Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Cell Line and Culture Conditions
2.3. Cell Homogenization
2.4. Total Protein Quantification
2.5. ELISA (Enzyme-Linked Immunosorbent Assay) Test
2.6. Treatment Groups
2.7. Statistical Analysis
3. Results
3.1. Tempol Promotes Apoptosis of HT29 and CRL1739 Cells by Modulating Pro-Apoptotic and Anti-Apoptotic Proteins
3.2. Tempol Reduces the Phosphorylation Levels of Key Signaling Molecules (ERK, JNK, AKT, and mTOR) Involved in Cell Growth and Survival
3.3. Tempol Increases the Levels of Cellular Stress- and Apoptosis-Related Proteins (WEE1, GADD153, GRP78, and AIF)
3.4. Tempol Induces Oxidative Stress and Depletes Antioxidant Capacity in Cancer Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ROS | Reactive Oxygen Species |
MAPK | Mitogen-Activated Protein Kinase |
Akt/mTOR | Protein Kinase B/Mammalian Target of Rapamycin |
ERK | Extracellular Signal-Regulated Kinase |
Bax | Bcl-2-Associated X Protein |
JNK | c-Jun N-Terminal Kinase AKT |
AKT | Protein Kinase B |
mTOR | Mammalian Target of Rapamycin |
p-ERK | Phosphorylated Extracellular Signal-Regulated Kinase |
p-JNK | Phosphorylated c-Jun N-terminal Kinase |
p-AKT | Phosphorylated Protein Kinase B |
p-mTOR | Phosphorylated Mammalian Target of Rapamycin |
GADD153 | Growth Arrest and DNA Damage-Inducible Protein 153 |
GRP78 | Glucose-Regulated Protein 78 |
AIF | Apoptosis-Inducing Factor |
PI3K | Phosphoinositide 3-Kinase |
PTEN | Phosphatase and Tensin Homolog |
KRAS | Kirsten Rat Sarcoma Viral Oncogene Homolog |
BRAF | B-Raf Proto-Oncogene, Serine/Threonine Kinase |
MEK | Mitogen-Activated Protein Kinase Kinase |
HER2 | Human Epidermal Growth Factor Receptor 2 |
ELISA | Enzyme-Linked Immunosorbent Assay |
EGFR | Epidermal Growth Factor Receptor |
GPCRs | G Protein-Coupled Receptors |
VEGF | Vascular Endothelial Growth Factor |
VEGFR | Vascular Endothelial Growth Factor Receptor |
RAS | Rat Sarcoma Viral Oncogene |
JNK1 | c-Jun N-Terminal Kinase 1 |
p38-MAPK | p38 Mitogen-Activated Protein Kinase |
References
- Tiwari, A.; Tiwari, V.; Banik, B.K.; Sahoo, B.M. Mechanistic Role of Tempol: Synthesis, Catalysed Reactions and Therapeutic Potential. Med. Chem. 2023, 19, 859–878. [Google Scholar] [CrossRef] [PubMed]
- Park, W.H. Tempol Inhibits the Growth of Lung Cancer and Normal Cells through Apoptosis Accompanied by Increased O2•− Levels and Glutathione Depletion. Molecules 2022, 27, 7341. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, I.M.U.; Santos, F.R.; da Silva, H.M.; Minatel, E.; Mesquitta, M.; Salvador, M.J.; Montico, F.; Cagnon, V.H.A. Tempol effect on oxidative and mitochondrial markers in preclinical models for prostate cancer. Toxicol. Res. 2024, 13, tfae056. [Google Scholar] [CrossRef]
- Ferreira, G.C.; Pinheiro, L.C.; Oliveira-Paula, G.H.; Angelis, C.D.; Portella, R.L.; Tanus-Santos, J.E. Antioxidant tempol modulates the increases in tissue nitric oxide metabolites concentrations after oral nitrite administration. Chem. Biol. Interact. 2021, 349, 109658. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, H.M.; Pazarci, P. Antiproliferative and Apoptotic Effects of Tempol, Methotrexate, and Their Combinations on the MCF7 Breast Cancer Cell Line. ACS Omega 2024, 9, 6658–6662. [Google Scholar] [CrossRef]
