Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = switched reluctance motor drive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3956 KiB  
Proceeding Paper
Implementation of Bidirectional Converter with Asymmetrical Half-Bridge Converter Based on an SRM Drive Using PV for Electric Vehicles
by Ramabadran Ramaprabha, Ethirajan Anjana, Sureshkumar Hariprasath, Sulaimon Mohammed Ashik, Medarametala Venkata Sai Kiran and Tikarey Yoganand Navinsai Kaarthik
Eng. Proc. 2025, 93(1), 15; https://doi.org/10.3390/engproc2025093015 - 2 Jul 2025
Viewed by 227
Abstract
Due to the high demand for fuel efficiency, electric vehicles have come into the picture, as they only use batteries to power the vehicle. This requires constant charging of the batteries at charging stations, which are costly and impractical to install. But it [...] Read more.
Due to the high demand for fuel efficiency, electric vehicles have come into the picture, as they only use batteries to power the vehicle. This requires constant charging of the batteries at charging stations, which are costly and impractical to install. But it is possible to install charging stations by making use of photovoltaic (PV) cells and demagnetization currents to self-charge batteries under stand-still conditions. The design of a bidirectional converter with asymmetrical half-bridge converter based on a switched reluctance motor (SRM) drive, using PV for electric vehicles, is implemented in this paper. It consists of developing a control unit (GCU), Li-ion battery pack, and photovoltaic (PV) solar cells that are integrated with a bidirectional converter and asymmetrical half-bridge converter (AHBC) to provide power to the SRM drive. The solar-assisted SRM drive can be operated in either the motoring mode or charging mode. In the motoring-mode GCU, the battery or PV energy can be used in any combination to power the SRM. In the charging-mode PV, the GCU and AC grids are used to charge the battery under stand-still conditions. This work helps in the self-charging of batteries using either the GCU or PV cells, as well as aids in the improvement in the performance characteristics. Also, this work compares the performance metrics for the proposed system and conventional system. The performance of the drive system using PV cells/GCU is evaluated and verified through MatLab/Simulink and experimental results. Full article
Show Figures

Figure 1

28 pages, 6846 KiB  
Article
Phase–Frequency Cooperative Optimization of HMDV Dynamic Inertial Suspension System with Generalized Ground-Hook Control
by Yihong Ping, Xiaofeng Yang, Yi Yang, Yujie Shen, Shaocong Zeng, Shihang Dai and Jingchen Hong
Machines 2025, 13(7), 556; https://doi.org/10.3390/machines13070556 - 26 Jun 2025
Viewed by 188
Abstract
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control [...] Read more.
Hub motor-driven vehicles (HMDVs) suffer from poor handling and stability due to an increased unsprung mass and unbalanced radial electromagnetic forces. Although traditional ground-hook control reduces the dynamic tire load, it severely worsens the body acceleration. This paper presents a generalized ground-hook control strategy based on impedance transfer functions to address the parameter redundancy in structural methods. A quarter-vehicle model with a switched reluctance motor wheel hub drive was used to study different orders of generalized ground-hook impedance transfer function control strategies for dynamic inertial suspension. An enhanced fish swarm parameter optimization method identified the optimal solutions for different structural orders. Analyses showed that the third-order control strategy optimized the body acceleration by 2%, reduced the dynamic tire load by 8%, and decreased the suspension working space by 22%. This strategy also substantially lowered the power spectral density for the body acceleration and dynamic tire load in the low-frequency band of 1.2 Hz. Additionally, it balanced computational complexity and performance, having slightly higher complexity than lower-order methods but much less than higher-order structures, meeting real-time constraints. To address time-domain deviations from generalized ground-hook control in semi-active systems, a dynamic compensation strategy was proposed: eight topological structures were created by modifying the spring–damper structure. A deviation correction mechanism was devised based on the frequency-domain coupling characteristics between the wheel speed and suspension relative velocity. For ride comfort and road-friendliness, a dual-frequency control criterion was introduced: in the low-frequency range, energy transfer suppression and phase synchronization locking were realized by constraining the ground-hook damping coefficient or inertance coefficient, while in the high-frequency range, the inertia-dominant characteristic was enhanced, and dynamic phase adaptation was permitted to mitigate road excitations. The results show that only the T0 and T5 structures met dynamic constraints across the frequency spectrum. Time-domain simulations showed that the deviation between the T5 structure and the third-order generalized ground-hook impedance model was relatively small, outperforming traditional and T0 structures, validating the model’s superior adaptability in high-order semi-active suspension. Full article
(This article belongs to the Special Issue New Journeys in Vehicle System Dynamics and Control)
Show Figures

