Blocking Autophagy in Macrophages. ACS Infect. Dis. 2024, 10, 2741–2754. [Google Scholar] [CrossRef]
- Ma, K.; Xian, W.; Liu, H.; Shu, R.; Ge, J.; Luo, Z.-Q.; Liu, X.; Qiu, J. Bacterial Ubiquitin Ligases Hijack the Host Deubiquitinase OTUB1 to Inhibit MTORC1 Signaling and Promote Autophagy. Autophagy 2024, 20, 1968–1983. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.; Dong, T.; Zhao, W.-J.; Li, H. Impact of Glucocorticoids and Rapamycin on Autophagy in Candida Glabrata-Infected Macrophages from BALB/c Mice. Front. Immunol. 2024, 15, 1367048. [Google Scholar] [CrossRef]
- Yu, J.; Yan, N.; Gong, Z.; Ma, Q.; Liu, J.; Wu, X.; Deng, G. Mycobacterium Manipulate Glutaminase 1 Mediated Glutaminolysis to Regulate Macrophage Autophagy for Bacteria Intracellular Survival. Cell Signal 2024, 124, 111422. [Google Scholar] [CrossRef]
- Shen, J.; Fu, Y.; Liu, F.; Ning, B.; Jiang, X. Ursolic Acid Promotes Autophagy by Inhibiting Akt/mTOR and TNF-α/TNFR1 Signaling Pathways to Alleviate Pyroptosis and Necroptosis in Mycobacterium Tuberculosis-Infected Macrophages. Inflammation 2023, 46, 1749–1763. [Google Scholar] [CrossRef]
- Garg, R.; Borbora, S.M.; Bansia, H.; Rao, S.; Singh, P.; Verma, R.; Balaji, K.N.; Nagaraja, V. Mycobacterium Tuberculosis Calcium Pump CtpF Modulates the Autophagosome in an mTOR-Dependent Manner. Front. Cell Infect. Microbiol. 2020, 10, 461. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Orozco, M.; Strong, E.J.; Paroha, R.; Lee, S. Reversing BCG-Mediated Autophagy Inhibition and Mycobacterial Survival to Improve Vaccine Efficacy. BMC Immunol. 2022, 23, 43. [Google Scholar] [CrossRef]
- Lin, D.; Gao, Y.; Zhao, L.; Chen, Y.; An, S.; Peng, Z. Enterococcus Faecalis Lipoteichoic Acid Regulates Macrophages Autophagy via PI3K/Akt/mTOR Pathway. Biochem. Biophys. Res. Commun. 2018, 498, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Evans, T.D.; Chen, S.; Sergin, I.; Stitham, J.; Jeong, S.-J.; Rodriguez-Velez, A.; Yeh, Y.-S.; Park, A.; Jung, I.-H.; et al. Loss of Macrophage mTORC2 Drives Atherosclerosis via FoxO1 and IL-1β Signaling. Circ. Res. 2023, 133, 200–219. [Google Scholar] [CrossRef] [PubMed]
- Katholnig, K.; Schütz, B.; Fritsch, S.D.; Schörghofer, D.; Linke, M.; Sukhbaatar, N.; Matschinger, J.M.; Unterleuthner, D.; Hirtl, M.; Lang, M.; et al. Inactivation of mTORC2 in Macrophages Is a Signature of Colorectal Cancer That Promotes Tumorigenesis. JCI Insight 2019, 4, e124164. [Google Scholar] [CrossRef]
- Jumaniyazova, E.; Lokhonina, A.; Dzhalilova, D.; Miroshnichenko, E.; Kosyreva, A.; Fatkhudinov, T. The Role of Macrophages in Various Types of Tumors and the Possibility of Their Use as Targets for Antitumor Therapy. Cancers 2025, 17, 342. [Google Scholar] [CrossRef]
- Liang, C.; Wang, S.; Wu, C.; Wang, J.; Xu, L.; Wan, S.; Zhang, X.; Hou, Y.; Xia, Y.; Xu, L.; et al. Role of the AKT Signaling Pathway in Regulating Tumor-Associated Macrophage Polarization and in the Tumor Microenvironment: A Review. Medicine 2025, 104, e41379. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, L.; Zhai, Y.; Zhao, Q.; Peng, J.; Zhang, H.; Yang, Z.; Zhang, L.; Ding, W.; Zhao, Y. TSC1 Controls IL-1β Expression in Macrophages via mTORC1-Dependent C/EBPβ Pathway. Cell Mol. Immunol. 2016, 13, 640–650. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xia, Y.; He, F.; Fu, J.; Xin, Z.; Deng, B.; He, L.; Zhou, X.; Ren, W. Serine Supports IL-1β Production in Macrophages Through mTOR Signaling. Front. Immunol. 2020, 11, 1866. [Google Scholar] [CrossRef]
- Ueda, Y.; Saegusa, J.; Okano, T.; Sendo, S.; Yamada, H.; Nishimura, K.; Morinobu, A. Additive Effects of Inhibiting Both mTOR and Glutamine Metabolism on the Arthritis in SKG Mice. Sci. Rep. 2019, 9, 6374. [Google Scholar] [CrossRef]
- He, L.; Weber, K.J.; Schilling, J.D. Glutamine Modulates Macrophage Lipotoxicity. Nutrients 2016, 8, 215. [Google Scholar] [CrossRef]
- He, L.; Weber, K.J.; Diwan, A.; Schilling, J.D. Inhibition of mTOR Reduces Lipotoxic Cell Death in Primary Macrophages through an Autophagy-Independent Mechanism. J. Leukoc. Biol. 2016, 100, 1113–1124. [Google Scholar] [CrossRef]
- Bao, H.R.; Chen, J.L.; Li, F.; Zeng, X.L.; Liu, X.J. Relationship between PI3K/mTOR/RhoA Pathway-Regulated Cytoskeletal Rearrangements and Phagocytic Capacity of Macrophages. Braz. J. Med. Biol. Res. 2020, 53, e9207. [Google Scholar] [CrossRef]
- Fox, R.; Nhan, T.Q.; Law, G.L.; Morris, D.R.; Liles, W.C.; Schwartz, S.M. PSGL-1 and mTOR Regulate Translation of ROCK-1 and Physiological Functions of Macrophages. EMBO J. 2007, 26, 505–515. [Google Scholar] [CrossRef]
- Lima, É.D.A.; Cavalcante-Silva, L.H.A.; Carvalho, D.C.M.; Soares, M.M.; Medeiros, A.B.A.; Netto, C.D.; Costa, P.R.R.; Rodrigues-Mascarenhas, S. Immunomodulatory Effects of Pterocarpanquinone LQB-118 in Murine Peritoneal Macrophages. Immunol. Investig. 2025, 54, 494–505. [Google Scholar] [CrossRef] [PubMed]
- Murokawa, H.; Egusa, K.; Shibutani, S.; Iwata, H. Mechanistic/Mammalian Target of Rapamycin Complex 1 (mTORC1) Signaling Is Involved in Phagocytosis Activation during THP-1 Cell Differentiation. J. Vet. Med. Sci. 2023, 85, 772–780. [Google Scholar] [CrossRef]
- Wang, B.; Cao, X.; Garcia-Mansfield, K.; Zhou, J.; Manousopoulou, A.; Pirrotte, P.; Wang, Y.; Wang, L.D.; Feng, M. Phosphoproteomic Profiling Reveals mTOR Signaling in Sustaining Macrophage Phagocytosis of Cancer Cells. Cancers 2024, 16, 4238. [Google Scholar] [CrossRef] [PubMed]
- Shiratsuchi, H.; Basson, M.D. Akt2, but Not Akt1 or Akt3 Mediates Pressure-Stimulated Serum-Opsonized Latex Bead Phagocytosis through Activating mTOR and P70 S6 Kinase. J. Cell Biochem. 2007, 102, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-H.; Ma, Y.; Zheng, M.-M.; Chen, N.; Hu, M.-N.; Wu, L.-Y.; Zheng, Y.; Lou, Y.-L.; Xie, D.-L. NLRP3 and mTOR Reciprocally Regulate Macrophage Phagolysosome Formation and Acidification Against Vibrio Vulnificus Infection. Front. Cell Dev. Biol. 2020, 8, 587961. [Google Scholar] [CrossRef]
- Amaya, L.; Abe, B.; Liu, J.; Zhao, F.; Zhang, W.L.; Chen, R.; Li, R.; Wang, S.; Kamber, R.A.; Tsai, M.-C.; et al. Pathways for Macrophage Uptake of Cell-Free Circular RNAs. Mol. Cell 2024, 84, 2104–2118.e6. [Google Scholar] [CrossRef]
- Kang, Y.; Wu, T.; He, Y.; He, Y.; Zhao, D. Elf4 Regulates Lysosomal Biogenesis and the mTOR Pathway to Promote Clearance of Staphylococcus Aureus in Macrophages. FEBS Lett. 2021, 595, 881–891. [Google Scholar] [CrossRef]
- Huang, X.-H.; Wang, Y.; Wu, L.-Y.; Jiang, Y.-L.; Ma, L.-J.; Shi, X.-F.; Wang, X.; Zheng, M.-M.; Tang, L.; Lou, Y.-L.; et al. mTORC2 Is Crucial for Regulating the Recombinant Mycobacterium Tuberculosis CFP-10 Protein-Induced Phagocytosis in Macrophages. BMC Immunol. 2025, 26, 36. [Google Scholar] [CrossRef]
- Jia, Z.; Niu, L.; Guo, J.; Wang, J.; Li, H.; Liu, R.; Liu, N.; Zhang, S.; Wang, F.; Ge, J. Pathogen-Derived Peptidoglycan Skeleton Enhances Innate Immune Defense against Staphylococcus Aureus via mTOR-HIF-1α-HK2-Mediated Trained Immunity. Microbiol. Res. 2025, 296, 128160. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhou, Y.; Zhang, B.; Liang, X.; Feng, J.; Huang, Y.; Weng, S.; Xu, Y.; Su, H. Mucosal Recombinant BCG Vaccine Induces Lung-Resident Memory Macrophages and Enhances Trained Immunity via mTORC2/HK1-Mediated Metabolic Rewiring. J. Biol. Chem. 2024, 300, 105518. [Google Scholar] [CrossRef]
- Yu, F.-Y.; Zheng, K.; Wu, Y.-F.; Gao, S.-W.; Weng, Q.-Y.; Zhu, C.; Wu, Y.-P.; Li, M.; Qin, Z.-N.; Lou, J.-F.; et al. Rapamycin Exacerbates Staphylococcus Aureus Pneumonia by Inhibiting mTOR-RPS6 in Macrophages. J. Inflamm. Res. 2023, 16, 5715–5728. [Google Scholar] [CrossRef]
