Evaluating the Impact of Carbon Nanoparticles on the Interfacial Properties of the Pulmonary Surfactant Film
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Effect of CNS on the Surface Pressure–Area (π-A Isotherms) of the DPPC Monolayers
2.3. Surface Pressure–Time (π-t) Curves
2.4. Characterization of the Langmuir–Blodgett (LB) Monolayers Using BAM
2.5. LB Monolayers Characterized Using AFM
2.6. Computational Details
3. Results and Discussion
3.1. Effect of CNs on the π-A Isotherms of the DPPC Monolayers
3.2. Effect of CNs on the π-t Curves of the DPPC Monolayers
3.3. Morphology of the DPPC Monolayers Affected by CNs
3.4. Disturbance of CNs on the Structure of the DPPC Monolayers
3.5. Effect of CNs on the Order Degree of the DPPC Monolayers
3.6. Adsorption of the DPPC Molecules by CNs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CNs | Carbon nanoparticles |
DPPC | 1,2-dipalmitoyl-sn-glycero-3-phosphocholine |
PS | Pulmonary surfactant |
NCP | Nanocarbon powder |
GO | Graphene oxide |
CNTs | Carbon nanotubes |
BAM | Brewster angle microscope |
AFM | Atomic force microscope |
LE | Liquid expansion |
LC | Liquid condensation |
References
- Liang, Y.H.; Yuan, F.Z.; Xu, X.J.; Wang, X.W.; Hu, H.W.; Ou, J.Z. Bioinspired Polydopamine-Sheathed Carbon Nanotubes as Environmentally Safe, Efficient, and Durable Adsorbents for Organic Pollutant Capturing via Hydrogen Bonding. Carbon 2023, 214, 118354. [Google Scholar] [CrossRef]
- Mitragotri, S.; Anderson, D.G.; Chen, X.Y.; Chow, E.K.; Ho, D.; Kabanov, A.V.; Karp, J.M.; Kataoka, K.; Mirkin, C.A.; Petrosko, S.H.; et al. Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano 2015, 9, 6644–6654. [Google Scholar] [CrossRef]
- Azari, M.R.; Mohammadian, Y. Comparing in Vitro Cytotoxicity of Graphite, Short Multi-Walled Carbon Nanotubes, and Long Multi-Walled Carbon Nanotubes. Environ. Sci. Pollut. Res. 2020, 27, 15401–15406. [Google Scholar] [CrossRef]
- Dibyanshu, K.; Chhaya, T.; Raychoudhury, T. A Review on the Fate and Transport Behavior of Engineered Nanoparticles: Possibility of Becoming an Emerging Contaminant in the Groundwater. Int. J. Environ. Sci. Technol. 2023, 20, 4649–4672. [Google Scholar] [CrossRef]
- Das, J.; Choi, Y.; Song, H.; Kim, J. Potential Toxicity of Engineered Nanoparticles in Mammalian Germ Cells and Developing Embryos: Treatment Strategies and Anticipated Applications of Nanoparticles in Gene Delivery. Hum. Reprod. Update 2016, 22, 588–619. [Google Scholar] [CrossRef]
- Rosa, M.A.; Granja, A.; Nunes, C.; Reis, S.; Silva, A.B.S.; Leal, K.N.S.; Arruda, M.A.Z.; Gorup, L.F.; Santos, M.G.; Dias, M.V.S.; et al. Magnetic Carbon Nanotubes Modified with Proteins and Hydrophilic Monomers: Cytocompatibility, in-vitro Toxicity Assays and Permeation Across Biological Interfaces. Int. J. Biol. Macromol. 2024, 269, 131962. [Google Scholar] [CrossRef]
- Zhao, Y.; Fan, W.T.; Jin, K.Q.; Yan, J.; Qi, Y.T.; Huang, W.H.; Liu, Y.L. Real-Time Quantification of Nanoplastics Induced Oxidative Stress in Stretching Alveolar Cells. ACS Nano 2024, 18, 6176–6185. [Google Scholar] [CrossRef] [PubMed]