Figure 1

27 pages, 5623 KiB  
Article
Torque Ripple Minimization for Switched Reluctance Motor Drives Based on Harris Hawks–Radial Basis Function Approximation
by Jackson Oloo and Szamel Laszlo
Energies 2025, 18(4), 1006; https://doi.org/10.3390/en18041006 - 19 Feb 2025
Viewed by 612
Abstract
Switched reluctance motor drives are becoming attractive for electric vehicle propulsion systems due to their simple and cheap construction. However, their operation is degraded by torque ripples due to the salient nature of the stator and rotor poles. There are several methods of [...] Read more.
Switched reluctance motor drives are becoming attractive for electric vehicle propulsion systems due to their simple and cheap construction. However, their operation is degraded by torque ripples due to the salient nature of the stator and rotor poles. There are several methods of mitigating torque ripples in switched reluctance motors (SRMs). Apart from changing the geometrical design of the motor, the less costly technique involves the development of an adaptive switching strategy. By selecting suitable turn-on and turn-off angles, torque ripples in SRMs can be significantly reduced. This work combines the benefits of Harris Hawks Optimization (HHO) and Radial Basis Functions (RBFs) to search and estimate optimal switching angles. An objective function is developed under constraints and the HHO is utilized to perform search stages for optimal switching angles that guarantee minimal torque ripples at every speed and current operating point. In this work, instead of storing the θon, θoff  values in a look-up table, the values are passed on to an RBF model to learn the nonlinear relationship between the columns of data from the HHO and hence transform them into high-dimensional outputs. The values are used to train an enhanced neural network (NN) in an adaptive switching strategy to address the nonlinear magnetic characteristics of the SRM. The proposed method is implemented on a current chopping control-based SRM 8/6, 600 V model. Percentage torque ripples are used as the key performance index of the proposed method. A fuzzy logic switching angle compensation strategy is implemented in numerical simulations to validate the performance of the HHO-RBF method. Full article
(This article belongs to the Special Issue Advanced Electric Powertrain Technologies for Electric Vehicles)
Show Figures

Figure 1

20 pages, 11567 KiB  
Article
Experimental Acoustic Noise and Sound Quality Characterization of a Switched Reluctance Motor Drive with Hysteresis and PWM Current Control
by Moien Masoumi and Berker Bilgin
Machines 2025, 13(2), 82; https://doi.org/10.3390/machines13020082 - 23 Jan 2025
Cited by 1 | Viewed by 982
Abstract
This paper presents an experimental characterization of acoustic noise and sound quality in a 12/8 Switched Reluctance Motor (SRM) using hysteresis and Pulse Width Modulation (PWM) current control techniques. To overcome the limitations of traditional sound power measurements and enhance the accuracy of [...] Read more.
This paper presents an experimental characterization of acoustic noise and sound quality in a 12/8 Switched Reluctance Motor (SRM) using hysteresis and Pulse Width Modulation (PWM) current control techniques. To overcome the limitations of traditional sound power measurements and enhance the accuracy of acoustic noise evaluation, a setup is applied for calculating sound power based on sound intensity measurements. The study provides a detailed description of the intensity probe-holding fixture, the hardware configuration for acoustic noise experiments, and the software setup tailored to specific measurement requirements. The acoustic noise characteristics of the motor are assessed at various operating points using two distinct current control methods: hysteresis current control with a variable switching frequency of up to 20 kHz and PWM current control with a fixed switching frequency of 12.5 kHz. Measurements of sound pressure and sound intensity enable the calculation of sound power and sound quality metrics under different operating conditions. Furthermore, the study investigates the influence of various factors on the motor’s sound power levels and sound quality. The findings provide valuable insights into the contributions of these factors to acoustic noise characteristics and offer a foundation for improving the motor’s acoustic behavior during the design and control stages. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

