Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (408)

Search Parameters:
Keywords = surfactant surface tension

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5884 KB  
Article
The Synthesis of Novel Glucosylamide Organosilicon Quaternary Ammonium Salts and Long-Lasting Modification of Different Materials
by Xiangji Meng, Yunkai Wang, Jingru Wang, Lifei Zhi, Linfei Li, Xiaoming Li, Chan Wu, Rui Jin, Ziyong Ma, Zhiwang Han and Xudong Liu
Molecules 2025, 30(19), 3934; https://doi.org/10.3390/molecules30193934 - 1 Oct 2025
Viewed by 212
Abstract
Using renewable D-gluconic acid δ-lactone as the starting material, two novel glucosamide-based organosilicon quaternary ammonium surfactants (2/3SiDDGPBH) were synthesized through an environmentally friendly three-step process involving amidation, hydrophobic modification, and quaternization. Comprehensive characterization demonstrated their exceptional performance: surface tension reduction to [...] Read more.
Using renewable D-gluconic acid δ-lactone as the starting material, two novel glucosamide-based organosilicon quaternary ammonium surfactants (2/3SiDDGPBH) were synthesized through an environmentally friendly three-step process involving amidation, hydrophobic modification, and quaternization. Comprehensive characterization demonstrated their exceptional performance: surface tension reduction to 33.4 mN/m (2SiDDGPBH) and 33.64 mN/m (3SiDDGPBH), uniform spherical micelles (1–10 nm and 30–100 nm) were formed, and outstanding foam properties with 3SiDDGPBH developed, showing superior foamability and stability. Material modification tests on polymethyl methacrylate (PMMA) plates, mature acacia leaves, oilpaper, vegetable-tanned top-grain leather, and melamine-formaldehyde resin (MFR) faced with plywood revealed excellent spreading performance and durability, particularly for 3SiDDGPBH-treated MFR plywood, which maintained excellent spreading performance even after 80 washing cycles. Scanning electron microscopy (SEM) analysis confirmed that the Si wt% of MFR plywood treated with 2/3SiDDGPBH and scrubbed MFR plywood both exhibited a significant increase, and the 3SiDDGPBH-treated MFR plywood demonstrated superior bonding properties. These surfactants combine low surface tension, excellent foaming properties, and outstanding spreading performance, demonstrating broad application prospects in fields such as pesticide adjuvants, industrial and household cleaning agents, cosmetics, oilfield extraction, textile printing and dyeing, and functional coatings. Full article
(This article belongs to the Topic Green and Sustainable Chemical Products and Processes)
Show Figures

Figure 1

16 pages, 3517 KB  
Article
Effect of Polymer Concentration on the Rheology and Surface Activity of Cationic Polymer and Anionic Surfactant Mixtures
by Chung-Chi Sun and Rajinder Pal
Fluids 2025, 10(10), 253; https://doi.org/10.3390/fluids10100253 - 27 Sep 2025
Viewed by 222
Abstract
The effects of polymer concentration on rheology, surface tension, and electrical conductivity of polymer–surfactant mixtures are investigated experimentally. The polymer studied is a cationic quaternary ammonium salt of hydroxyethyl cellulose, and the surfactant used is anionic sodium lauryl sulfate. The polymer concentration is [...] Read more.
The effects of polymer concentration on rheology, surface tension, and electrical conductivity of polymer–surfactant mixtures are investigated experimentally. The polymer studied is a cationic quaternary ammonium salt of hydroxyethyl cellulose, and the surfactant used is anionic sodium lauryl sulfate. The polymer concentration is varied from 1000 to 4000 ppm, and the surfactant concentration varied from 0 to 500 ppm. Polymer concentration affects the properties of the mixtures substantially. At a given surfactant concentration, the consistency of the polymer–surfactant mixture rises sharply with the increase in polymer concentration. The mixture also becomes more shear-thinning with the increase in polymer concentration. The surface tension decreases substantially, and the electrical conductivity increases with the increase in polymer concentration at a fixed surfactant concentration. At a given polymer concentration, the consistency index generally exhibits a maximum and the surface tension exhibits a minimum at some intermediate surfactant concentration. With the increase in polymer concentration, the maximum in the consistency index and the minimum in surface tension shift to higher surfactant concentrations. Although the exact mechanisms are not clear at present, a possible explanation for the observed initial changes in rheological and surface-active properties of polymer–surfactant mixtures with the addition of surfactant is charge neutralization and entanglement of polymer chains. At high surfactant concentrations, recharging and disentanglement of polymer chains probably take place. Full article
(This article belongs to the Section Non-Newtonian and Complex Fluids)
Show Figures