- Rossetto, I.; Santos, F.; Kido, L.; Lamas, C.; Montico, F.; Cagnon, V. Tempol differential effect on prostate cancer inflammation: In vitro and in vivo evaluation. Prostate 2023, 83, 403–415. [Google Scholar] [CrossRef]
- Hahn, S.M.; Tochner, Z.; Krishna, C.M.; Glass, J.; Wilson, L.; Samuni, A.; Sprague, M.; Venzon, D.; Glatstein, E.; Mitchell, J.B.; et al. Tempol, a stable free radical, is a novel murine radiation protector. Cancer Res. 1992, 52, 1750–1753. [Google Scholar]
- Wilcox, C.S. Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol. Ther. 2010, 126, 119–145. [Google Scholar] [CrossRef]
- Eser, C.; Kaplan, H.M. Possible Synergistic Effect of Tempol on SCC Treatment and Surgery: An in vitro Study. Int. J. Pharmacol. 2022, 18, 1237–1243. [Google Scholar] [CrossRef]
- Pınar, N.; Kaplan, M.; Özgür, T.; Özcan, O. Ameliorating effects of tempol on methotrexate-induced liver injury in rats. Biomed. Pharmacother. 2018, 102, 758–764. [Google Scholar] [CrossRef]
- Wang, M.; Li, K.; Zou, Z.; Li, L.; Zhu, L.; Wang, Q.; Gao, W.; Wang, Y.; Huang, W.; Liu, R.; et al. Piperidine nitroxide Tempol enhances cisplatin-induced apoptosis in ovarian cancer cells. Oncol. Lett. 2018, 16, 4847–4854. [Google Scholar] [CrossRef] [PubMed]
- Kinkade, C.W.; Castillo-Martin, M.; Puzio-Kuter, A.; Yan, J.; Foster, T.H.; Gao, H.; Sun, Y.; Ouyang, X.; Gerald, W.L.; Cordon-Cardo, C.; et al. Targeting AKT/mTOR and ERK MAPK signaling inhibits hormone-refractory prostate cancer in a preclinical mouse model. J. Clin. Investig. 2008, 118, 3051–3064. [Google Scholar] [CrossRef] [PubMed]
- Morgos, D.T.; Stefani, C.; Miricescu, D.; Greabu, M.; Stanciu, S.; Nica, S.; Stanescu-Spinu, I.I.; Balan, D.G.; Balcangiu-Stroescu, A.E.; Coculescu, E.C.; et al. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer. Int. J. Mol. Sci. 2024, 25, 1848. [Google Scholar] [CrossRef] [PubMed]
- Choi, P.M.; Tchou-Wong, K.M.; Weinstein, I.B. Overexpression of protein kinase C in HT29 colon cancer cells causes growth inhibition and tumor suppression. Mol. Cell. Biol. 1990, 10, 4650–4657. [Google Scholar] [PubMed]
- Eastman, A. Improving anticancer drug development begins with cell culture: Misinformation perpetrated by the misuse of cytotoxicity assays. Oncotarget 2017, 8, 8854–8866. [Google Scholar] [CrossRef]
- Larsson, P.; Engqvist, H.; Biermann, J.; Werner Rönnerman, E.; Forssell-Aronsson, E.; Kovács, A.; Karlsson, P.; Helou, K.; Parris, T.Z. Optimization of cell viability assays to improve replicability and reproducibility of cancer drug sensitivity screens. Sci. Rep. 2020, 10, 5798. [Google Scholar] [CrossRef]
- Conti, C.B.; Agnesi, S.; Scaravaglio, M.; Masseria, P.; Dinelli, M.E.; Oldani, M.; Uggeri, F. Early gastric cancer: Update on prevention, diagnosis and treatment. Int. J. Environ. Res. Public Health 2023, 20, 2149. [Google Scholar] [CrossRef]