16 pages, 9401 KiB  
Article
Influence of DC/DC Converter Control on Source Current Ripple of the Switched Reluctance Motor
by Mateusz Daraż and Piotr Bogusz
Energies 2024, 17(22), 5711; https://doi.org/10.3390/en17225711 - 15 Nov 2024
Viewed by 892
Abstract
This paper presents a solution to reduce source current ripple in the electrical power supplying a switched reluctance motor (SRM) drive. Source current ripple negatively affects the power source by introducing a variable frequency component and increasing losses in the power source. Reducing [...] Read more.
This paper presents a solution to reduce source current ripple in the electrical power supplying a switched reluctance motor (SRM) drive. Source current ripple negatively affects the power source by introducing a variable frequency component and increasing losses in the power source. Reducing the source current ripple is important, especially in battery electric vehicles (BEVs). The solution proposed in this paper for reducing source current ripple is to use a classic DC/DC boost converter connected in series with the SRM power supply system. The key to reducing source current ripple is the DC/DC converter control method proposed and described in this article. This method involves controlling the DC/DC converter synchronized with the speed of the SRM motor DC/DC. To verify the correct operation of the proposed solution, simulation and laboratory tests of an SRM drive were performed, the results of which are shown in this paper. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

21 pages, 8877 KiB  
Article
The Effect of the Number of Parallel Winding Paths on the Fault Tolerance of a Switched Reluctance Motor
by Mariusz Korkosz, Jan Prokop and Piotr Bogusz
Energies 2024, 17(22), 5701; https://doi.org/10.3390/en17225701 - 14 Nov 2024
Cited by 1 | Viewed by 995
Abstract
Achieving increased fault tolerance in an electric motor requires decisions to be made about the type and specifications of the motor machine and its appropriate design. Depending on the type of motor, there are generally three ways to achieve an increased resistance of [...] Read more.
Achieving increased fault tolerance in an electric motor requires decisions to be made about the type and specifications of the motor machine and its appropriate design. Depending on the type of motor, there are generally three ways to achieve an increased resistance of the drive system to tolerate resulting faults. The simplest way is to select the right motor and design it appropriately. Switched reluctance motors (SRMs) have a high tolerance for internal faults (in the motor windings). Failure tolerance can be improved by using parallel paths. The SRM 24/16 solution has been proposed, which allows for operation with four parallel paths. In this paper, a mathematical model designed to analyse the problem under consideration is provided. Based on numerical calculations, the influence of typical faults (open and partial short circuit in one of the paths) on the electromagnetic torque generated as well as its ripple and (source and phase) currents were determined. The higher harmonics of the source current (diagnostic signal) were determined. Laboratory tests were performed to verify the various configurations for the symmetric and emergency operating states. The feasibility of SRM correct operation monitoring was determined from an FFT analysis of the source current. Full article
(This article belongs to the Special Issue Reliability and Condition Monitoring of Electric Motors and Drives)
Show Figures