Figure 1

19 pages, 2807 KB  
Article
Nano-Biomechanical Analysis of a Corticosteroid Drug for Targeted Delivery into the Alveolar Air—Water Interface Using Molecular Dynamics Simulation
by Zohurul Islam, Khalid Bin Kaysar, Shakhawat Hossain, Akram Hossain, Suvash C. Saha, Toufik Tayeb Naas and Kwang-Yong Kim
Micro 2025, 5(4), 44; https://doi.org/10.3390/micro5040044 - 25 Sep 2025
Viewed by 274
Abstract
The enhancement of drug delivery into the lung surfactant is facilitated by research on the interaction between drugs and the lung surfactant. Drug designers must have a thorough theoretical understanding of a drug before performing clinical tests to reduce the experimental cost. The [...] Read more.
The enhancement of drug delivery into the lung surfactant is facilitated by research on the interaction between drugs and the lung surfactant. Drug designers must have a thorough theoretical understanding of a drug before performing clinical tests to reduce the experimental cost. The current study uses a coarse-grained molecular dynamics (MD) approach with the MARTINI force field to parameterize the corticosteroid drug mometasone furoate, which is used to treat lung inflammation. Here, we investigate the accurate parametrization of drug molecules and validate the parameters with the help of umbrella sampling simulations. A collection of thermodynamic parameters was studied during the parametrization procedure. The Gibbs free energy gradient was used to calculate the partition coefficient value of mometasone furoate, which was approximately 10.49 based on our umbrella sampling simulation. The value was then matched with the experimental and predicted the partition coefficient of the drug, showing good agreement. The drug molecule was then delivered into the lung surfactant monolayer membrane at the alveolar air–water interface, resulting a concentration-dependent drop in surface tension while controlling the underlying continual compression–expansion of alveoli that maintains the exhalation–inhalation respiratory cycle. The dynamical properties of the monolayer demonstrate that the drug’s capacity to diffuse into the monolayer is considerably diminished in larger clusters, and this effect is intensified when there are more drug molecules present in the monolayer. The monolayer microstructure analysis shows that the drug concentration controls monolayer morphology. The results of this investigation may be helpful for corticosteroid drug delivery into the lung alveoli, which can be applied to comprehend how the drug interacts with lung surfactant monolayers or bilayers. Full article
Show Figures

Figure 1

27 pages, 1813 KB  
Review
Bacterial Biosurfactants as Bioactive Ingredients: Surfactin’s Role in Food Preservation, Functional Foods, and Human Health
by Zainab Hussain Abdul Wahab and Shayma Thyab Gddoa Al-Sahlany
Bacteria 2025, 4(4), 49; https://doi.org/10.3390/bacteria4040049 - 25 Sep 2025
Viewed by 363
Abstract
Biosurfactants are amphiphilic compounds synthesized by microorganisms, providing environmentally sustainable alternatives to synthetic surfactants owing to their biodegradability and minimal toxicity. This review examines bacterial origins of biosurfactants, with a focus on surfactin derived from Bacillus species including B. subtilis, B. amyloliquefaciens [...] Read more.
Biosurfactants are amphiphilic compounds synthesized by microorganisms, providing environmentally sustainable alternatives to synthetic surfactants owing to their biodegradability and minimal toxicity. This review examines bacterial origins of biosurfactants, with a focus on surfactin derived from Bacillus species including B. subtilis, B. amyloliquefaciens, B. licheniformis, and B. pumilus. The cyclic lipopeptide structure of surfactin, which consists of a heptapeptide attached to a β-hydroxy fatty acid chain, imparts remarkable surface-active characteristics, such as a reduced surface tension of 27 mN/m and a low critical micelle concentration of 20 µM. In medical applications, surfactin demonstrates antimicrobial, antiviral, and anticancer properties through mechanisms such as apoptosis induction and metastasis inhibition, as well as promoting wound healing by enhancing angiogenesis and decreasing fibrosis. In the realm of food processing, it functions as a natural antimicrobial agent against pathogens such as Listeria and Salmonella, improves emulsion stability in products like mayonnaise, prolongs shelf life, and influences gut microbiota composition. The safety profiles correspond with the Generally Recognized as Safe (GRAS) status for compounds derived from Bacillus; however, it is essential to optimize dosing to reduce the risks associated with hemolysis. Challenges encompass production expenses, scalability issues, and regulatory obstacles, with genetic engineering suggested as a means to achieve improved yields. Surfactin demonstrates potential as a sustainable bioactive component within the food and health industries. Full article
Show Figures