- Falcon-Rodriguez, C.I.; De Vizcaya-Ruiz, A.; Rosas-Pérez, I.A.; Osornio-Vargas, Á.R.; Segura-Medina, P. Inhalation of Concentrated PM2.5 from Mexico City Acts as an Adjuvant in a Guinea Pig Model of Allergic Asthma. Environ. Pollut. 2017, 228, 474–483. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, C.; Zhao, G.; Li, M.; Ma, D.; Meng, Q.; Tang, W.; Huang, Q.; Shi, P.; Li, Y.; et al. PM2.5 Synergizes With Pseudomonas Aeruginosa to Suppress Alveolar Macrophage Function in Mice Through the mTOR Pathway. Front. Pharmacol. 2022, 13, 924242. [Google Scholar] [CrossRef]
- Chen, S.; Chen, L.; Ye, L.; Jiang, Y.; Li, Q.; Zhang, H.; Zhang, R.; Li, H.; Yu, D.; Zhang, R.; et al. PP2A-mTOR-p70S6K/4E-BP1 Axis Regulates M1 Polarization of Pulmonary Macrophages and Promotes Ambient Particulate Matter Induced Mouse Lung Injury. J. Hazard. Mater. 2022, 424, 127624. [Google Scholar] [CrossRef] [PubMed]
- Wan, Q.; Yang, M.; Liu, Z.; Wu, J. Atmospheric Fine Particulate Matter Exposure Exacerbates Atherosclerosis in Apolipoprotein E Knockout Mice by Inhibiting Autophagy in Macrophages via the PI3K/Akt/mTOR Signaling Pathway. Ecotoxicol. Environ. Saf. 2021, 208, 111440. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Jin, X.; Zhang, W.; Li, Z.; Liu, X.; Ren, J. Particulate Matter Exposure Induces the Autophagy of Macrophages via Oxidative Stress-Mediated PI3K/AKT/mTOR Pathway. Chemosphere 2017, 167, 444–453. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Y.; Chen, H.-P.; Zhu, C.; Dong, L.; Wang, Y.; Liu, H.; Xu, X.; Zhou, J.; Wu, Y.; et al. MTOR Suppresses Environmental Particle-Induced Inflammatory Response in Macrophages. J. Immunol. 2018, 200, 2826–2834. [Google Scholar] [CrossRef]
- Maiese, K. The Mechanistic Target of Rapamycin (mTOR): Novel Considerations as an Antiviral Treatment. Curr. Neurovasc Res. 2020, 17, 332–337. [Google Scholar] [CrossRef]
- Kjell, J.; Codeluppi, S.; Josephson, A.; Abrams, M.B. Spatial and Cellular Characterization of mTORC1 Activation after Spinal Cord Injury Reveals Biphasic Increase Mainly Attributed to Microglia/Macrophages. Brain Pathol. 2014, 24, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-F.; Liao, Y.; Alam, M.M.; Mathur, R.; Feustel, P.; Mazurkiewicz, J.E.; Adamo, M.A.; Zhu, X.C.; Huang, Y. Microglial mTOR Is Neuronal Protective and Antiepileptogenic in the Pilocarpine Model of Temporal Lobe Epilepsy. J. Neurosci. 2020, 40, 7593–7608. [Google Scholar] [CrossRef] [PubMed]
- Hipolito, V.E.B.; Diaz, J.A.; Tandoc, K.V.; Oertlin, C.; Ristau, J.; Chauhan, N.; Saric, A.; Mclaughlan, S.; Larsson, O.; Topisirovic, I.; et al. Enhanced Translation Expands the Endo-Lysosome Size and Promotes Antigen Presentation during Phagocyte Activation. PLoS Biol. 2019, 17, e3000535. [Google Scholar] [CrossRef] [PubMed]
- Saric, A.; Hipolito, V.E.B.; Kay, J.G.; Canton, J.; Antonescu, C.N.; Botelho, R.J. mTOR Controls Lysosome Tubulation and Antigen Presentation in Macrophages and Dendritic Cells. Mol. Biol. Cell 2016, 27, 321–333. [Google Scholar] [CrossRef]
- Kellersch, B.; Brocker, T. Langerhans Cell Homeostasis in Mice Is Dependent on mTORC1 but Not mTORC2 Function. Blood 2013, 121, 298–307. [Google Scholar] [CrossRef]
- Ivanov, S.S.; Roy, C.R. Pathogen Signatures Activate a Ubiquitination Pathway That Modulates the Function of the Metabolic Checkpoint Kinase mTOR. Nat. Immunol. 2013, 14, 1219–1228. [Google Scholar] [CrossRef]
- Huckestein, B.R.; Zeng, K.; Westcott, R.; Alder, J.K.; Antos, D.; Kolls, J.K.; Alcorn, J.F. Mammalian Target of Rapamycin Complex 1 Activation in Macrophages Contributes to Persistent Lung Inflammation Following Respiratory Tract Viral Infection. Am. J. Pathol. 2024, 194, 384–401. [Google Scholar] [CrossRef]
- Dias, J.; Cattin, A.; Bendoumou, M.; Dutilleul, A.; Lodge, R.; Goulet, J.-P.; Fert, A.; Raymond Marchand, L.; Wiche Salinas, T.R.; Ngassaki Yoka, C.-D.; et al. Retinoic Acid Enhances HIV-1 Reverse Transcription and Transcription in Macrophages via mTOR-Modulated Mechanisms. Cell Rep. 2024, 43, 114414. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. Macrophages and the Regulation of Self-Reactive T Cells. Curr. Pharm. Des. 2003, 9, 257–264. [Google Scholar] [CrossRef]
- Muntjewerff, E.M.; Meesters, L.D.; van den Bogaart, G. Antigen Cross-Presentation by Macrophages. Front. Immunol. 2020, 11, 1276. [Google Scholar] [CrossRef]
- Germic, N.; Frangez, Z.; Yousefi, S.; Simon, H.-U. Regulation of the Innate Immune System by Autophagy: Monocytes, Macrophages, Dendritic Cells and Antigen Presentation. Cell Death Differ. 2019, 26, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Weichhart, T.; Haidinger, M.; Katholnig, K.; Kopecky, C.; Poglitsch, M.; Lassnig, C.; Rosner, M.; Zlabinger, G.J.; Hengstschläger, M.; Müller, M.; et al. Inhibition of mTOR Blocks the Anti-Inflammatory Effects of Glucocorticoids in Myeloid Immune Cells. Blood 2011, 117, 4273–4283. [Google Scholar] [CrossRef]
- Zhang, W.; Sha, Z.; Tang, Y.; Jin, C.; Gao, W.; Chen, C.; Yu, L.; Lv, N.; Liu, S.; Xu, F.; et al. Defective Lamtor5 Leads to Autoimmunity by Deregulating V-ATPase and Lysosomal Acidification. Adv. Sci. 2024, 11, e2400446. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Phan, V.; Luo, X.; Cao, D.J. The Mechanistic Target of Rapamycin Complex 1 Critically Regulates the Function of Mononuclear Phagocytes and Promotes Cardiac Remodeling in Acute Ischemia. J. Mol. Cell Cardiol. 2021, 159, 62–79. [Google Scholar] [CrossRef]
- Bird, L. Macrophages: mTORC1 Drives Granulomas. Nat. Rev. Immunol. 2017, 17, 148–149. [Google Scholar] [CrossRef]
- Linke, M.; Pham, H.T.T.; Katholnig, K.; Schnöller, T.; Miller, A.; Demel, F.; Schütz, B.; Rosner, M.; Kovacic, B.; Sukhbaatar, N.; et al. Chronic Signaling via the Metabolic Checkpoint Kinase mTORC1 Induces Macrophage Granuloma Formation and Marks Sarcoidosis Progression. Nat. Immunol. 2017, 18, 293–302. [Google Scholar] [CrossRef]
- Monteith, A.J.; Vincent, H.A.; Kang, S.; Li, P.; Claiborne, T.M.; Rajfur, Z.; Jacobson, K.; Moorman, N.J.; Vilen, B.J. mTORC2 Activity Disrupts Lysosome Acidification in Systemic Lupus Erythematosus by Impairing Caspase-1 Cleavage of Rab39a. J. Immunol. 2018, 201, 371–382. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, J.; Liu, Y.; Dong, Z.; Liu, H.; Liu, Y.; Zhou, X.; Liu, F.; Chen, G. Lipopolysaccharide Induces Chronic Kidney Injury and Fibrosis through Activation of mTOR Signaling in Macrophages. Am. J. Nephrol. 2015, 42, 305–317. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, H.; Wang, C.; Peng, Y.; Sun, L.; Liu, H.; Liu, F. Rapamycin Ameliorates Kidney Fibrosis by Inhibiting the Activation of mTOR Signaling in Interstitial Macrophages and Myofibroblasts. PLoS ONE 2012, 7, e33626. [Google Scholar] [CrossRef]
- Foey, A.; Green, P.; Foxwell, B.; Feldmann, M.; Brennan, F. Cytokine-Stimulated T Cells Induce Macrophage IL-10 Production Dependent on Phosphatidylinositol 3-Kinase and p70S6K: Implications for Rheumatoid Arthritis. Arthritis Res. 2002, 4, 64–70. [Google Scholar] [CrossRef]
- Kim, B.; Kim, H.Y.; Yoon, B.R.; Yeo, J.; In Jung, J.; Yu, K.-S.; Kim, H.C.; Yoo, S.-J.; Park, J.K.; Kang, S.W.; et al. Cytoplasmic Zinc Promotes IL-1β Production by Monocytes and Macrophages through mTORC1-Induced Glycolysis in Rheumatoid Arthritis. Sci. Signal 2022, 15, eabi7400. [Google Scholar] [CrossRef] [PubMed]
- Huynh, L.; Kusnadi, A.; Park, S.H.; Murata, K.; Park-Min, K.-H.; Ivashkiv, L.B. Opposing Regulation of the Late Phase TNF Response by mTORC1-IL-10 Signaling and Hypoxia in Human Macrophages. Sci. Rep. 2016, 6, 31959. [Google Scholar] [CrossRef]