Figure 1

13 pages, 1502 KiB  
Article
Fault-Tolerant Performance Analysis of a Modified Neutral-Point-Clamped Asymmetric Half-Bridge Converter for an In-Wheel Switched Reluctance Motor
by Jackson Oloo and Laszlo Szamel
Eng 2024, 5(4), 2575-2587; https://doi.org/10.3390/eng5040135 - 11 Oct 2024
Viewed by 1119
Abstract
Reliability is an essential factor for the operation of the Switched Reluctance Motor (SRM) drive. Electric vehicles operate in harsh environments, which may degrade the operation of power converters. These failure modes include transistor open- and short-circuits, freewheeling diode open- and short-circuits, and [...] Read more.
Reliability is an essential factor for the operation of the Switched Reluctance Motor (SRM) drive. Electric vehicles operate in harsh environments, which may degrade the operation of power converters. These failure modes include transistor open- and short-circuits, freewheeling diode open- and short-circuits, and DC-link capacitor failures. This work presents a performance analysis of an in-wheel SRM for an electric vehicle under short-circuit (SC) and open-circuit (OC) faults of a modified Neutral-Point-Clamped Asymmetric Half-Bridge (NPC-AHB) Converter. The SRM is modeled as an in-wheel electric vehicle. A separate vehicle model attached to the motor is also developed for validation and performance of the NPC-AHB under different faulty scenarios. The performance of the modified NPC-AHB is also compared with that of a conventional AHB under faulty conditions for an in-wheel 8/6 SRM. The performance indicators such as torque, speed, current, and flux are presented from MATLAB/Simulink 2023b numerical simulations. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

28 pages, 24761 KiB  
Article
Investigation of Drive Performance of Motors in Electric Loaders with Unequal Transmission Ratios—A Case Study
by Xiaotao Fei, Shaw Voon Wong, Muhammad Amin Azman, Peng Liu and Yunwu Han
World Electr. Veh. J. 2024, 15(10), 459; https://doi.org/10.3390/wevj15100459 - 10 Oct 2024
Cited by 2 | Viewed by 1230
Abstract
Research on electric wheel loaders (EWLs) has predominantly focused on battery management, hybrid technologies, and energy recovery. However, the influence of motor types and drivetrains on the drive performance of EWLs has received little attention in previous studies. This case study addresses this [...] Read more.
Research on electric wheel loaders (EWLs) has predominantly focused on battery management, hybrid technologies, and energy recovery. However, the influence of motor types and drivetrains on the drive performance of EWLs has received little attention in previous studies. This case study addresses this gap by examining different EWL configurations and analyzing the drive theory and force requirements by integrating classic vehicle theory with EWL-specific characteristics. The study compares an original EWL, equipped with Permanent Magnet Synchronous Motors (PMSMs) on both the front and rear axles with identical transmission ratios of 22.85, to a modified EWL, which features a Switched Reluctance Motor (SRM) on the front axle and a transmission ratio of 44.05. Walking and shoveling tests were conducted to evaluate performance. The walking test results reveal that, at motor speeds of 200 rpm, 400 rpm, and 600 rpm, energy consumption in R-drive mode is 68.56%, 71.88%, and 74.87% of that in F-drive mode when two PMSMs are used. When an SRM is applied with a transmission ratio of 44.05, these values shift to 73.90%, 70.35%, and 67.72%, respectively. This demonstrates that using the rear motor alone for driving under walking conditions can yield greater energy savings. The shoveling test results indicate that distributing torque according to wheel load reduces rear wheel slippage, and the SRM with a transmission ratio of 44.05 delivers sufficient drive force while operating within a high-efficiency speed range for the EWL. Full article
Show Figures