Figure 1

23 pages, 6266 KB  
Article
Influence of Added Surfactants on the Rheology and Surface Activity of Polymer Solutions
by Rajinder Pal and Chung-Chi Sun
ChemEngineering 2025, 9(5), 105; https://doi.org/10.3390/chemengineering9050105 - 23 Sep 2025
Viewed by 299
Abstract
Steady-shear rheology and surface activity of surfactant–polymer solutions were investigated experimentally. Four different polymers were studied as follows: cationic hydroxyethyl cellulose, nonionic hydroxyethyl cellulose, nonionic guar gum, and anionic xanthan gum. The influence of the following four surfactants on each of the polymers [...] Read more.
Steady-shear rheology and surface activity of surfactant–polymer solutions were investigated experimentally. Four different polymers were studied as follows: cationic hydroxyethyl cellulose, nonionic hydroxyethyl cellulose, nonionic guar gum, and anionic xanthan gum. The influence of the following four surfactants on each of the polymers was determined: nonionic alcohol ethoxylate, anionic sodium lauryl sulfate, cationic hexadecyltrimethylammonium bromide, and zwitterionic cetyl betaine. The interaction between cationic hydroxyethyl cellulose and anionic sodium lauryl sulfate was extraordinarily strong, resulting in dramatic changes in rheological and surface-active properties. The consistency increased initially, reached a maximum value, and then fell off with the further addition of surfactant. The surface tension of surfactant–polymer solution dropped substantially and exhibited a minimum value. Thus, the surfactant–polymer solutions were much more surface-active compared with pure surfactant solutions. The interaction between anionic xanthan gum and cationic hexadecyltrimethylammonium bromide was also strong, resulting in a substantial decrease in consistency. The surfactant–polymer solution became less surface-active compared with pure surfactant solution due to the migration of surfactant from solution to polymer. The interactions between other polymers and surfactants were weak to moderate, resulting in small to modest changes in rheological and surface-active properties. Surface activity of surfactant–polymer solutions often increased due to the formation of complexes more surface-active than pure surfactant molecules. Full article
Show Figures

Figure 1

21 pages, 3238 KB  
Article
Development and Characterization of a Novel Erucyl Ultra-Long-Chain Gemini Surfactant
by Guiqiang Fei and Banghua Liu
Polymers 2025, 17(16), 2257; https://doi.org/10.3390/polym17162257 - 21 Aug 2025
Viewed by 583
Abstract
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and [...] Read more.
To stimulate the progress of clean fracturing fluid systems, an innovative erucyl ultra-long-chain gemini surfactant (EUCGS) was devised and manufactured during the course of this study. The target product was successfully prepared via a two-step reaction involving erucyl primary amine, 3-bromopropionyl chloride, and 1,3-bis(dimethylamino)propanediol, with an overall yield of 78.6%. FT-IR and 1H NMR characterization confirmed the presence of C22 ultra-long chains, cis double bonds, amide bonds, and quaternary ammonium headgroups in the product structure. Performance tests showed that EUCGS exhibited an extremely low critical micelle concentration (CMC = 0.018 mmol/L) and excellent ability to reduce surface tension (γCMC = 30.0 mN/m). Rheological property studies indicated that EUCGS solutions gradually exhibited significant non-Newtonian fluid characteristics with increasing concentration, and wormlike micelles with a network structure could self-assemble at a concentration of 1.0 mmol/L. Dynamic rheological tests revealed that the solutions showed typical Maxwell fluid behavior and significant shear-thinning properties, which originated from the orientation and disruption of the wormlike micelle network structure under shear stress. In the presence of 225 mmol/L NaCl, the apparent viscosity of a 20 mmol/L EUCGS solution increased from 86 mPa·s to 256 mPa·s. A temperature resistance evaluation showed that EUCGS solutions had a good temperature resistance at high shear rates and 100 °C. The performance evaluation of fracturing fluids indicates that the proppant settling rate (0.25 cm/min) of the EUCGS-FFS system at 90 °C is significantly superior to that of the conventional system. It features the low dosage and high efficiency of the breaker, with the final core damage rate being only 0.9%. The results demonstrate that the EUCGS achieves a synergistic optimization of high-efficiency interfacial activity, controllable rheological properties, and excellent thermal–salt stability through precise molecular structure design, providing a new material choice for the development of intelligent responsive clean fracturing fluids. Full article
Show Figures