- George, D.; Salmeron, A. Cot/Tpl-2 Protein Kinase as a Target for the Treatment of Inflammatory Disease. Curr. Top. Med. Chem. 2009, 9, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Sun, Y.; Zhao, L.; Shi, X. NLRP3 Inflammasome and Its Role in Autoimmune Diseases: A Promising Therapeutic Target. Biomed. Pharmacother. 2024, 175, 116679. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, X.; Pan, Y.; Shi, G.; Ren, J.; Fan, H.; Dou, H.; Hou, Y. mTOR Regulates NLRP3 Inflammasome Activation via Reactive Oxygen Species in Murine Lupus. Acta Biochim. Biophys. Sin. 2018, 50, 888–896. [Google Scholar] [CrossRef]
- Yang, F.; Ye, X.-J.; Chen, M.-Y.; Li, H.-C.; Wang, Y.-F.; Zhong, M.-Y.; Zhong, C.-S.; Zeng, B.; Xu, L.-H.; He, X.-H.; et al. Inhibition of NLRP3 Inflammasome Activation and Pyroptosis in Macrophages by Taraxasterol Is Associated With Its Regulation on mTOR Signaling. Front. Immunol. 2021, 12, 632606. [Google Scholar] [CrossRef]
- Evavold, C.L.; Hafner-Bratkovič, I.; Devant, P.; D’Andrea, J.M.; Ngwa, E.M.; Boršić, E.; Doench, J.G.; LaFleur, M.W.; Sharpe, A.H.; Thiagarajah, J.R.; et al. Control of Gasdermin D Oligomerization and Pyroptosis by the Ragulator-Rag-mTORC1 Pathway. Cell 2021, 184, 4495–4511.e19. [Google Scholar] [CrossRef]
- Qi, W.; Jin, L.; Huang, S.; Aikebaier, A.; Xue, S.; Wang, Q.; Chen, Q.; Lu, Y.; Ding, C. Modulating Synovial Macrophage Pyroptosis and Mitophagy Interactions to Mitigate Osteoarthritis Progression Using Functionalized Nanoparticles. Acta Biomater. 2024, 181, 425–439. [Google Scholar] [CrossRef]
- Yao, R.; Chen, Y.; Hao, H.; Guo, Z.; Cheng, X.; Ma, Y.; Ji, Q.; Yang, X.; Wang, Y.; Li, X.; et al. Pathogenic Effects of Inhibition of mTORC1/STAT3 Axis Facilitates Staphylococcus Aureus-Induced Pyroptosis in Human Macrophages. Cell Commun. Signal 2020, 18, 187. [Google Scholar] [CrossRef]
- Broz, P. Pyroptosis: Molecular Mechanisms and Roles in Disease. Cell Res. 2025, 35, 334–344. [Google Scholar] [CrossRef]
- Wang, C.; Ma, J.; Xu, M.; Gao, J.; Zhao, W.; Yao, Y.; Shang, Q. mTORC1 Signaling Pathway Regulates Macrophages in Choroidal Neovascularization. Mol. Immunol. 2020, 121, 72–80. [Google Scholar] [CrossRef]
- Zhang, F.; Cheng, T.; Zhang, S.-X. Mechanistic Target of Rapamycin (mTOR): A Potential New Therapeutic Target for Rheumatoid Arthritis. Arthritis Res. Ther. 2023, 25, 187. [Google Scholar] [CrossRef] [PubMed]
- Säemann, M.D.; Haidinger, M.; Hecking, M.; Hörl, W.H.; Weichhart, T. The Multifunctional Role of mTOR in Innate Immunity: Implications for Transplant Immunity. Am. J. Transplant. 2009, 9, 2655–2661. [Google Scholar] [CrossRef]
- Ning, S.; Zhang, Z.; Zhou, C.; Wang, B.; Liu, Z.; Feng, B. Cross-Talk between Macrophages and Gut Microbiota in Inflammatory Bowel Disease: A Dynamic Interplay Influencing Pathogenesis and Therapy. Front. Med. 2024, 11, 1457218. [Google Scholar] [CrossRef]
- Han, R.; Gao, J.; Zhai, H.; Xiao, J.; Ding, Y.; Hao, J. RAD001 (Everolimus) Attenuates Experimental Autoimmune Neuritis by Inhibiting the mTOR Pathway, Elevating Akt Activity and Polarizing M2 Macrophages. Exp. Neurol. 2016, 280, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Hegarty, L.M.; Jones, G.-R.; Bain, C.C. Macrophages in Intestinal Homeostasis and Inflammatory Bowel Disease. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 538–553. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Suo, Z.; Lin, J.; Cong, Y.; Liu, Z. Monocyte-Macrophages Modulate Intestinal Homeostasis in Inflammatory Bowel Disease. Biomark. Res. 2024, 12, 76. [Google Scholar] [CrossRef]
- Afzal, O.; Altamimi, A.S.A.; Mubeen, B.; Alzarea, S.I.; Almalki, W.H.; Al-Qahtani, S.D.; Atiya, E.M.; Al-Abbasi, F.A.; Ali, F.; Ullah, I.; et al. mTOR as a Potential Target for the Treatment of Microbial Infections, Inflammatory Bowel Diseases, and Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 12470. [Google Scholar] [CrossRef]
- Brandt, M.; Grazioso, T.P.; Fawal, M.-A.; Tummala, K.S.; Torres-Ruiz, R.; Rodriguez-Perales, S.; Perna, C.; Djouder, N. mTORC1 Inactivation Promotes Colitis-Induced Colorectal Cancer but Protects from APC Loss-Dependent Tumorigenesis. Cell Metab. 2018, 27, 118–135.e8. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, H.; Liu, Y.; Wang, X.; He, F.; Tang, L. Activation of mTORC1 by LSECtin in Macrophages Directs Intestinal Repair in Inflammatory Bowel Disease. Cell Death Dis. 2020, 11, 918. [Google Scholar] [CrossRef]
- Fritsch, S.D.; Sukhbaatar, N.; Gonzales, K.; Sahu, A.; Tran, L.; Vogel, A.; Mazic, M.; Wilson, J.L.; Forisch, S.; Mayr, H.; et al. Metabolic Support by Macrophages Sustains Colonic Epithelial Homeostasis. Cell Metab. 2023, 35, 1931–1943.e8. [Google Scholar] [CrossRef] [PubMed]
- Weichhart, T.; Costantino, G.; Poglitsch, M.; Rosner, M.; Zeyda, M.; Stuhlmeier, K.M.; Kolbe, T.; Stulnig, T.M.; Hörl, W.H.; Hengstschläger, M.; et al. The TSC-mTOR Signaling Pathway Regulates the Innate Inflammatory Response. Immunity 2008, 29, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Hedl, M.; Abraham, C. Secretory Mediators Regulate Nod2-Induced Tolerance in Human Macrophages. Gastroenterology 2011, 140, 231–241. [Google Scholar] [CrossRef]
- Gutiérrez-Martínez, I.Z.; Rubio, J.F.; Piedra-Quintero, Z.L.; Lopez-Mendez, O.; Serrano, C.; Reyes-Maldonado, E.; Salinas-Lara, C.; Betanzos, A.; Shibayama, M.; Silva-Olivares, A.; et al. mTORC1 Prevents Epithelial Damage During Inflammation and Inhibits Colitis-Associated Colorectal Cancer Development. Transl. Oncol. 2019, 12, 24–35. [Google Scholar] [CrossRef]
- Kaur, H.; Moreau, R. Role of mTORC1 in Intestinal Epithelial Repair and Tumorigenesis. Cell Mol. Life Sci. 2019, 76, 2525–2546. [Google Scholar] [CrossRef]
- Kaur, H.; Erickson, A.; Moreau, R. Divergent Regulation of Inflammatory Cytokines by mTORC1 in THP-1-Derived Macrophages and Intestinal Epithelial Caco-2 Cells. Life Sci. 2021, 284, 119920. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, Y.; Chen, X.-F.; Yang, S.-L.; Tang, X.-L.; Xiang, Z.-G. Intestinal Macrophage Autophagy and Its Pharmacological Application in Inflammatory Bowel Disease. Front. Pharmacol. 2021, 12, 803686. [Google Scholar] [CrossRef]
- Shao, B.-Z.; Wang, S.-L.; Fang, J.; Li, Z.-S.; Bai, Y.; Wu, K. Alpha7 Nicotinic Acetylcholine Receptor Alleviates Inflammatory Bowel Disease Through Induction of AMPK-mTOR-p70S6K-Mediated Autophagy. Inflammation 2019, 42, 1666–1679. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zhong, X.; Ji, H.; Yang, S.; Jin, J.; Lyu, C.; Ren, Y.; Xiao, Y.; Zhang, Y.; Fang, S.; et al. Macrophage α7nAChR Alleviates the Inflammation of Neonatal Necrotizing Enterocolitis through mTOR/NLRP3/IL-1β Pathway. Int. Immunopharmacol. 2024, 139, 112590. [Google Scholar] [CrossRef]
- Youssef, M.E.; Abd El-Fattah, E.E.; Abdelhamid, A.M.; Eissa, H.; El-Ahwany, E.; Amin, N.A.; Hetta, H.F.; Mahmoud, M.H.; Batiha, G.E.-S.; Gobba, N.; et al. Interference With the AMPKα/mTOR/NLRP3 Signaling and the IL-23/IL-17 Axis Effectively Protects Against the Dextran Sulfate Sodium Intoxication in Rats: A New Paradigm in Empagliflozin and Metformin Reprofiling for the Management of Ulcerative Colitis. Front. Pharmacol. 2021, 12, 719984. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.-C.; Chiu, P.-Y.; Chen, Y.; Mak, T.W.; Chen, N.-J. TREM-1-Dependent M1 Macrophage Polarization Restores Intestinal Epithelium Damaged by DSS-Induced Colitis by Activating IL-22-Producing Innate Lymphoid Cells. J. Biomed. Sci. 2019, 26, 46. [Google Scholar] [CrossRef]
- Kökten, T.; Gibot, S.; Lepage, P.; D’Alessio, S.; Hablot, J.; Ndiaye, N.-C.; Busby-Venner, H.; Monot, C.; Garnier, B.; Moulin, D.; et al. TREM-1 Inhibition Restores Impaired Autophagy Activity and Reduces Colitis in Mice. J. Crohns Colitis 2018, 12, 230–244. [Google Scholar] [CrossRef]