- Oberdorster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Lunts, A.; Kreyling, W.; Cox, C. Extrapulmonary Translocation of Ultrafine Carbon Particles Following Whole-Body Inhalation Exposure of Rats. J. Toxicol. Environ. Health Part A 2002, 65, 1531–1543. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.T.; Mao, R.L.; Liang, X.H.; Jia, Y.Y.; Chen, Z.H.; Yao, S.W.; Jiang, Y.G.; Shao, Y.T. Carbon Black Nanoparticles and Cadmium Co-exposure Aggravates Bronchial Epithelial Cells Inflammation via Autophagy-Lysosome Pathway. Environ. Res. 2024, 242, 117733. [Google Scholar] [CrossRef] [PubMed]
- Oseliero Filho, P.L.; Gerbelli, B.B.; Fornasier, F.; Chaves Filho, A.B.; Yoshinaga, M.Y.; Miyamoto, S.; Mortara, L.; Lacerda, C.D.; Cuccovia, I.M.; Pimentel, A.; et al. Structure and Thermotropic Behavior of Bovine-and Porcine-Derived Exogenous Lung Surfactants. Langmuir 2020, 36, 14514–14529. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, Q.; Geng, Y.; Li, Y.; Huang, J.; Tian, S.; Ning, P. Interfacial Interaction Between Benzo[a]pyrene and Pulmonary Surfactant: Adverse Effects on Lung Health. Environ. Pollut. 2021, 287, 117669. [Google Scholar] [CrossRef]
- Nemmar, A.; Hoet, P.H.M.; Vanquickenborne, B.; Dinsdale, D.; Thomeer, M.; Hoylaerts, M.F.; Vanbilloen, H.; Mortelmans, L.; Nemery, B. Passage of Inhaled Particles into the Blood Circulation in Humans. Circulation 2002, 105, 411–414. [Google Scholar] [CrossRef]
- Guzman, E.; Santini, E.; Ferrari, M.; Liggieri, L.; Ravera, F. Evaluation of the Impact of Carbonaceous Particles in the Mechanical Performance of Lipid Langmuir Monolayers. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127974. [Google Scholar] [CrossRef]
- Manna, S.K.; Sarkar, S.; Barr, J.; Wise, K.; Barrera, E.V.; Jejelowo, O.; Rice-Ficht, A.C.; Ramesh, G.T. Single-Walled Carbon NanoTube Induces Oxidative Stress and Activates Nuclear Transcription Factor-kappa B in Human Keratinocytes. Nano Lett. 2005, 5, 1676–1684. [Google Scholar] [CrossRef] [PubMed]
- Corredor, C.; Hou, W.; Klein, S.A.; Moghadam, B.Y.; Goryll, M.; Doudrick, K.; Westerhoff, P.; Posner, J.D. Disruption of Model Cell Membranes by Carbon Nanotubes. Carbon 2013, 60, 67–75. [Google Scholar] [CrossRef]
- Nisoh, N.; Karttunen, M.; Monticellim, L.; Wong-ekkabut, J. Lipid Monolayer Disruption Caused by Aggregated Carbon Nanoparticles. RSC Adv. 2015, 5, 11676–11685. [Google Scholar] [CrossRef]
- Kondej, D.; Sosnowski, T.R. Interfacial Rheology for the Assessment of Potential Health Effects of Inhaled Carbon Nanomaterials at Variable Breathing Conditions. Sci. Rep. 2020, 10, 14044. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, E.; Liggieri, L.; Santini, E.; Ferrari, M.; Ravera, F. Effect of Hydrophilic and Hydrophobic Nanoparticles on the Surface Pressure Response of DPPC Monolayers. J. Phys. Chem. C 2017, 115, 21715–21722. [Google Scholar] [CrossRef]
- Garcia-Mouton, C.; Hidalgo, A.; Cruz, A.; Pérez-Gil, J. The Lord of the Lungs: The Essential Role of Pulmonary Surfactant upon Inhalation of Nanoparticles. Eur. J. Pharm. Biopharm. 2019, 144, 230–243. [Google Scholar] [CrossRef]
- Ma, G.; Allen, H.C. DPPC Langmuir Monolayer at the Air-Water Interface: Probing the Tail and Head Groups by Vibrational Sum Frequency Generation Spectroscopy. Langmuir 2006, 22, 5341–5349. [Google Scholar] [CrossRef]
- Hess, B.; Kutzner, C.; Van Der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 2008, 4, 435–447. [Google Scholar] [CrossRef]