Graphical abstract

16 pages, 2807 KB  
Article
Evaluating the Impact of Carbon Nanoparticles on the Interfacial Properties of the Pulmonary Surfactant Film
by Yingxue Geng, Qun Zhao, Junfeng Wang, Yan Cao, Yunshan Wang, Wenshi Gou, Linfeng Zhang and Senlin Tian
Nanomaterials 2025, 15(16), 1244; https://doi.org/10.3390/nano15161244 - 14 Aug 2025
Viewed by 427
Abstract
The interaction between carbon nanoparticles (CNs) and Langmuir monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a model pulmonary surfactant (PS) film was studied to shed light on the physicochemical bases underlying the potential adverse effects associated with pollutant inhalation. The results indicated that the surface [...] Read more.
The interaction between carbon nanoparticles (CNs) and Langmuir monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) as a model pulmonary surfactant (PS) film was studied to shed light on the physicochemical bases underlying the potential adverse effects associated with pollutant inhalation. The results indicated that the surface pressure–area isotherms of the DPPC monolayers shifted toward lower molecular areas, and the compression modulus was reduced in the presence of CNs, hindering the ability of the DPPC monolayers to reduce the surface tension. The relaxation process of the DPPC monolayers were influenced, and the surface morphology and the continuity of the monolayers were destroyed by the penetration of CNs into the DPPC monolayers. The molecular dynamics simulation revealed that particle incorporation into the DPPC monolayers reduced the packing density of the DPPC molecules, worsening the mechanical performance of the monolayers. This effect was attributed to the strong binding trend between the CNs and the DPPC molecules. These results demonstrated that CNs could alter the relaxation mechanisms of the PS film, and this may cause a modification of the inhaled particle transport at the PS film and contribute to adverse health effects in the respiratory system of workers involved in the CN production process. Full article
Show Figures

Graphical abstract

29 pages, 3331 KB  
Article
Advanced Delayed Acid System for Stimulation of Ultra-Tight Carbonate Reservoirs: A Field Study on Single-Phase, Polymer-Free Delayed Acid System Performance Under Extreme Sour and High-Temperature Conditions
by Charbel Ramy, Razvan George Ripeanu, Daniel A. Hurtado, Carlos Sirlupu, Salim Nassreddine, Maria Tănase, Elias Youssef Zouein, Alin Diniță, Constantin Cristian Muresan and Ayham Mhanna
Processes 2025, 13(8), 2547; https://doi.org/10.3390/pr13082547 - 12 Aug 2025
Viewed by 836
Abstract
This field study describes the successful implementation and evaluation of a Polymer-free Delayed Acid System, a next-generation acid retarder system that is chemically superior to traditional emulsified acid systems with an amphoteric-based surfactant. It is a polymer-free system that stimulates ultra-tight carbonate reservoirs [...] Read more.
This field study describes the successful implementation and evaluation of a Polymer-free Delayed Acid System, a next-generation acid retarder system that is chemically superior to traditional emulsified acid systems with an amphoteric-based surfactant. It is a polymer-free system that stimulates ultra-tight carbonate reservoirs in extreme sour and high-temperature conditions. The candidate well, located in an onshore gulf region field, for a major oil and gas company demonstrated chronically unstable production behavior for over two years, with test volumes fluctuating unpredictably between 200 and 400 barrels of oil per day. This indicated severe near-wellbore damage, high skin, and limited matrix permeability (<0.3 mD). The well was chosen for a pilot trial of the Polymer-free Delayed Acid System technology after a thorough formation study, which included mineralogical characterization and capillary diagnostics. The innovative acid retarder formulation, designed for deep matrix penetration and controlled acid–rock reaction, uses intrinsic encapsulation kinetics to significantly increase the acid’s reactivity, allowing it to bypass damaged zones, minimize acid leak-off, and initiate dominant wormhole propagation into the tight formation. The stimulation procedure began with a custom pre-flush designed to change nanoscale wettability and interfacial tension, so increasing acid displacement and assuring effective contact with the formation rock. Real-time injectivity testing and operational data collecting were performed prior to, during, and following the acid job, with pre-stimulation injectivity peaking at 1.2 bpm, indicating poor formation conductivity. Treatment with the Polymer-free Delayed Acid System resulted in a 592% increase in post-stimulation injectivity, indicating significant increases in near-wellbore permeability and successful propagation. However, a substantial operational difficulty arose: the well remained shut down for more than two months following the acid stimulation work due to surface infrastructure delays, notably the scheduling and execution of a flowline cleanup campaign. This lengthy closure slowed immediate flowback analysis and impeded direct assessment of treatment performance because production could not be tracked in real time. Despite this, once the surface system was operational and the well was open to flow, a structured production testing program was carried out over four quarterly intervals. The well regularly produced at an average stable rate of 500 bbl/day, more than doubling pre-treatment performance and demonstrating the long-term effectiveness and mechanical durability of the acid-induced wormhole network. Despite the post-job shut-in, the Polymer-free Delayed Acid System maintained the stimulating impact even under non-ideal settings, demonstrating its robustness. The Polymer-free Delayed Acid System outperforms conventional emulsified acid systems, giving better control over acid placement and reactivity, especially under severe reservoir conditions with bottomhole temperatures reaching 200 °F. This project offers a field-proven methodology that combines advanced chemical engineering, formation-specific design, and live diagnostics, as well as a scalable blueprint for unlocking hydrocarbon potential in similarly complicated, low-permeability reservoirs. Full article
(This article belongs to the Special Issue Advanced Technology in Unconventional Resource Development)
Show Figures