- Zhong, W.-J.; Zhang, J.; Duan, J.-X.; Zhang, C.-Y.; Ma, S.-C.; Li, Y.-S.; Yang, N.-S.-Y.; Yang, H.-H.; Xiong, J.-B.; Guan, C.-X.; et al. TREM-1 Triggers Necroptosis of Macrophages through mTOR-Dependent Mitochondrial Fission during Acute Lung Injury. J. Transl. Med. 2023, 21, 179. [Google Scholar] [CrossRef]
- Jesudason, C.D.; Mason, E.R.; Chu, S.; Oblak, A.L.; Javens-Wolfe, J.; Moussaif, M.; Durst, G.; Hipskind, P.; Beck, D.E.; Dong, J.; et al. SHIP1 Therapeutic Target Enablement: Identification and Evaluation of Inhibitors for the Treatment of Late-Onset Alzheimer’s Disease. Alzheimer’s Dement. 2023, 9, e12429. [Google Scholar] [CrossRef]
- Hoshi, N.; Schenten, D.; Nish, S.A.; Walther, Z.; Gagliani, N.; Flavell, R.A.; Reizis, B.; Shen, Z.; Fox, J.G.; Iwasaki, A.; et al. MyD88 Signalling in Colonic Mononuclear Phagocytes Drives Colitis in IL-10-Deficient Mice. Nat. Commun. 2012, 3, 1120. [Google Scholar] [CrossRef]
- Ip, W.K.E.; Hoshi, N.; Shouval, D.S.; Snapper, S.; Medzhitov, R. Anti-Inflammatory Effect of IL-10 Mediated by Metabolic Reprogramming of Macrophages. Science 2017, 356, 513–519. [Google Scholar] [CrossRef]
- Foltyn, M.; Luger, A.-L.; Lorenz, N.I.; Sauer, B.; Mittelbronn, M.; Harter, P.N.; Steinbach, J.P.; Ronellenfitsch, M.W. The Physiological mTOR Complex 1 Inhibitor DDIT4 Mediates Therapy Resistance in Glioblastoma. Br. J. Cancer 2019, 120, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Zhang, Y.; Diao, Y.; Fan, S. Paeonol Regulates the DDIT4-mTOR Signaling Pathway in Macrophages to Promote Diabetic Wound Healing. Int. Immunopharmacol. 2025, 151, 114347. [Google Scholar] [CrossRef]
- Wąsik, M.; Nazimek, K.; Bryniarski, K. Regulatory B Cell Phenotype and Mechanism of Action: The Impact of Stimulating Conditions. Microbiol. Immunol. 2018, 62, 485–496. [Google Scholar] [CrossRef] [PubMed]
- Rawat, S.S.; Keshri, A.K.; Arora, N.; Kaur, R.; Mishra, A.; Kumar, R.; Prasad, A. Taenia Solium Cysticerci’s Extracellular Vesicles Attenuate the AKT/mTORC1 Pathway for Alleviating DSS-Induced Colitis in a Murine Model. J. Extracell. Vesicles 2024, 13, e12448. [Google Scholar] [CrossRef]
- Zhou, T.; Ye, Y.; Chen, W.; Wang, Y.; Ding, L.; Liu, Y.; Luo, L.; Wei, L.; Chen, J.; Bian, Z. Glaucocalyxin A Alleviates Ulcerative Colitis by Inhibiting PI3K/AKT/mTOR Signaling. Sci. Rep. 2025, 15, 6556. [Google Scholar] [CrossRef]
- Zhao, J.; Sun, Y.; Shi, P.; Dong, J.-N.; Zuo, L.-G.; Wang, H.-G.; Gong, J.-F.; Li, Y.; Gu, L.-L.; Li, N.; et al. Celastrol Ameliorates Experimental Colitis in IL-10 Deficient Mice via the up-Regulation of Autophagy. Int. Immunopharmacol. 2015, 26, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Tong, S.; Yan, C.; Zhou, A.; Wang, M.; Li, C. Triptolide Attenuates LPS-Induced Activation of RAW 264.7 Macrophages by Inducing M1-to-M2 Repolarization via the mTOR/STAT3 Signaling. Immunopharmacol. Immunotoxicol. 2022, 44, 894–901. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, Q.; Wang, X.; Zhou, H.; Hu, J.; Gu, L.; Hu, Y.; Zeng, F.; Zhao, F.; Yue, C.; et al. Pathogenesis, Multi-Omics Research, and Clinical Treatment of Psoriasis. J. Autoimmun. 2022, 133, 102916. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, H.; Lin, W.; Lu, L.; Su, J.; Chen, X. Signaling Pathways and Targeted Therapies for Psoriasis. Signal Transduct. Target. Ther. 2023, 8, 437. [Google Scholar] [CrossRef]
- Joo, K.; Karsulovic, C.; Sore, M.; Hojman, L. Pivotal Role of mTOR in Non-Skin Manifestations of Psoriasis. Int. J. Mol. Sci. 2024, 25, 6778. [Google Scholar] [CrossRef]
- Bürger, C.; Shirsath, N.; Lang, V.; Diehl, S.; Kaufmann, R.; Weigert, A.; Han, Y.-Y.; Ringel, C.; Wolf, P. Blocking mTOR Signalling with Rapamycin Ameliorates Imiquimod-Induced Psoriasis in Mice. Acta Derm. Venereol. 2017, 97, 1087–1094. [Google Scholar] [CrossRef]
- Roy, T.; Banang-Mbeumi, S.; Boateng, S.T.; Ruiz, E.M.; Chamcheu, R.-C.N.; Kang, L.; King, J.A.; Walker, A.L.; Nagalo, B.M.; Kousoulas, K.G.; et al. Dual Targeting of mTOR/IL-17A and Autophagy by Fisetin Alleviates Psoriasis-like Skin Inflammation. Front. Immunol. 2022, 13, 1075804. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wang, Z.; Chen, L.; Xu, W.; Wu, B. Photobiomodulation Activates Undifferentiated Macrophages and Promotes M1/M2 Macrophage Polarization via PI3K/AKT/mTOR Signaling Pathway. Lasers Med. Sci. 2023, 38, 86. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Kou, J.; Han, X.; Li, X.; Zhong, Z.; Liu, Z.; Zheng, Y.; Tian, Y.; Yang, L. ROS-Dependent Activation of Autophagy through the PI3K/Akt/mTOR Pathway Is Induced by Hydroxysafflor Yellow A-Sonodynamic Therapy in THP-1 Macrophages. Oxid. Med. Cell Longev. 2017, 2017, 8519169. [Google Scholar] [CrossRef]
- Chen, W.; Ghobrial, R.M.; Li, X.C.; Kloc, M. Inhibition of RhoA and mTORC2/Rictor by Fingolimod (FTY720) Induces P21-Activated Kinase 1, PAK-1 and Amplifies Podosomes in Mouse Peritoneal Macrophages. Immunobiology 2018, 223, 634–647. [Google Scholar] [CrossRef] [PubMed]
- Vakrakou, A.G.; Alexaki, A.; Brinia, M.-E.; Anagnostouli, M.; Stefanis, L.; Stathopoulos, P. The mTOR Signaling Pathway in Multiple Sclerosis; from Animal Models to Human Data. Int. J. Mol. Sci. 2022, 23, 8077. [Google Scholar] [CrossRef]
- De Oliveira, A.C.P.; Candelario-Jalil, E.; Langbein, J.; Wendeburg, L.; Bhatia, H.S.; Schlachetzki, J.C.M.; Biber, K.; Fiebich, B.L. Pharmacological Inhibition of Akt and Downstream Pathways Modulates the Expression of COX-2 and mPGES-1 in Activated Microglia. J. Neuroinflamm. 2012, 9, 2. [Google Scholar] [CrossRef]
- Weichhart, T.; Säemann, M.D. The Multiple Facets of mTOR in Immunity. Trends Immunol. 2009, 30, 218–226. [Google Scholar] [CrossRef]
- Ingram, N. Waddington, Holmyard and Alchemy: Perspectives on the Epigenetic Landscape. Endeavour 2019, 43, 100690. [Google Scholar] [CrossRef]
- Lossi, L.; Castagna, C.; Merighi, A. An Overview of the Epigenetic Modifications in the Brain under Normal and Pathological Conditions. Int. J. Mol. Sci. 2024, 25, 3881. [Google Scholar] [CrossRef] [PubMed]
- Okwaro, L.A.; Korb, J. Epigenetic Regulation and Division of Labor in Social Insects. Curr. Opin. Insect Sci. 2023, 58, 101051. [Google Scholar] [CrossRef]
- Kiełbowski, K.; Herian, M.; Bakinowska, E.; Banach, B.; Sroczyński, T.; Pawlik, A. The Role of Genetics and Epigenetic Regulation in the Pathogenesis of Osteoarthritis. Int. J. Mol. Sci. 2023, 24, 11655. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a Big Role in Gene Regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Li, Y.; Su, J.; Li, F.; Chen, X.; Zhang, G. MiR-150 Regulates Human Keratinocyte Proliferation in Hypoxic Conditions through Targeting HIF-1α and VEGFA: Implications for Psoriasis Treatment. PLoS ONE 2017, 12, e0175459. [Google Scholar] [CrossRef]
- Mendell, J.T. MicroRNAs: Critical Regulators of Development, Cellular Physiology and Malignancy. Cell Cycle 2005, 4, 1179–1184. [Google Scholar] [CrossRef]
- Satoh, J.; Tabunoki, H. Comprehensive Analysis of Human microRNA Target Networks. BioData Min. 2011, 4, 17. [Google Scholar] [CrossRef]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef]
- Nazimek, K.; Bryniarski, K. Approaches to Inducing Antigen-Specific Immune Tolerance in Allergy and Autoimmunity: Focus on Antigen-Presenting Cells and Extracellular Vesicles. Scand. J. Immunol. 2020, 91, e12881. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, B.; Wang, H.-Y.; Chang, A.; Zheng, X.F.S. Emerging Role of MicroRNAs in mTOR Signaling. Cell Mol. Life Sci. 2017, 74, 2613–2625. [Google Scholar] [CrossRef]
- Franceschetti, T.; Dole, N.S.; Kessler, C.B.; Lee, S.-K.; Delany, A.M. Pathway Analysis of microRNA Expression Profile during Murine Osteoclastogenesis. PLoS ONE 2014, 9, e107262. [Google Scholar] [CrossRef]