Figure 1

16 pages, 4677 KiB  
Article
Current Profiling Control for Torque Ripple Reduction in the Generating Mode of Operation of a Switched Reluctance Motor Drive
by Aniruddha Agrawal, Berker Bilgin and Amrutha K. Haridas
Symmetry 2024, 16(10), 1278; https://doi.org/10.3390/sym16101278 - 28 Sep 2024
Viewed by 1263
Abstract
The benefits of utilizing Switched Reluctance Motor (SRM) drives in traction applications can be realized fully by improving the electromagnetic performance of the machine in the generating mode of operation. This is because the generating capability of an SRM drive could be utilized [...] Read more.
The benefits of utilizing Switched Reluctance Motor (SRM) drives in traction applications can be realized fully by improving the electromagnetic performance of the machine in the generating mode of operation. This is because the generating capability of an SRM drive could be utilized for regenerative braking and also for the machine to generate power for the vehicle while the engine is in operation. In this paper, a current profiling-based control strategy is proposed to reduce the torque ripple in an SRM drive in the generating mode. The reference current profile is determined using a multi-step computation method to minimize torque ripple and maximize the average torque. The reference current profile is derived based on the reference torque command by utilizing the torque–current–angle look up table. The flux linkage characteristics of the SRM are considered when deriving the phase reference current profile. Then, the performance of the proposed profiling method, analytical linear and cubic torque sharing functions (TSFs), and the average torque optimization scheme are compared using simulation results. Finally, an experimental correlation is performed to validate the efficacy of the proposed control scheme. Full article
Show Figures

Figure 1

25 pages, 13011 KiB  
Article
A New Torque Control Approach for Torque Ripple Minimisation in Switched Reluctance Drives
by Ali Abdel-Aziz, Mohamed Elgenedy and Barry Williams
Energies 2024, 17(13), 3334; https://doi.org/10.3390/en17133334 - 7 Jul 2024
Cited by 1 | Viewed by 1913
Abstract
The switched reluctance motor (SRM) has many merits, such as robustness, a simple construction, low cost, and no permanent magnets. However, its deployment in servo applications is restrained due to acoustic noise and torque ripple (TR). This paper presents a new torque control [...] Read more.
The switched reluctance motor (SRM) has many merits, such as robustness, a simple construction, low cost, and no permanent magnets. However, its deployment in servo applications is restrained due to acoustic noise and torque ripple (TR). This paper presents a new torque control approach for TR reduction in switched reluctance drives. The approach is based on the maximum utilisation of the available dc-link voltage, hence extending the zero torque-ripple speed range. The approach is suitable for an SRM with any number of phases and stator/rotor poles. Soft switching control is deployed, which reduces switching losses. At any instant (regardless of the number of phases being conducted simultaneously), only one phase current is controlled. The well-established torque-sharing function concept is adapted and generalised to cater for more than two phases conducting simultaneously. MATLAB/Simulink confirmation simulations are based on the widely studied four-phase 8/6, 4 kW, 1500 rpm SRM. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

26 pages, 7323 KiB  
Review
Review of Switched Reluctance Motor Converters and Torque Ripple Minimisation Techniques for Electric Vehicle Applications
by Ali Abdel-Aziz, Mohamed Elgenedy and Barry Williams
Energies 2024, 17(13), 3263; https://doi.org/10.3390/en17133263 - 3 Jul 2024
Cited by 12 | Viewed by 3641
Abstract
This paper presents a review of the most common power converters and torque ripple minimisation approaches for switched reluctance motors (SRMs). Unlike conventional three-phase AC motors, namely squirrel cage induction motors and permanent magnet synchronous motors, which require a typical three-phase inverter for [...] Read more.
This paper presents a review of the most common power converters and torque ripple minimisation approaches for switched reluctance motors (SRMs). Unlike conventional three-phase AC motors, namely squirrel cage induction motors and permanent magnet synchronous motors, which require a typical three-phase inverter for operation, the switched reluctance motor requires a different topology power converter for reliable and efficient operation. In addition, due to the non-linear, discrete nature of SRM torque production, torque ripple is severely pronounced, which is undesirable in servo applications like electric vehicles. Hence, deploying a proper torque control function for smooth and quiet motor operation is crucial. This paper sheds light over the most popular SRM power converters as well as torque ripple minimisation methods, and it suggests an optimal SRM drive topology for EV applications. Full article
Show Figures