Figure 1

18 pages, 5788 KB  
Article
Flow Characteristics and Enhanced Oil Recovery Performance of Anionic and Zwitterionic Viscoelastic Surfactant System
by Chenyue Ling, Yafei Liu, Xuchun Yang, Qi Ye and Desheng Zhou
Gels 2025, 11(8), 627; https://doi.org/10.3390/gels11080627 - 10 Aug 2025
Viewed by 476
Abstract
Surfactant flooding has shown potential in enhanced oil recovery (EOR), but conventional surfactants often underperform in heterogeneous reservoirs. This study investigates the impact of a surfactant mixture, combining anionic sodium dodecyl sulfate (SDS) and zwitterionic oleylamidopropyl betaine (OAB-30), on two-phase flow behavior and [...] Read more.
Surfactant flooding has shown potential in enhanced oil recovery (EOR), but conventional surfactants often underperform in heterogeneous reservoirs. This study investigates the impact of a surfactant mixture, combining anionic sodium dodecyl sulfate (SDS) and zwitterionic oleylamidopropyl betaine (OAB-30), on two-phase flow behavior and its EOR potential. Six surfactant solutions with varying concentrations were first screened using an idealized dead-end shaped microchannel in combination with interfacial properties and rheological tests. The results showed that 0.2% SDS and 0.6% OAB-30 produced the highest oil recovery in the dead-end structure. Interfacial tension was reduced to 0.374 mN/m and strong viscoelastic behavior was observed using the optimized surfactant mixture. Wettability of the surface tended to be more hydrophilic after the application of the surfactant mixture as well. Subsequently, the microscale oil displacement process was examined using the optimized surfactant mixture via microfluidic devices with an idealized pore–throat network with permeability contrast and realistic pore–throat structure. The application of the optimal surfactant formula resulted in 28.46% and 49.96% improvement over conventional water flooding in a realistic pore–throat structure and idealized pore–throat network. The critical micelle concentration measurements of the mixture suggested favorable micelle formation, contributing to gel-like properties that improved sweep efficiency by lowering the mobility ratio. In heterogenous pore–throat networks, the emulsification, micellar solubilization, wettability alteration, and viscoelastic properties of the surfactant mixture favored the oil recovery process. This work provides experimental evidence and mechanistic insights for the application of viscoelastic surfactants in EOR in heterogeneous reservoirs. Full article
(This article belongs to the Special Issue Applications of Gels for Enhanced Oil Recovery)
Show Figures