- Hu, K.; Wang, S.; Wang, Z.; Li, L.; Huang, Z.; Yu, W.; Chen, Z.; Wu, Q.-F. Clinicopathological risk factors for gastric cancer: A retrospective cohort study in China. BMJ Open 2019, 9, e030639. [Google Scholar] [CrossRef]
- Pih, G.Y.; Gong, E.J.; Choi, J.Y.; Kim, M.-J.; Ahn, J.Y.; Choe, J.; Bae, S.E.; Chang, H.-S.; Na, H.K.; Lee, J.H. Associations of serum lipid level with gastric cancer risk, pathology, and prognosis. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2021, 53, 445–456. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, M.; Wei, M.; Wang, Z.; Qiao, W.; Liu, P.; Zhong, X.; Liang, Y.; Chen, Y.; Huang, Y. Ox-LDL-mediated ILF3 overexpression in gastric cancer progression by activating the PI3K/AKT/mTOR signaling pathway. Aging 2022, 14, 3887. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, J.; Zhou, Y.; Qiao, L. Obesity and gastric cancer. Front. Biosci. 2012, 17, 2383–2390. [Google Scholar] [CrossRef]
- Hui, Y.; Tu, C.; Liu, D.; Zhang, H.; Gong, X. Risk factors for gastric cancer: A comprehensive analysis of observational studies. Front. Public Health 2023, 10, 892468. [Google Scholar] [CrossRef]
- Bai, X.; Li, X.; Ding, S.; Dai, D. Adherence to the Mediterranean Diet and Risk of Gastric Cancer: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3826. [Google Scholar] [CrossRef]
- Liu, A.R.; He, Q.S.; Wu, W.H.; Du, J.L.; Kuo, Z.C.; Xia, B.; Tang, Y.; Yun, P.; Cheung, E.C.; Tang, Y.Z. Body composition and risk of gastric cancer: A population-based prospective cohort study. Cancer Med. 2021, 10, 2164–2174. [Google Scholar] [CrossRef]
- Compare, D.; Rocco, A.; Nardone, G. Risk factors in gastric cancer. Eur. Rev. Med. Pharmacol. Sci. 2010, 14, 302–308. [Google Scholar]
- Venerito, M.; Link, A.; Rokkas, T.; Malfertheiner, P. Gastric cancer–clinical and epidemiological aspects. Helicobacter 2016, 21, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Inamdar, G.S.; Madhunapantula, S.V.; Robertson, G.P. Targeting the MAPK pathway in melanoma: Why some approaches succeed and other fail. Biochem. Pharmacol. 2010, 80, 624–637. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.J.; Scheidt, K.A. Non-‘classical’MEKs: A review of MEK3-7 inhibitors. Bioorg. Med. Chem. Lett. 2020, 30, 127203. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbacher, N.; Bar-Sagi, D.; Philips, M. Ras/MAPK signaling from endomembranes. Mol. Oncol. 2009, 3, 297–307. [Google Scholar] [CrossRef]
- Burotto, M.; Chiou, V.L.; Lee, J.M.; Kohn, E.C. The MAPK pathway across different malignancies: A new perspective. Cancer 2014, 120, 3446–3456. [Google Scholar] [CrossRef]
- Tasharrofi, B.; Ghafouri-Fard, S. Long non-coding RNAs as regulators of the mitogen-activated protein kinase (MAPK) pathway in cancer. Klin. Onkol. 2018, 31, 95–102. [Google Scholar] [CrossRef]
- Bertacchini, J.; Heidari, N.; Mediani, L.; Capitani, S.; Shahjahani, M.; Ahmadzadeh, A.; Saki, N. Targeting PI3K/AKT/mTOR network for treatment of leukemia. Cell. Mol. Life Sci. 2015, 72, 2337–2347. [Google Scholar] [CrossRef]