- Nazari, N.; Jafari, F.; Ghalamfarsa, G.; Hadinia, A.; Atapour, A.; Ahmadi, M.; Dolati, S.; Rostamzadeh, D. The Emerging Role of microRNA in Regulating the mTOR Signaling Pathway in Immune and Inflammatory Responses. Immunol. Cell Biol. 2021, 99, 814–832. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Jing, S.-Y.; Liu, G.; Guo, X.-J.; Zhao, W.; Jia, X.-L.; Zheng, M.-Q.; Tan, W.-Y. miR-99a-5p: A Potential New Therapy for Atherosclerosis by Targeting mTOR and Then Inhibiting NLRP3 Inflammasome Activation and Promoting Macrophage Autophagy. Dis. Markers 2022, 2022, 7172583. [Google Scholar] [CrossRef] [PubMed]
- Eniafe, J.; Jiang, S. MicroRNA-99 Family in Cancer and Immunity. Wiley Interdiscip. Rev. RNA 2021, 12, e1635. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Hu, Y.-Y.; Zhao, J.-L.; Huang, F.; Liang, S.-Q.; Dong, L.; Chen, Y.; Yu, H.-C.; Bai, J.; Yang, J.-M.; et al. Targeted Delivery of miR-99b Reprograms Tumor-Associated Macrophage Phenotype Leading to Tumor Regression. J. Immunother. Cancer 2020, 8, e000517. [Google Scholar] [CrossRef] [PubMed]
- Pankratz, F.; Hohnloser, C.; Bemtgen, X.; Jaenich, C.; Kreuzaler, S.; Hoefer, I.; Pasterkamp, G.; Mastroianni, J.; Zeiser, R.; Smolka, C.; et al. MicroRNA-100 Suppresses Chronic Vascular Inflammation by Stimulation of Endothelial Autophagy. Circ. Res. 2018, 122, 417–432. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Guo, J.; He, H.; Mi, X.; Chen, C.; Xie, J.; Wang, S.; Wu, P.; Cao, F.; et al. miR-100 Maintains Phenotype of Tumor-Associated Macrophages by Targeting mTOR to Promote Tumor Metastasis via Stat5a/IL-1ra Pathway in Mouse Breast Cancer. Oncogenesis 2018, 7, 97. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Huang, Y.; Wei, L.; Ran, J.; Li, Q.; Tian, Y.; Luo, Z.; Yang, L.; Liu, H.; et al. Macrophage-Derived Mir-100-5p Orchestrates Synovial Proliferation and Inflammation in Rheumatoid Arthritis through mTOR Signaling. J. Nanobiotechnol. 2024, 22, 197. [Google Scholar] [CrossRef]
- Li, J.; Cai, S.X.; He, Q.; Zhang, H.; Friedberg, D.; Wang, F.; Redington, A.N. Intravenous miR-144 Reduces Left Ventricular Remodeling after Myocardial Infarction. Basic. Res. Cardiol. 2018, 113, 36. [Google Scholar] [CrossRef]
- Gupta, S.; Panda, P.K.; Hashimoto, R.F.; Samal, S.K.; Mishra, S.; Verma, S.K.; Mishra, Y.K.; Ahuja, R. Dynamical Modeling of miR-34a, miR-449a, and miR-16 Reveals Numerous DDR Signaling Pathways Regulating Senescence, Autophagy, and Apoptosis in HeLa Cells. Sci. Rep. 2022, 12, 4911. [Google Scholar] [CrossRef]
- Huang, N.; Wu, J.; Qiu, W.; Lyu, Q.; He, J.; Xie, W.; Xu, N.; Zhang, Y. MiR-15a and miR-16 Induce Autophagy and Enhance Chemosensitivity of Camptothecin. Cancer Biol. Ther. 2015, 16, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Li, Y.; Wei, Z.; Wang, Y.; Liu, Y.; Liu, F.; Li, X.; Zhang, Y. HUC-MSC-Derived Exosomal miR-16-5p Attenuates Inflammation via Dual Suppression of M1 Macrophage Polarization and Th1 Differentiation. Biochem. Biophys. Rep. 2025, 43, 102078. [Google Scholar] [CrossRef]
- Su, R.; Su, M.; Lu, Y. Ras-Related Protein in Brain 4A (Rab4A) Is Downregulated by miR-496 to Inhibit the Progression of Gastric Cancer. Comb. Chem. High. Throughput Screen. 2024, 27, 2734–2740. [Google Scholar] [CrossRef] [PubMed]
- Huang, N.; Winans, T.; Wyman, B.; Oaks, Z.; Faludi, T.; Choudhary, G.; Lai, Z.-W.; Lewis, J.; Beckford, M.; Duarte, M.; et al. Rab4A-Directed Endosome Traffic Shapes pro-Inflammatory Mitochondrial Metabolism in T Cells via Mitophagy, CD98 Expression, and Kynurenine-Sensitive mTOR Activation. Nat. Commun. 2024, 15, 2598. [Google Scholar] [CrossRef]
- Bridges, D.; Fisher, K.; Zolov, S.N.; Xiong, T.; Inoki, K.; Weisman, L.S.; Saltiel, A.R. Rab5 Proteins Regulate Activation and Localization of Target of Rapamycin Complex 1. J. Biol. Chem. 2012, 287, 20913–20921. [Google Scholar] [CrossRef]
- Li, L.; Kim, E.; Yuan, H.; Inoki, K.; Goraksha-Hicks, P.; Schiesher, R.L.; Neufeld, T.P.; Guan, K.-L. Regulation of mTORC1 by the Rab and Arf GTPases. J. Biol. Chem. 2010, 285, 19705–19709. [Google Scholar] [CrossRef]
- Chan, L.; Hong, J.; Pan, J.; Li, J.; Wen, Z.; Shi, H.; Ding, J.; Luo, X. Role of Rab5 in the Formation of Macrophage-Derived Foam Cell. Lipids Health Dis. 2017, 16, 170. [Google Scholar] [CrossRef]
- Gierlikowski, W.; Gierlikowska, B. MicroRNAs as Regulators of Phagocytosis. Cells 2022, 11, 1380. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Rong, Y.; Ji, C.; Lv, C.; Jiang, D.; Ge, X.; Gong, F.; Tang, P.; Cai, W.; Liu, W.; et al. MicroRNA-421-3p-Abundant Small Extracellular Vesicles Derived from M2 Bone Marrow-Derived Macrophages Attenuate Apoptosis and Promote Motor Function Recovery via Inhibition of mTOR in Spinal Cord Injury. J. Nanobiotechnol. 2020, 18, 72. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Peng, X.; Peng, Y.; Zhang, C.; Liu, W.; Yang, W.; Dou, X.; Jiang, Y.; Wang, Y.; Yang, S.; et al. Macrophage-Derived Extracellular Vesicles Regulate Follicular Activation and Improve Ovarian Function in Old Mice by Modulating Local Environment. Clin. Transl. Med. 2022, 12, e1071. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Xie, Y.; Luo, Z.; Liu, Y.; Xu, J.; Li, C.; Qin, T.; Lu, H.; Hu, J. UTX Deletion Promotes M2 Macrophage Polarization by Epigenetically Regulating Endothelial Cell-Macrophage Crosstalk after Spinal Cord Injury. J. Nanobiotechnol 2023, 21, 225. [Google Scholar] [CrossRef]
- He, L.; Chen, Q.; Wu, X. Tumour-Derived Exosomal miR-205 Promotes Ovarian Cancer Cell Progression through M2 Macrophage Polarization via the PI3K/Akt/mTOR Pathway. J. Ovarian Res. 2025, 18, 28. [Google Scholar] [CrossRef]
- Tu, X.; Lin, W.; Zhai, X.; Liang, S.; Huang, G.; Wang, J.; Jia, W.; Li, S.; Li, B.; Cheng, B. Oleanolic Acid Inhibits M2 Macrophage Polarization and Potentiates Anti-PD-1 Therapy in Hepatocellular Carcinoma by Targeting miR-130b-3p-PTEN-PI3K-Akt Signaling and Glycolysis. Phytomedicine 2025, 141, 156750. [Google Scholar] [CrossRef]
- Xu, L.; Li, K.; Li, J.; Xu, F.; Liang, S.; Kong, Y.; Chen, B. The Crosstalk between Lung Adenocarcinoma Cells and M2 Macrophages Promotes Cancer Cell Development via the SFRS1/miR-708-5p/PD-L1 Axis. Life Sci. 2025, 371, 123599. [Google Scholar] [CrossRef]
- Li, N.; Qin, J.-F.; Han, X.; Jin, F.-J.; Zhang, J.-H.; Lan, L.; Wang, Y. miR-21a Negatively Modulates Tumor Suppressor Genes PTEN and miR-200c and Further Promotes the Transformation of M2 Macrophages. Immunol. Cell Biol. 2018, 96, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Xiao, T.; Wei, S.; Sun, J.; Zou, Z.; Shi, M.; Sun, Q.; Dai, X.; Wu, L.; Li, J.; et al. miR-21-Regulated M2 Polarization of Macrophage Is Involved in Arsenicosis-Induced Hepatic Fibrosis through the Activation of Hepatic Stellate Cells. J. Cell Physiol. 2021, 236, 6025–6041. [Google Scholar] [CrossRef]
- Kalantari, P.; Harandi, O.F.; Agarwal, S.; Rus, F.; Kurt-Jones, E.A.; Fitzgerald, K.A.; Caffrey, D.R.; Golenbock, D.T. miR-718 Represses Proinflammatory Cytokine Production through Targeting Phosphatase and Tensin Homolog (PTEN). J. Biol. Chem. 2017, 292, 5634–5644. [Google Scholar] [CrossRef]
- Tran, M.; Lee, S.-M.; Shin, D.-J.; Wang, L. Loss of miR-141/200c Ameliorates Hepatic Steatosis and Inflammation by Reprogramming Multiple Signaling Pathways in NASH. JCI Insight 2017, 2, e96094. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Y.; Li, M.; Jin, Z.; Chen, G.; Gan, C. Long Non-Coding RNA NBR2 Suppresses the Progression of Colorectal Cancer by Downregulating miR-19a to Regulate M2 Macrophage Polarization. Chin. J. Physiol. 2023, 66, 546–557. [Google Scholar] [CrossRef]