Figure 1

18 pages, 8662 KB  
Article
Synergy of Fly Ash and Surfactant on Stabilizing CO2/N2 Foam for CCUS in Energy Applications
by Jabir Dubaish Raib, Fujian Zhou, Tianbo Liang, Anas A. Ahmed and Shuai Yuan
Energies 2025, 18(15), 4181; https://doi.org/10.3390/en18154181 - 6 Aug 2025
Viewed by 581
Abstract
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, [...] Read more.
The stability of nitrogen gas foam hinders its applicability in petroleum applications. Fly ash nanoparticles and clay improve the N2 foam stability, and flue gas foams provide a cost-effective solution for carbon capture, utilization, and storage (CCUS). This study examines the stability, volume, and bubble structure of foams formed using two anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS), along with the cationic surfactant cetyltrimethylammonium bromide (CTAB), selected for their comparable interfacial tension properties. Analysis of foam stability and volume and bubble structure was conducted under different CO2/N2 mixtures, with half-life and initial foam volume serving as the evaluation criteria. The impact of fly ash and clay on SDS-N2 foam was also evaluated. The results showed that foams created with CTAB, SDBS, and SDS exhibit the greatest stability in pure nitrogen, attributed to low solubility in water and limited gas diffusion. SDS showed the highest foam strength attributable to its comparatively low surface tension. The addition of fly ash and clay significantly improved foam stability by migrating to the gas–liquid interface, creating a protective barrier that reduced drainage. Both nano fly ash and clay improved the half-life of nitrogen foam by 11.25 times and increased the foam volume, with optimal concentrations identified as 5.0 wt% for fly ash and 3.0 wt% for clay. This research emphasizes the importance of fly ash nanoparticles in stabilizing foams, therefore optimizing a foam system for enhanced oil recovery (EOR). Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection 2024)
Show Figures

Figure 1

15 pages, 1758 KB  
Article
Optimized Si-H Content and Multivariate Engineering of PMHS Antifoamers for Superior Foam Suppression in High-Viscosity Systems
by Soyeon Kim, Changchun Liu, Junyao Huang, Xiang Feng, Hong Sun, Xiaoli Zhan, Mingkui Shi, Hongzhen Bai and Guping Tang
Coatings 2025, 15(8), 894; https://doi.org/10.3390/coatings15080894 - 1 Aug 2025
Viewed by 549
Abstract
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D [...] Read more.
A modular strategy for the molecular design of silicone-based antifoaming agents was developed by precisely controlling the architecture of poly (methylhydrosiloxane) (PMHS). Sixteen PMHS variants were synthesized by systematically varying the siloxane chain length (L1–L4), backbone composition (D3T1 vs. D30T1), and terminal group chemistry (H- vs. M-type). These structural modifications resulted in a broad range of Si-H functionalities, which were quantitatively analyzed and correlated with defoaming performance. The PMHS matrices were integrated with high-viscosity PDMS, a nonionic surfactant, and covalently grafted fumed silica—which was chemically matched to each PMHS backbone—to construct formulation-specific defoaming systems with enhanced interfacial compatibility and colloidal stability. Comprehensive physicochemical characterization via FT-IR, 1H NMR, GPC, TGA, and surface tension analysis revealed a nonmonotonic relationship between Si-H content and defoaming efficiency. Formulations containing 0.1–0.3 wt% Si-H achieved peak performance, with suppression efficiencies up to 96.6% and surface tensions as low as 18.9 mN/m. Deviations from this optimal range impaired performance due to interfacial over-reactivity or reduced mobility. Furthermore, thermal stability and molecular weight distribution were found to be governed by repeat unit architecture and terminal group selection. Compared with conventional EO/PO-modified commercial defoamers, the PMHS-based systems exhibited markedly improved suppression durability and formulation stability in high-viscosity environments. These results establish a predictive structure–property framework for tailoring antifoaming agents and highlight PMHS-based formulations as advanced foam suppressors with improved functionality. This study provides actionable design criteria for high-performance silicone materials with strong potential for application in thermally and mechanically demanding environments such as coating, bioprocessing, and polymer manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Graphical abstract