- Lian, S.; Li, S.; Zhu, J.; Xia, Y.; Do Jung, Y. Nicotine stimulates IL-8 expression via ROS/NF-κB and ROS/MAPK/AP-1 axis in human gastric cancer cells. Toxicology 2022, 466, 153062. [Google Scholar] [CrossRef] [PubMed]
- Santini, D.; Vincenzi, B.; Schiavon, G.; Di Seri, M.; Virzí, V.; Spalletta, B.; Caricato, M.; Coppola, R.; Tonini, G. Chronomodulated administration of oxaliplatin plus capecitabine (XELOX) as first line chemotherapy in advanced colorectal cancer patients: Phase II study. Cancer Chemother. Pharmacol. 2007, 59, 613–620. [Google Scholar] [CrossRef]
- Na, H.-K.; Lee, J.Y. Molecular basis of alcohol-related gastric and colon cancer. Int. J. Mol. Sci. 2017, 18, 1116. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Z. Diabetes Mellitus and Gastric Cancer: Correlation and Potential Mechanisms. J. Diabetes Res. 2023, 2023, 4388437. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhan, R.; Lu, J.; Zhong, L.; Peng, X.; Wang, M.; Tang, S. Grain consumption and risk of gastric cancer: A meta-analysis. Int. J. Food Sci. Nutr. 2020, 71, 164–175. [Google Scholar] [CrossRef]
- Nörz, D.; Mullins, C.S.; Smit, D.J.; Linnebacher, M.; Hagel, G.; Mirdogan, A.; Siekiera, J.; Ehm, P.; Izbicki, J.R.; Block, A.; et al. Combined Targeting of AKT and mTOR Synergistically Inhibits Formation of Primary Colorectal Carcinoma Tumouroids In Vitro: A 3D Tumour Model for Pre-therapeutic Drug Screening. Anticancer Res. 2021, 41, 2257–2275. [Google Scholar] [CrossRef] [PubMed]
- Ariyoshi, M.; Yuge, R.; Kitadai, Y.; Shimizu, D.; Miyamoto, R.; Yamashita, K.; Hiyama, Y.; Takigawa, H.; Urabe, Y.; Oka, S. WEE1 Inhibitor Adavosertib Exerts Antitumor Effects on Colorectal Cancer, Especially in Cases with p53 Mutations. Cancers 2024, 16, 3136. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lee, M.G.; Choi, K.C.; Kang, H.M.; Chang, Y.S. Clinical significance of GADD153 expression in stage I non-small cell lung cancer. Oncol. Lett. 2012, 4, 408–412. [Google Scholar] [CrossRef]
- Chen, Y.; Shen, H.; Wang, Z.; Huang, C.; Zhang, H.; Shao, Y.; Tong, Y.; Xu, L.; Lu, Y.; Fu, Z. Recruitment of USP10 by GCS1 to deubiquitinate GRP78 promotes the progression of colorectal cancer via alleviating endoplasmic reticulum stress. J. Exp. Clin. Cancer Res. 2024, 43, 261. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Rahimian, N.; Hasanzade Bashkandi, A. GRP78: A new promising candidate in colorectal cancer pathogenesis and therapy. Eur. J. Pharmacol. 2025, 995, 177308. [Google Scholar] [CrossRef] [PubMed]
CRL-1739 Cell Line | HT29 Cell Line | |||||
---|---|---|---|---|---|---|
Proteins | Control (CRL-1739) | CRL-1739 + TPL | p value *, 95%CI (lower–upper) | Control (HT29) | HT29 + TPL | p value **, 95%CI (lower–upper) |
Bax | 0.85 ± 0.10 pg/mL | 4.67 ± 1.03 pg/mL | <0.0001, [2.88–4.76] | 0.967 ± 0.22 pg/mL | 4.0 ± 0.65 pg/mL | <0.0001, [2.41–3.66] |
Cleaved caspase-3 | 0.20 ± 0.12 pg/mL | 5.17 ± 1.72 pg/mL | <0.0001, [3.40–6.54] | 0.32 ± 0.11 pg/mL | 4.17 ± 0.02 pg/mL | <0.0001, [2.78–4.92] |