- Zheng, L.; Ling, W.; Zhu, D.; Li, Z.; Li, Y.; Zhou, H.; Kong, L. Roquin-1 Resolves Sepsis-Associated Acute Liver Injury by Regulating Inflammatory Profiles via miRNA Cargo in Extracellular Vesicles. iScience 2023, 26, 107295. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tian, T.; Li, S.; Li, N.; Luo, H.; Jiang, Y. LncRNA 220: A Novel Long Non-Coding RNA Regulates Autophagy and Apoptosis in Kupffer Cells via the miR-5101/PI3K/AKT/mTOR Axis in LPS-Induced Endotoxemic Liver Injury in Mice. Int. J. Mol. Sci. 2023, 24, 11210. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Li, S.; Zhang, T.; Fu, W.; Liu, S.; He, Y.; Wang, X.; Ma, T. Exosome-Shuttled miR-150-5p from LPS-Preconditioned Mesenchymal Stem Cells down-Regulate PI3K/Akt/mTOR Pathway via Irs1 to Enhance M2 Macrophage Polarization and Confer Protection against Sepsis. Front. Immunol. 2024, 15, 1397722. [Google Scholar] [CrossRef]
- Jia, Z.G.; Li, L.; Zhao, P.; Fei, G.; Li, S.R.; Song, Q.Q.; Liu, G.P.; Liu, J.S. MicroRNA-451 from Human Umbilical Cord-Derived Mesenchymal Stem Cell Exosomes Inhibits Alveolar Macrophage Autophagy via Tuberous Sclerosis Complex 1/Mammalian Target of Rapamycin Pathway to Attenuate Burn-Induced Acute Lung Injury in Rats. Biomed. Environ. Sci. 2024, 37, 1030–1043. [Google Scholar] [CrossRef]
- Guo, M.; Li, X.; Choi, M.; Zhang, J.; Yan, S.; Ma, D.; Zeng, J.; Ding, W.; Wen, Y.; Li, D.; et al. Microcystin-LR Prenatal Exposure Induces Coronary Heart Disease through Macrophage Polarization Imbalance Mediated by Trophoblast-Derived Extracellular Vesicles. Sci. Total Environ. 2024, 948, 174979. [Google Scholar] [CrossRef]
- Hao, C.; Sheng, Z.; Wang, W.; Feng, R.; Zheng, Y.; Xiao, Q.; Zhang, B. Tumor-Derived Exosomal miR-148b-3p Mediates M2 Macrophage Polarization via TSC2/mTORC1 to Promote Breast Cancer Migration and Invasion. Thorac. Cancer 2023, 14, 1477–1491. [Google Scholar] [CrossRef]
- Xue, Z.; Liu, J.; Xing, W.; Mu, F.; Wu, Y.; Zhao, J.; Liu, X.; Wang, D.; Wang, J.; Li, X.; et al. Hypoxic Glioma-Derived Exosomal miR-25-3p Promotes Macrophage M2 Polarization by Activating the PI3K-AKT-mTOR Signaling Pathway. J. Nanobiotechnol. 2024, 22, 628. [Google Scholar] [CrossRef]
- Li, M.; Xu, H.; Qi, Y.; Pan, Z.; Li, B.; Gao, Z.; Zhao, R.; Xue, H.; Li, G. Tumor-Derived Exosomes Deliver the Tumor Suppressor miR-3591-3p to Induce M2 Macrophage Polarization and Promote Glioma Progression. Oncogene 2022, 41, 4618–4632. [Google Scholar] [CrossRef]
- Mao, H.; Ye, R.; Tang, G.; Tao, S.; Wei, K.; Wu, Y.; Pang, S.; Wang, J.; Shi, J.; Ji, Y.; et al. Drug-Resistant Exosome miR-99b-3p Induces Macrophage Polarization and Confers Chemoresistance on Sensitive Cells by Targeting PPP2CA. Int. Immunopharmacol. 2024, 142, 113168. [Google Scholar] [CrossRef]
- Lian, H.; Yu, M.; Li, Q.; Xiao, J.; Tang, X.; Zhang, B.; Liu, D.; Xu, Y.; Dong, M.; Li, Z.; et al. Hypoxic Breast Cancer Cell-Derived Exosomal miR-143-3p Targets RICTOR to Regulate M2 Macrophage Polarization, Thereby Modulating Cancer Cell Invasiveness. Hum. Cell 2025, 38, 114. [Google Scholar] [CrossRef]
- Liu, X.-L.; Pan, Q.; Cao, H.-X.; Xin, F.-Z.; Zhao, Z.-H.; Yang, R.-X.; Zeng, J.; Zhou, H.; Fan, J.-G. Lipotoxic Hepatocyte-Derived Exosomal MicroRNA 192-5p Activates Macrophages Through Rictor/Akt/Forkhead Box Transcription Factor O1 Signaling in Nonalcoholic Fatty Liver Disease. Hepatology 2020, 72, 454–469. [Google Scholar] [CrossRef] [PubMed]
- Koriyama, T.; Yamakuchi, M.; Takenouchi, K.; Oyama, Y.; Takenaka, H.; Nagakura, T.; Masamoto, I.; Hashiguchi, T. Legionella Pneumophila Infection-Mediated Regulation of RICTOR via miR-218 in U937 Macrophage Cells. Biochem. Biophys. Res. Commun. 2019, 508, 608–613. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J.; Huang, D.; Qin, Y.; Lou, X.; Gao, H.; Ye, Z.; Wang, F.; Wang, Y.; Jing, D.; et al. Small Extracellular Vesicle-miR-183-5p Mediated Crosstalk between Tumor Cells and Macrophages in High-Risk Pancreatic Neuroendocrine Tumors. Oncogene 2025, 44, 2907–2923. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Dou, R.; Wei, C.; Liu, K.; Shi, D.; Zhang, C.; Liu, Q.; Wang, S.; Xiong, B. Tumor-Derived Exosomal microRNA-106b-5p Activates EMT-Cancer Cell and M2-Subtype TAM Interaction to Facilitate CRC Metastasis. Mol. Ther. 2021, 29, 2088–2107. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Ye, M.; Shen, Y.; Xu, Y.; Hu, C.; Chen, J.; Yu, P.; Xue, B.; Gu, D.; Xu, L.; et al. Hypoxic Tumor-Derived Exosomal miR-4488 Induces Macrophage M2 Polarization to Promote Liver Metastasis of Pancreatic Neuroendocrine Neoplasm through RTN3/FABP5 Mediated Fatty Acid Oxidation. Int. J. Biol. Sci. 2024, 20, 3201–3218. [Google Scholar] [CrossRef]
- Zhihua, Y.; Yulin, T.; Yibo, W.; Wei, D.; Yin, C.; Jiahao, X.; Runqiu, J.; Xuezhong, X. Hypoxia Decreases Macrophage Glycolysis and M1 Percentage by Targeting microRNA-30c and mTOR in Human Gastric Cancer. Cancer Sci. 2019, 110, 2368–2377. [Google Scholar] [CrossRef]
- Park, J.E.; Dutta, B.; Tse, S.W.; Gupta, N.; Tan, C.F.; Low, J.K.; Yeoh, K.W.; Kon, O.L.; Tam, J.P.; Sze, S.K. Hypoxia-Induced Tumor Exosomes Promote M2-like Macrophage Polarization of Infiltrating Myeloid Cells and microRNA-Mediated Metabolic Shift. Oncogene 2019, 38, 5158–5173. [Google Scholar] [CrossRef]
- Rückerl, D.; Jenkins, S.J.; Laqtom, N.N.; Gallagher, I.J.; Sutherland, T.E.; Duncan, S.; Buck, A.H.; Allen, J.E. Induction of IL-4Rα-Dependent microRNAs Identifies PI3K/Akt Signaling as Essential for IL-4-Driven Murine Macrophage Proliferation in vivo. Blood 2012, 120, 2307–2316. [Google Scholar] [CrossRef]
- Fuhrmann, D.C.; Brüne, B. miR-193a-3p Increases Glycolysis under Hypoxia by Facilitating Akt Phosphorylation and PFKFB3 Activation in Human Macrophages. Cell Mol. Life Sci. 2022, 79, 89. [Google Scholar] [CrossRef]
- Yang, C.; Feng, X.; Guo, Y.; Shaukat, A.; Wu, Z.; Chen, Y.; Meng, L.; Deng, G. Bta-miR-93 Regulates the Maternal-Fetal Tolerance in Dairy Cows via Promoting Programmed Cell Death Ligand 1 Mediated M2 Macrophage Polarization. Biol. Reprod. 2025, 112, 880–894. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Alderman, C.; Sehlaoui, A.; Xiao, Y.; Wang, W. MicroRNAs as Immunotherapy Targets for Treating Gastroenterological Cancers. Can. J. Gastroenterol. Hepatol. 2018, 2018, 9740357. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Fang, L.; Su, X.; Zhang, J.; Xiong, H.; Yu, H.; Zhu, Z.; Lin, X.; Min, K.; Wu, D.; et al. Macrophage miR-4524a-5p/TBP Promotes β-TrCP -TIM3 Complex Activation and TGFβ Release and Aggravates NAFLD-Associated Fibrosis. Cell Death Dis. 2025, 16, 315. [Google Scholar] [CrossRef]
- Shao, H.; Huang, Y.; Hu, H.-L.; Fan, W.-X.; Yin, X.-N. Effect of miR-29c on Renal Fibrosis in Diabetic Rats via the AMPK/mTOR Signaling Pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6250–6256. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zeng, X.; Shu, J.; Bao, H.; Liu, X. MiR-155 Enhances Phagocytosis of Alveolar Macrophages through the mTORC2/RhoA Pathway. Medicine 2023, 102, e34592. [Google Scholar] [CrossRef]
- Wang, J.; Yang, K.; Zhou, L.; Wu, M.; Wu, Y.; Zhu, M.; Lai, X.; Chen, T.; Feng, L.; Li, M.; et al. MicroRNA-155 Promotes Autophagy to Eliminate Intracellular Mycobacteria by Targeting Rheb. PLoS Pathog. 2013, 9, e1003697. [Google Scholar] [CrossRef]
- Paik, S.; Kim, K.T.; Kim, I.S.; Kim, Y.J.; Kim, H.J.; Choi, S.; Kim, H.-J.; Jo, E.-K. Mycobacterial Acyl Carrier Protein Suppresses TFEB Activation and Upregulates miR-155 to Inhibit Host Defense. Front. Immunol. 2022, 13, 946929. [Google Scholar] [CrossRef]