Figure 1

28 pages, 9447 KiB  
Article
Asymmetrical Four-Phase 8/6 Switched Reluctance Motor for a Wide Constant Power Region
by Dragan S. Mihić, Bogdan M. Brkovic and Mladen V. Terzic
Machines 2024, 12(7), 454; https://doi.org/10.3390/machines12070454 - 3 Jul 2024
Viewed by 1597
Abstract
In this paper, the methodology for designing an asymmetrical four-phase 8/6 switched reluctance motor (SRM) that achieves approximately constant output power over a wide speed range is described. In an asymmetrical 8/6 SRM, orthogonal phase pairs are different in terms of the pole [...] Read more.
In this paper, the methodology for designing an asymmetrical four-phase 8/6 switched reluctance motor (SRM) that achieves approximately constant output power over a wide speed range is described. In an asymmetrical 8/6 SRM, orthogonal phase pairs are different in terms of the pole width and number of turns. The main comparison criterion between the asymmetrical and symmetrical 8/6 SRM is the power-speed characteristic, obtained for a given rated RMS phase current of the symmetrical drive. The obtained results demonstrate that the asymmetrical 8/6 SRM allows the shape of the power-speed characteristic to be modified, thereby extending the constant power region well beyond that of the symmetrical configuration with the same rated power level. To make a fair comparison between the asymmetrical and symmetrical 8/6 SRM drives, the converter volt-ampere rating, machine volume, slot fill factor, and ohmic losses per phase are kept constant in all analyzed cases. For determination of the optimal control parameters and maximal drive performance for both designs, the appropriate SRM mathematical model and differential evolution algorithm are used. The applied model includes all substantial non-linearities and mutual coupling between phases. The simulation results are verified using a Finite Element Method (FEM)-based model in the Ansys Electronics 2020 R2 software package. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

16 pages, 6450 KiB  
Communication
Mechanical Faults Analysis in Switched Reluctance Motor
by Jakub Lorencki and Stanisław Radkowski
Appl. Sci. 2024, 14(8), 3452; https://doi.org/10.3390/app14083452 - 19 Apr 2024
Cited by 1 | Viewed by 1718
Abstract
The switched reluctance motor (SRM) is an electric motor that can function effectively in challenging operating conditions thanks to its sturdy construction and resilience to external factors. Despite somewhat weaker parameters in terms of energy and power density compared to other types of [...] Read more.
The switched reluctance motor (SRM) is an electric motor that can function effectively in challenging operating conditions thanks to its sturdy construction and resilience to external factors. Despite somewhat weaker parameters in terms of energy and power density compared to other types of electric motors, the SRM is recommended for applications such as the military, mining, industry, and other locations where the reliability of vehicle drive is essential. Therefore, monitoring the motor’s operating state and identifying the fault’s condition while it is still in the beginning phase is crucial. The paper presents SRM diagnostic methods and the authors’ research on the test stand. The examined faults were dynamic eccentricity and imbalance. Experiments were performed for various rotational speeds and loads. The analysis of the results consisted of the interpretation of the current and acceleration spectra acquired from proper sensors. The spectra bands are compared in terms of their amplitudes and frequency values. These results show the nonlinear characteristics of the motor’s operation, and interpretation of these results allows for estimating the impact of a fault parameter on a motor’s performance. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