20 pages, 2643 KB  
Article
Modulation of Pulmonary Fibrosis by Pulmonary Surfactant-Associated Phosphatidylethanolamine In Vitro and In Vivo
by Beatriz Tlatelpa-Romero, Luis G. Vázquez-de-Lara Cisneros, Olga Cañadas, Amaya Blanco-Rivero, Barbara Olmeda, Jesús Pérez-Gil, Criselda Mendoza-Milla, José Luis Martinez-Vaquero, Yair Romero, David Atahualpa Contreras-Cruz, René de-la-Rosa Paredes, Sinuhé Ruiz-Salgado, Roberto Berra-Romani, Alonso Antonio Collantes-Gutiérrez, María Susana Pérez-Fernández, María Guadalupe Hernández-Linares and Gabriel Guerrero-Luna
Int. J. Mol. Sci. 2025, 26(15), 7132; https://doi.org/10.3390/ijms26157132 - 24 Jul 2025
Viewed by 2645
Abstract
Pulmonary fibrosis (PF) is characterized by excessive collagen deposition and impaired lung function. Pulmonary surfactant may modulate fibroblast activity and offer therapeutic benefits. We developed a natural porcine pulmonary surfactant (NPPS) enriched with 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) and evaluated its biophysical and biological properties. Biophysical [...] Read more.
Pulmonary fibrosis (PF) is characterized by excessive collagen deposition and impaired lung function. Pulmonary surfactant may modulate fibroblast activity and offer therapeutic benefits. We developed a natural porcine pulmonary surfactant (NPPS) enriched with 1,2-dipalmitoyl-rac-glycero-3-phosphatidylethanolamine (PE) and evaluated its biophysical and biological properties. Biophysical analysis showed that PE improved surfactant performance by increasing surface pressure and stability. In vitro, NPPS-PE reduced collagen expression and induced apoptosis in normal human lung fibroblasts; in addition, it decreased proliferation in fibroblasts stimulated with TGF-β. In vivo, NPPS-PE improved gas exchange and significantly reduced collagen deposition in bleomycin-treated mice. These findings suggest that NPPS-PE may be a promising therapeutic strategy for fibrosing lung diseases. Full article
(This article belongs to the Special Issue Molecular Pathways and Therapeutic Strategies for Fibrotic Conditions)
Show Figures

Figure 1

16 pages, 4597 KB  
Article
Synthesis and Property Analysis of a High-Temperature-Resistant Polymeric Surfactant and Its Promoting Effect on Kerogen Pyrolysis Evaluated via Molecular Dynamics Simulation
by Jie Zhang, Zhen Zhao, Jinsheng Sun, Shengwei Dong, Dongyang Li, Yuanzhi Qu, Zhiliang Zhao and Tianxiang Zhang
Polymers 2025, 17(15), 2005; https://doi.org/10.3390/polym17152005 - 22 Jul 2025
Viewed by 391
Abstract
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity [...] Read more.
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity or even failure. The effect of surfactants on kerogen pyrolysis has rarely been researched. Therefore, this study synthesized a polymeric surfactant (PS) with high temperature resistance and investigated its effect on kerogen pyrolysis under the friction of drill bits or pipes via molecular dynamics. The infrared spectra and thermogravimetric and molecular weight curves of the PS were researched, along with its surface tension, contact angle, and oil saturation measurements. The results showed that PS had a low molecular weight, with an MW value of 124,634, and good thermal stability, with a main degradation temperature of more than 300 °C. It could drop the surface tension of water to less than 25 mN·m−1 at 25–150 °C, and the use of slats enhanced its surface activity. The PS also changed the contact angles from 127.96° to 57.59° on the surface of shale cores and reversed to a water-wet state. Additionally, PS reduced the saturated oil content of the shale core by half and promoted oil desorption, indicating a good cleaning effect on the shale oil reservoir. The kerogen molecules gradually broke down into smaller molecules and produced the final products, including methane and shale oil. The main reaction area in the system was the interface between kerogen and the surfactant, and the small molecules produced on the interface diffused to both ends. The kinetics of the reaction were controlled by two processes, namely, the step-by-step cleavage process of macromolecules and the side chain cleavage to produce smaller molecules in advance. PS could not only desorb oil in the core but also promote the pyrolysis of kerogen, suggesting that it has good potential for application in shale oil exploration and development. Full article
Show Figures