- Kumar, R.; Halder, P.; Sahu, S.K.; Kumar, M.; Kumari, M.; Jana, K.; Ghosh, Z.; Sharma, P.; Kundu, M.; Basu, J. Identification of a Novel Role of ESAT-6-Dependent miR-155 Induction during Infection of Macrophages with Mycobacterium Tuberculosis. Cell Microbiol. 2012, 14, 1620–1631. [Google Scholar] [CrossRef] [PubMed]
- Babuta, M.; Furi, I.; Bala, S.; Bukong, T.N.; Lowe, P.; Catalano, D.; Calenda, C.; Kodys, K.; Szabo, G. Dysregulated Autophagy and Lysosome Function Are Linked to Exosome Production by Micro-RNA 155 in Alcoholic Liver Disease. Hepatology 2019, 70, 2123–2141. [Google Scholar] [CrossRef] [PubMed]
- Geiß, C.; Salas, E.; Guevara-Coto, J.; Régnier-Vigouroux, A.; Mora-Rodríguez, R.A. Multistability in Macrophage Activation Pathways and Metabolic Implications. Cells 2022, 11, 404. [Google Scholar] [CrossRef]
- Vergadi, E.; Ieronymaki, E.; Lyroni, K.; Vaporidi, K.; Tsatsanis, C. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. J. Immunol. 2017, 198, 1006–1014. [Google Scholar] [CrossRef]
- Qu, S.; Shen, Y.; Wang, M.; Wang, X.; Yang, Y. Suppression of miR-21 and miR-155 of Macrophage by Cinnamaldehyde Ameliorates Ulcerative Colitis. Int. Immunopharmacol. 2019, 67, 22–34. [Google Scholar] [CrossRef]
- Shi, C.; Liang, Y.; Yang, J.; Xia, Y.; Chen, H.; Han, H.; Yang, Y.; Wu, W.; Gao, R.; Qin, H. MicroRNA-21 Knockout Improve the Survival Rate in DSS Induced Fatal Colitis through Protecting against Inflammation and Tissue Injury. PLoS ONE 2013, 8, e66814. [Google Scholar] [CrossRef]
- Lu, Z.-J.; Wu, J.-J.; Jiang, W.-L.; Xiao, J.-H.; Tao, K.-Z.; Ma, L.; Zheng, P.; Wan, R.; Wang, X.-P. MicroRNA-155 Promotes the Pathogenesis of Experimental Colitis by Repressing SHIP-1 Expression. World J. Gastroenterol. 2017, 23, 976–985. [Google Scholar] [CrossRef]
- Holla, S.; Kurowska-Stolarska, M.; Bayry, J.; Balaji, K.N. Selective Inhibition of IFNG-Induced Autophagy by Mir155- and Mir31-Responsive WNT5A and SHH Signaling. Autophagy 2014, 10, 311–330. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.; Chen, H.; Yang, Y.; Fu, Y.; Yi, Z. miR-18a Promotes Mycobacterial Survival in Macrophages via Inhibiting Autophagy by down-Regulation of ATM. J. Cell Mol. Med. 2020, 24, 2004–2012. [Google Scholar] [CrossRef]
- Shao, W.; Wang, S.; Wang, X.; Yao, L.; Yuan, X.; Huang, D.; Lv, B.; Ye, Y.; Xue, H. miRNA-29a Inhibits Atherosclerotic Plaque Formation by Mediating Macrophage Autophagy via PI3K/AKT/mTOR Pathway. Aging 2022, 14, 2418–2431. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yang, W.; Liang, X.; Song, W.; Lin, J.; Sun, Y.; Guan, X. MicroRNA-761 Modulates Foam Cell Formation and Inflammation through Autophagy in the Progression of Atherosclerosis. Mol. Cell Biochem. 2020, 474, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Bi, S.; Zhang, Y.; Zhou, J.; Yao, Y.; Wang, J.; Fang, M.; Li, B.; Wu, C.; Ren, C. miR-210 Promotes Hepatocellular Carcinoma Progression by Modulating Macrophage Autophagy through PI3K/AKT/mTOR Signaling. Biochem. Biophys. Res. Commun. 2023, 662, 47–57. [Google Scholar] [CrossRef]
- Xi, X.; Wang, X.; Ma, J.; Chen, Q.; Zhang, Y.; Song, Y.; Li, Y. miR-130a-3p Enhances Autophagy through the YY1/PI3K/AKT/mTOR Signaling Pathway to Regulate Macrophage Polarization and Alleviate Diabetic Retinopathy. J. Diabetes Investig. 2025, 16, 392–404. [Google Scholar] [CrossRef]
- Chen, D.; Huang, X.; Lu, S.; Deng, H.; Gan, H.; Huang, R.; Zhang, B. miRNA-125a Modulates Autophagy of Thyroiditis through PI3K/Akt/mTOR Signaling Pathway. Exp. Ther. Med. 2019, 17, 2465–2472. [Google Scholar] [CrossRef]
- Su, X.; Yu, Y.; Zhong, Y.; Giannopoulou, E.G.; Hu, X.; Liu, H.; Cross, J.R.; Rätsch, G.; Rice, C.M.; Ivashkiv, L.B. Interferon-γ Regulates Cellular Metabolism and mRNA Translation to Potentiate Macrophage Activation. Nat. Immunol. 2015, 16, 838–849. [Google Scholar] [CrossRef]
- Linares, J.F.; Duran, A.; Yajima, T.; Pasparakis, M.; Moscat, J.; Diaz-Meco, M.T. K63 Polyubiquitination and Activation of mTOR by the P62-TRAF6 Complex in Nutrient-Activated Cells. Mol. Cell 2013, 51, 283–296. [Google Scholar] [CrossRef]
- Nelson, M.C.; O’Connell, R.M. MicroRNAs: At the Interface of Metabolic Pathways and Inflammatory Responses by Macrophages. Front. Immunol. 2020, 11, 1797. [Google Scholar] [CrossRef]
- Runtsch, M.C.; Nelson, M.C.; Lee, S.-H.; Voth, W.; Alexander, M.; Hu, R.; Wallace, J.; Petersen, C.; Panic, V.; Villanueva, C.J.; et al. Anti-Inflammatory microRNA-146a Protects Mice from Diet-Induced Metabolic Disease. PLoS Genet. 2019, 15, e1007970. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Zhu, K.; Zhang, Y.; Chen, J.; Yu, C.; Gao, T.; Zheng, G. Serum Exosome-Derived miR-146a-3p Promotes Macrophage M2 Polarization in Allergic Rhinitis by Targeting VAV3 via PI3K/AKT/mTOR Pathway. Int. Immunopharmacol. 2023, 124, 110997. [Google Scholar] [CrossRef]
- Liu, M.; Yang, P.; Fu, D.; Gao, T.; Deng, X.; Shao, M.; Liao, J.; Jiang, H.; Li, X. Allicin Protects against Myocardial I/R by Accelerating Angiogenesis via the miR-19a-3p/PI3K/AKT Axis. Aging 2021, 13, 22843–22855. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Z.; Cheng, Y.; Ma, C.; Zhong, Y.; Xiao, Y.; Gao, X.; Li, Z. M2 Macrophage-Derived Exosomal microRNAs Inhibit Cell Migration and Invasion in Gliomas through PI3K/AKT/mTOR Signaling Pathway. J. Transl. Med. 2021, 19, 99. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Abak, A.; Tavakkoli Avval, S.; Shoorei, H.; Taheri, M.; Samadian, M. The Impact of Non-Coding RNAs on Macrophage Polarization. Biomed. Pharmacother. 2021, 142, 112112. [Google Scholar] [CrossRef]
- Jaiswal, A.; Reddy, S.S.; Maurya, M.; Maurya, P.; Barthwal, M.K. MicroRNA-99a Mimics Inhibit M1 Macrophage Phenotype and Adipose Tissue Inflammation by Targeting TNFα. Cell Mol. Immunol. 2019, 16, 495–507. [Google Scholar] [CrossRef]
- Warth, S.C.; Hoefig, K.P.; Hiekel, A.; Schallenberg, S.; Jovanovic, K.; Klein, L.; Kretschmer, K.; Ansel, K.M.; Heissmeyer, V. Induced miR-99a Expression Represses Mtor Cooperatively with miR-150 to Promote Regulatory T-Cell Differentiation. EMBO J. 2015, 34, 1195–1213. [Google Scholar] [CrossRef]
- Torri, A.; Carpi, D.; Bulgheroni, E.; Crosti, M.-C.; Moro, M.; Gruarin, P.; Rossi, R.L.; Rossetti, G.; Di Vizio, D.; Hoxha, M.; et al. Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity. J. Biol. Chem. 2017, 292, 2903–2915. [Google Scholar] [CrossRef] [PubMed]
- Tung, S.L.; Boardman, D.A.; Sen, M.; Letizia, M.; Peng, Q.; Cianci, N.; Dioni, L.; Carlin, L.M.; Lechler, R.; Bollati, V.; et al. Regulatory T Cell-Derived Extracellular Vesicles Modify Dendritic Cell Function. Sci. Rep. 2018, 8, 6065. [Google Scholar] [CrossRef]
- Ptak, W.; Nazimek, K.; Askenase, P.W.; Bryniarski, K. From Mysterious Supernatant Entity to miRNA-150 in Antigen-Specific Exosomes: A History of Hapten-Specific T Suppressor Factor. Arch. Immunol. Ther. Exp. 2015, 63, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Bryniarski, K.; Ptak, W.; Jayakumar, A.; Püllmann, K.; Caplan, M.J.; Chairoungdua, A.; Lu, J.; Adams, B.D.; Sikora, E.; Nazimek, K.; et al. Antigen-Specific, Antibody-Coated, Exosome-like Nanovesicles Deliver Suppressor T-Cell microRNA-150 to Effector T Cells to Inhibit Contact Sensitivity. J. Allergy Clin. Immunol. 2013, 132, 170–181. [Google Scholar] [CrossRef] [PubMed]
- Nazimek, K.; Askenase, P.W.; Bryniarski, K. Antibody Light Chains Dictate the Specificity of Contact Hypersensitivity Effector Cell Suppression Mediated by Exosomes. Int. J. Mol. Sci. 2018, 19, 2656. [Google Scholar] [CrossRef]
- Nazimek, K.; Bryniarski, K.; Askenase, P.W. Functions of Exosomes and Microbial Extracellular Vesicles in Allergy and Contact and Delayed-Type Hypersensitivity. Int. Arch. Allergy Immunol. 2016, 171, 1–26. [Google Scholar] [CrossRef]