27 pages, 12794 KiB  
Article
An EV SRM Drive and Its Interconnected Operations Integrated into Grid, Microgrid, and Vehicle
by Wei-Kai Gu, Chen-Wei Yang and Chang-Ming Liaw
Appl. Sci. 2024, 14(7), 3032; https://doi.org/10.3390/app14073032 - 4 Apr 2024
Cited by 4 | Viewed by 1606
Abstract
This paper presents an electric vehicle (EV) switched reluctance motor (SRM) drive with incorporated operation capabilities integrated into the utility grid, the microgrid, and another EV. The motor drive DC-link voltage is established from the battery through an interleaved boost/buck converter with fault [...] Read more.
This paper presents an electric vehicle (EV) switched reluctance motor (SRM) drive with incorporated operation capabilities integrated into the utility grid, the microgrid, and another EV. The motor drive DC-link voltage is established from the battery through an interleaved boost/buck converter with fault tolerance. The varied DC-link voltage can improve driving performance and reduce battery energy consumption over a wide speed range. Through a well-designed current control scheme, speed control scheme, and dynamic commutation tuning scheme, the established SRM drive possesses good performance in the motor driving mode. During deceleration, the regenerative braking energy can be effectively recovered to the battery. When the EV is in idle mode, the grid-to-vehicle (G2V) charging operation can be conducted through the bidirectional switch mode rectifier (SMR) and CLLC resonant converter. Satisfactory charging performance with good line drawn power quality and galvanic isolation is preserved. Conversely, the vehicle-to-grid (V2G) discharging operation can be performed. The EV can make movable energy storage device applications. Finally, the interconnected operations of the developed EV SRM drive to vehicle and microgrid are presented. Through vehicle-to-vehicle (V2V) operation, it can supply energy to the nearby EV when the battery is exhausted and needs roadside assistance. In addition, microgrid-to-vehicle (M2V) and vehicle-to-microgrid (V2M) operations can also be conductible. The EV battery can be charged from the microgrid. Conversely, it can also provide energy support to the microgrid. Full article
Show Figures

Figure 1

30 pages, 8550 KiB  
Communication
Evaluation of Electric Vehicle Performance Characteristics for Adaptive Supervisory Self-Learning-Based SR Motor Energy Management Controller under Real-Time Driving Conditions
by Pemmareddy Saiteja, Bragadeshwaran Ashok and Dharmik Upadhyay
Vehicles 2024, 6(1), 509-538; https://doi.org/10.3390/vehicles6010023 - 8 Mar 2024
Cited by 3 | Viewed by 3877
Abstract
The performance of an electric vehicle (EV) notably depends on an energy management controller. This study developed several energy management controllers (EMCs) to optimize the efficiency of EVs in real-time driving conditions. Also, this study employed an innovative methodology to create EMCs, efficiency [...] Read more.
The performance of an electric vehicle (EV) notably depends on an energy management controller. This study developed several energy management controllers (EMCs) to optimize the efficiency of EVs in real-time driving conditions. Also, this study employed an innovative methodology to create EMCs, efficiency maps, and real-time driving cycles under actual driving conditions. The various EMCs such as PID, intelligent, hybrid, and supervisory controllers are designed using MATLAB/Simulink and examined under real-time conditions. In this instance, a mathematical model of an EV with a switched reluctance (SR) motor is developed to optimize energy consumption using different energy management controllers. Further, an inventive experimental approach is employed to generate efficiency maps for the SR motor and above-mentioned controllers. Then, the generated efficiency maps are integrated into a model-in-loop (MIL)-based EV test platform to analyze the performance under real-time conditions. Additionally, to verify EV model, a real-time driving cycle (DC) has been developed, encompassing various road conditions such as highway, urban, and rural. Subsequently, the developed models are included into an MIL-based EV test platform to optimize the performance of the electric motor and battery consumption in real-time conditions. The results indicate that the proposed supervisory controller (59.1%) has a lower EOT SOC drop compared to the PID (3.6%), intelligent (21.5%), and hybrid (44.9%) controllers. Also, the suggested controller achieves minimal energy consumption (44.67 Wh/km) and enhances energy recovery (−58.28 Wh) under different real-time conditions. Therefore, it will enhance the driving range and battery discharge characteristics of EVs across various real-time driving conditions. Full article
(This article belongs to the Special Issue Advanced Storage Systems for Electric Mobility)
Show Figures

Figure 1

Back to TopTop