Figure 1

17 pages, 2732 KB  
Article
Influence of Cellulose Nanocrystals and Surfactants on Catastrophic Phase Inversion and Stability of Emulsions
by Daniel Kim and Rajinder Pal
Colloids Interfaces 2025, 9(4), 46; https://doi.org/10.3390/colloids9040046 - 11 Jul 2025
Viewed by 675
Abstract
This study presents the first quantitative comparison of catastrophic phase inversion behavior of water-in-oil emulsions stabilized by nanocrystalline cellulose (NCC) and molecular surfactants with different headgroup charge types: anionic (sodium dodecyl sulfate referred to as SDS), cationic (octadecyltrimethylammonium chloride referred to as OTAC), [...] Read more.
This study presents the first quantitative comparison of catastrophic phase inversion behavior of water-in-oil emulsions stabilized by nanocrystalline cellulose (NCC) and molecular surfactants with different headgroup charge types: anionic (sodium dodecyl sulfate referred to as SDS), cationic (octadecyltrimethylammonium chloride referred to as OTAC), nonionic (C12–14 alcohol ethoxylate referred to as Alfonic), and zwitterionic (cetyl betaine referred to as Amphosol). By using conductivity measurements under controlled mixing and pendant drop tensiometry, this study shows that NCC markedly delays catastrophic phase inversion through interfacial jamming, whereas surfactant-stabilized systems exhibit concentration-dependent inversion driven by interfacial saturation. Specifically, NCC-stabilized emulsions exhibited a nonlinear increase in the critical aqueous phase volume fraction required for inversion, ranging from 0.253 (0 wt% NCC) to 0.545 (1.5 wt% NCC), consistent with enhanced resistance to inversion typically associated with the formation of rigid interfacial layers in Pickering emulsions. In contrast, surfactant-stabilized systems exhibited a concentration-dependent inversion trend with opposing effects. At low concentrations, limited interfacial coverage delayed inversion, while at higher concentrations, increased surfactant availability and interfacial saturation promoted earlier inversion and favored the formation of oil-in-water structures. Pendant drop tensiometry confirmed negligible surface activity for NCC, while all surfactants significantly lowered interfacial tension. Despite its weak surface activity, NCC imparted strong coalescence resistance above 0.2 wt%, attributed to steric stabilization. These findings establish distinct mechanisms for governing phase inversion in particle- versus surfactant-stabilized systems. To our knowledge, this is the first study to quantitively characterize the catastrophic phase inversion behavior of water-in-oil emulsions using NCC. This work supports the use of NCC as an effective stabilizer for emulsions with high internal phase volume. Full article
(This article belongs to the Special Issue Rheology of Complex Fluids and Interfaces: 2nd Edition)
Show Figures

Figure 1

37 pages, 8085 KB  
Review
Scaling Amphiphilicity with Janus Nanoparticles: A New Frontier in Nanomaterials and Interface Science
by Mirela Honciuc and Andrei Honciuc
Nanomaterials 2025, 15(14), 1079; https://doi.org/10.3390/nano15141079 - 11 Jul 2025
Viewed by 1133
Abstract
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and [...] Read more.
Janus nanoparticles (JNPs) extend the concept of amphiphilicity beyond classical molecular surfactants into the nanoscale. Amphiphilic behavior is defined by the presence of hydrophobic and hydrophilic moieties within a single molecular structure. Traditionally, such molecular structures are known as surfactants or amphiphiles and are capable of reducing interfacial tension, adsorbing spontaneously at interfaces, stabilizing emulsions and foams, and forming micelles, bilayers, or vesicles. Recent experimental, theoretical, and computational studies demonstrate that these behaviors are scalable to nanostructured colloids such as JNPs. Amphiphilic JNPs, defined by anisotropic surface chemistry on distinct hemispheres, display interfacial activity driven by directional wetting, variable interfacial immersion depth, and strong interfacial anchoring. They can stabilize liquid/liquid and liquid/gas interfaces, and enable templated or spontaneous self-assembly into supra-structures, such as monolayer sheets, vesicles, capsules, etc., both in bulk and at interfaces. Their behavior mimics the “soft” molecular amphiphiles but also includes additional particularities given by their “hard” structure, as well as contributions from capillary, van der Waals, hydrophobic, and shape-dependent forces. This review focuses on compiling the evidence supporting amphiphilicity as a scalable property, discussing how JNPs function as colloidal amphiphiles and how geometry, polarity contrast, interfacial interactions, and environmental parameters influence their behavior. By comparing surfactant behavior and JNP assembly, this work aims to clarify the transferable principles, the knowledge gap, as well as the emergent properties associated with amphiphilic Janus colloids. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Graphical abstract

Back to TopTop