BCL-2 | 8.13 ± 0.83 pg/mL | 3.75 ± 0.10 pg/mL | <0.0001, [−5.56–−3.21] | 7.42 ± 1.56 pg/mL | 3.00 ± 1.10 pg/mL | <0.0001, [−6.16–−2.70] |
CRL-1739 Cell Line | HT29 Cell Line | |||||
---|---|---|---|---|---|---|
Proteins | Control (CRL-1739) | CRL-1739 + TPL | p value *, 95%CI (lower–upper) | Control (HT29) | HT29 + TPL | p value **, 95%CI (lower–upper) |
JNK | 2.97 ± 0.28 pg/mL | 1.30 ± 0.20 pg/mL | <0.0001, [−1.98–−1.35] | 2.65 ± 0.23 pg/mL | 1.23 ± 0.23 pg/mL | <0.0001, [−1.71–−1.13] |
mTOR | 26.17 ± 4.26 pg/mL | 14.17 ± 1.47 pg/mL | <0.0001, [−16.10–7.90] | 28.17 ± 4.44 pg/mL | 12.83 ± 3.19 pg/mL | <0.0001, [−20.31–−10.36] |
ERK | 1.13 ± 0.14 pg/mL | 0.44 ± 0.21 pg/mL | <0.0001, [−0.91–0.46] | 1.27 ± 0.08 pg/mL | 0.46 ± 0.14 pg/mL | <0.0001, [−1.15–−0.47] |
AKT | 9.83 ± 1.17 pg/mL | 5.5 ± 0.84 pg/mL | <0.0001, [−5.64–3.02] | 12 ± 1.67 pg/mL | 6.67 ± 1.63 pg/mL | <0.0001, [−7.46–−3.20] |
CRL-1739 Cell Line | HT29 Cell Line | |||||
---|---|---|---|---|---|---|
Proteins | Control (CRL-1739) | CRL-1739 + TPL | p value *, 95%CI (lower–upper) | Control (HT29) | HT29 + TPL | p value **, 95%CI (lower–upper) |
GRP78 | 0.35 ± 0.06 pg/mL | 1.07 ± 0.13 pg/mL | <0.0001, [0.59–0.85] | 0.56 ± 0.13 pg/mL | 1.13 ± 0.17 pg/mL | <0.0001, [0.38–0.76] |
AIF | 0.35 ± 0.07 pg/mL | 2.60 ± 0.41 pg/mL | <0.0001, [1.88–2.62] | 0.43 ± 0.13 pg/mL | 2.31 ± 0.60 pg/mL | <0.0001, [1.33–2.44] |
GADD153 | 0.38 ± 0.17 pg/mL | 1.25 ± 0.24 pg/mL | <0.0001, [0.61–1.14] | 0.34 ± 0.09 pg/mL | 1.08 ± 0.19 pg/mL | <0.0001, [0.55–0.9] |
WEE1 | 0.33 ± 0.14 pg/mL | 1.73 ± 0.24 pg/mL | <0.0001, [1.15–1.66] | 0.37 ± 0.16 pg/mL | 1.27 ± 0.25 pg/mL | <0.0001, [0.63–1.17] |
CRL-1739 Cell Line | HT29 Cell Line | |||||
---|---|---|---|---|---|---|
Parameter | Control (CRL-1739) | CRL-1739 + TPL | p value *, 95%CI (lower–upper) | Control (HT29) | HT29 + TPL | p value **, 95%CI (lower–upper) |
TOS (μmolH2O2 Eq./g) | 12 ± 1.79 | 20.83 ± 2.71 | <0.0001, [5.81–11.85] | 10.17 ± 1.72 | 21.50 ± 2.88 | <0.0001, [8.18–14.48] |
TAS (mmol Trolox Eq./g) | 1.75 ± 0.19 | 0.98 ± 0.15 | <0.0001, [−0.99–−0.54] | 2.10 ± 0.32 | 1.23 ± 0.16 | <0.0001, [−1.21–−0.52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozdemir, G.; Kaplan, H.M. Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines. Curr. Issues Mol. Biol. 2025, 47, 574. https://doi.org/10.3390/cimb47070574
Ozdemir G, Kaplan HM. Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines. Current Issues in Molecular Biology. 2025; 47(7):574. https://doi.org/10.3390/cimb47070574
Chicago/Turabian StyleOzdemir, Gorkem, and Halil Mahir Kaplan. 2025. "Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines" Current Issues in Molecular Biology 47, no. 7: 574. https://doi.org/10.3390/cimb47070574
APA StyleOzdemir, G., & Kaplan, H. M. (2025). Tempol Induces Oxidative Stress, ER Stress and Apoptosis via MAPK/Akt/mTOR Pathway Suppression in HT29 (Colon) and CRL-1739 (Gastric) Cancer Cell Lines. Current Issues in Molecular Biology, 47(7), 574. https://doi.org/10.3390/cimb47070574