- Bryniarski, K.; Ptak, W.; Martin, E.; Nazimek, K.; Szczepanik, M.; Sanak, M.; Askenase, P.W. Free Extracellular miRNA Functionally Targets Cells by Transfecting Exosomes from Their Companion Cells. PLoS ONE 2015, 10, e0122991. [Google Scholar] [CrossRef]
- Nazimek, K.; Bryniarski, K.; Ptak, W.; Groot Kormelink, T.; Askenase, P.W. Orally Administered Exosomes Suppress Mouse Delayed-Type Hypersensitivity by Delivering miRNA-150 to Antigen-Primed Macrophage APC Targeted by Exosome-Surface Anti-Peptide Antibody Light Chains. Int. J. Mol. Sci. 2020, 21, 5540. [Google Scholar] [CrossRef]
- Nazimek, K.; Bustos-Morán, E.; Blas-Rus, N.; Nowak, B.; Totoń-Żurańska, J.; Seweryn, M.T.; Wołkow, P.; Woźnicka, O.; Szatanek, R.; Siedlar, M.; et al. Antibodies Enhance the Suppressive Activity of Extracellular Vesicles in Mouse Delayed-Type Hypersensitivity. Pharmaceuticals 2021, 14, 734. [Google Scholar] [CrossRef]
- Wąsik, M.; Nazimek, K.; Nowak, B.; Askenase, P.W.; Bryniarski, K. Delayed-Type Hypersensitivity Underlying Casein Allergy Is Suppressed by Extracellular Vesicles Carrying miRNA-150. Nutrients 2019, 11, 907. [Google Scholar] [CrossRef]
- Nazimek, K.; Bustos-Morán, E.; Blas-Rus, N.; Nowak, B.; Ptak, W.; Askenase, P.W.; Sánchez-Madrid, F.; Bryniarski, K. Syngeneic Red Blood Cell–Induced Extracellular Vesicles Suppress Delayed-type Hypersensitivity to Self-antigens in Mice. Clin. Exp. Allergy 2019, 49, 1487–1499. [Google Scholar] [CrossRef]
- Nazimek, K.; Ptak, W.; Nowak, B.; Ptak, M.; Askenase, P.W.; Bryniarski, K. Macrophages Play an Essential Role in Antigen-Specific Immune Suppression Mediated by T CD8+ Cell-Derived Exosomes. Immunology 2015, 146, 23–32. [Google Scholar] [CrossRef]
- Nazimek, K.; Bryniarski, K. Increasing the Therapeutic Efficacy of Extracellular Vesicles From the Antigen-Specific Antibody and Light Chain Perspective. Front. Cell Dev. Biol. 2021, 9, 790722. [Google Scholar] [CrossRef] [PubMed]
- Nazimek, K.; Bryniarski, K. Perspectives in Manipulating EVs for Therapeutic Applications: Focus on Cancer Treatment. Int. J. Mol. Sci. 2020, 21, 4623. [Google Scholar] [CrossRef] [PubMed]
- Nazimek, K.; Bryniarski, K.; Santocki, M.; Ptak, W. Exosomes as Mediators of Intercellular Communication: Clinical Implications. Pol. Arch. Med. Wewn. 2015, 125, 370–380. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, M.; Nazimek, K.; Bryniarski, K. Extracellular Vesicles-Oral Therapeutics of the Future. Int. J. Mol. Sci. 2022, 23, 7554. [Google Scholar] [CrossRef] [PubMed]
- Ye, P.; Liu, Y.; Chen, C.; Tang, F.; Wu, Q.; Wang, X.; Liu, C.-G.; Liu, X.; Liu, R.; Liu, Y.; et al. An mTORC1-Mdm2-Drosha Axis for miRNA Biogenesis in Response to Glucose- and Amino Acid-Deprivation. Mol. Cell 2015, 57, 708–720. [Google Scholar] [CrossRef] [PubMed]
- Cieślik, M.; Bryniarski, K.; Nazimek, K. Biodelivery of Therapeutic Extracellular Vesicles: Should Mononuclear Phagocytes Always Be Feared? Front. Cell Dev. Biol. 2023, 11, 1211833. [Google Scholar] [CrossRef]
Characteristics | mTORC1 | mTORC2 |
---|---|---|
Composition | mTOR, Raptor, mLST8, DEPTOR and PRAS40 | mTOR, Rictor, mLST8, DEPTOR, mSIN1 and Protor |
Intracellular localization | mainly in lysosomal membrane | mainly in plasma membrane |
Response to rapamycin | high (fast and effective) | low (after long exposure) |
Main upstream regulators | growth factors, hormones, amino acids (mostly arginine and leucine, but also glutamine), cellular stress (reactive oxygen species, DNA damage), energetic substrates (glucose especially), TLR ligands, cytokines | growth factors, insulin, phosphatidylinositol-3,4,5-triphosphate, increased plasma membrane tension, TLR ligands, cytokines |
Preferred substrates | 4E-BP1, S6K1, ULK1, TFEB | PKCα, SGK1, Akt |
Promoted biological processes | metabolism (anabolic processes) and cell growth | cell survival and proliferation |
Inhibition of autophagy | confirmed | suspected |
Role of active mTOR complexes in macrophage polarization | promotion of M1 phenotype in acute inflammation and infectious conditions (chronic LPS stimulation in nutrient-rich conditions), under the activity of cyclic GMP-AMP synthase (cGAS) and after exposure to high concentrations of fatty acids; promotion of M2 phenotype after acute LPS stimulation, under the activity of substance P, insulin-like peptide 3 and α-ketoglutarate; inhibition of mTORC1 (e.g., with rapamycin) promotes M2 polarization | mostly promotion of M2 phenotype |
Proposed therapeutic significance of modulation of mTOR complexes in macrophages | context-dependent activation of mTORC1 promotes trained immunity; inactivation of mTORC1 in turn induces autophagy and modulates macrophage polarization to stimulate antimicrobial defense and ameliorate atherosclerotic lesions; skewing TAM polarization towards M1 phenotype by context-dependent mTORC1 modulation | skewing TAM polarization towards M1 phenotype by context-dependent mTORC2 inhibition; context-dependent activation of mTORC2 supports trained immunity |
Individual miRNA or miRNA Family | Confirmed Species |
---|---|
miRNA-96-5p/miRNA-1271-5p 1 | Human, mouse, rat, cattle |
miRNA-99-5p/miRNA-100-5p | Human, mouse, rat, cattle |
miRNA-183-5p | Human, mouse |
miRNA-212-5p | Mouse |
miRNA-199-3p | Human, mouse, cattle |
miRNA-150-5p | Mouse, rat |
miRNA-383-5p | Mouse, rat |
miRNA-101 | Human, mouse, rat, cattle |
let-7-5p/miRNA-98-5p | Mouse, rat, cattle |
miRNA-144-3p | Human, mouse, rat, cattle |
miRNA-7-5p | Human, mouse, rat |
miRNA-194-5p | Mouse, rat |
miRNA-217-5p | Mouse, rat, cattle |
miRNA-199-5p | Mouse, rat, cattle |
miRNA-122-5p | Mouse, rat |
miRNA-328-3p | Mouse, cattle |
miRNA-532-3p | Mouse, rat |
miRNA-421-3p | Human, mouse, rat |
miRNA-370-3p | Mouse, rat |
miRNA-188-5p | Mouse |
miRNA-324-5p | Mouse, rat |
miRNA-331-3p | Mouse, rat |
miRNA-362-5p | Mouse |
miRNA-505-3p | Human, mouse, rat |
miRNA-224-5p | Human, mouse, rat, cattle |
miRNA-325-3p | Human, mouse, rat |
miRNA-135-5p | Human |
miRNA-375 | Human |
miRNA-193a-5p | Human, cattle |
miRNA-129-3p | Human |
miRNA-103-3p/miRNA-107 | Human |
miRNA-133a-3p | Human |
miRNA-140-3p | Human |
miRNA-128-3p | Human |
miRNA-496 | Human |
miRNA-1306-5p | Human, cattle |
miRNA-485-5p | Human, cattle |
miRNA-1193 | Human |
miRNA-219a-2-3p | Human |
miRNA-582-5p | Human |
miRNA-339-5p | Human |
miRNA-495-3p | Human, rat |
miRNA-455-3p | Rat |
miRNA-223-3p | Rat |
miRNA-143-3p | Rat, cattle |
miRNA-489-3p | Rat |
miRNA-15-5p/miRNA-16-5p/miRNA-195-5p/miRNA-322-5p/miRNA-497-5p | Rat |
miRNA-28-3p | Rat |
miRNA-760-3p | Rat |
miRNA-329-3p/miRNA-362-3p | Rat |
miRNA-129-5p | Cattle |
miRNA-302 | Cattle |
miRNA-134 | Cattle |
miRNA-758 | Cattle |
miRNA-296-3p | Cattle |
miRNA-374 | Cattle |
miRNA-335 | Cattle |
miRNA-369-3p | Cattle |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedor, A.; Bryniarski, K.; Nazimek, K. mTOR Signaling in Macrophages: All Depends on the Context. Int. J. Mol. Sci. 2025, 26, 7598. https://doi.org/10.3390/ijms26157598
Fedor A, Bryniarski K, Nazimek K. mTOR Signaling in Macrophages: All Depends on the Context. International Journal of Molecular Sciences. 2025; 26(15):7598. https://doi.org/10.3390/ijms26157598
Chicago/Turabian StyleFedor, Angelika, Krzysztof Bryniarski, and Katarzyna Nazimek. 2025. "mTOR Signaling in Macrophages: All Depends on the Context" International Journal of Molecular Sciences 26, no. 15: 7598. https://doi.org/10.3390/ijms26157598
APA StyleFedor, A., Bryniarski, K., & Nazimek, K. (2025). mTOR Signaling in Macrophages: All Depends on the Context. International Journal of Molecular Sciences, 26(15), 7598. https://doi.org/10.3390/ijms26157598