- Best, R.B.; Zhu, X.; Shim, J.; Lopes, P.E.; Mittal, J.; Feig, M.; MacKerell Jr, A.D. Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone φ, ψ and Side-Chain χ(1) and χ(2) Dihedral Angles. J. Chem. Theory Comput. 2012, 8, 3257–3273. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.; Fraaije, J.G. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Lin, X.; Bai, T.; Zuo, Y.Y.; Gu, N. Promote Potential Applications of Nanoparticles as Respiratory Drug Carrier: Insights from Molecular Dynamics Simulations. Nanoscale 2014, 6, 2759–2767. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Wang, P.; Zhang, Y.; Yan, Y.; Hu, S.; Zhang, J. Adsorption Mechanism of Oil Components on Water-Wet Mineral Surface: A Molecular Dynamics Simulation Study. Energy 2013, 59, 295–300. [Google Scholar] [CrossRef]
- Yuan, Y.N.; Liu, X.H.; Liu, T.T.; Liu, W.C.; Zhu, Y.; Zhang, H.X.; Zhao, C.Y. Molecular Dynamics Exploring of Atmosphere ComPonents Interacting with Lung Surfactant Phospholipid Bilayers. Sci. Total Environ. 2020, 743, 140547–140554. [Google Scholar] [CrossRef] [PubMed]
- Wustneck, R.; Wustneck, N.; Grigoriev, D.O.; Pison, U.; Miller, R. Stress Relaxation Behaviour of Dipalmitoylphosphatidylcholine Monolayers Spread on the Surface of a Pendant Drop. Colloids Surf. B Biointerfaces 1999, 15, 275–288. [Google Scholar] [CrossRef]
- Keough, K.M.W. Lipid Fluidity and Respiratory Distress Syndrome. In Membrane Fluidity in Biology; Academic Press: Cambridge, MA, USA, 1985; Volume 3, pp. 39–84. [Google Scholar]
- Hao, C.; Li, J.; Mu, W.; Zhu, L.; Yang, J.; Liu, H.; Chen, S.; Sun, R. Adsorption Behavior of Magnetite Nanoparticles into the DPPC Model Membranes. Appl. Sur. Sci. 2016, 362, 121–125. [Google Scholar] [CrossRef]
- Muñoz-López, R.; Guzmán, E.; Velázquez, M.M.; Fernández-Peña, L.; Merchán, M.D.; Maestro, A.; Ortega, F.; Rubio, G.R. Influence of Carbon Nanosheets on the Behavior of 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine Langmuir Monolayers. Processes 2020, 8, 94. [Google Scholar] [CrossRef]
- Guzmán, E.; Santini, E.; Zabiegaj, D.; Ferrari, M.; Liggieri, L.; Ravera, F. Interaction of Carbon Black Particles and Dipalmitoyl-phosphatidylcholine at the Water/Air Interface: Ther Modynamics and Rheology. J. Phys. Chem. C 2015, 119, 26937–26947. [Google Scholar] [CrossRef]
- Wang, R.; Guo, Y.; Liu, H.; Chen, Y.; Shang, Y.; Liu, H. The Effect of Chitin Nanoparticles on Surface Behavior of DPPC/DPPG Langmuir Monolayers. J. Colloid. Interface Sci. 2018, 519, 186–193. [Google Scholar] [CrossRef]
- Ohta, Y.; Yokoyama, S.; Sakai, H.; Abe, M. Membrane Properties of Binary and Ternary Systems of Ganglioside GM1/Dipalmitoylphosphatidylcholine/dioleoyl Phosphatidylcholine. Colloids Surf. B Biointerfaces 2004, 34, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Oncins, G.; Picas, L.; Hernández-Borrel, J.; Garcia-Manyes, S.; Sanz, F. Thermal Response of Langmuir-Blodgett Films of Dipalmitoylphosphatidylcholine Studied by Atomic Force Microscopy and Force Spectroscopy. Biophys. J. 2007, 93, 2713–2725. [Google Scholar] [CrossRef] [PubMed]
- Sachan, A.K.; Harishchandra, R.K.; Bantz, C.; Maskos, M.; Reichelt, R.; Galla, H.J. High-Resolution Investigation of Nanoparticle Interaction with a Model Pulmonary Surfactant Monolayer. ACS Nano 2012, 6, 1677–1687. [Google Scholar] [CrossRef]
- Casals, C.; Cañadas, O. Role of Lipid Ordered/Disordered Phase Coexistence in Pulmonary Surfactant Function. Biochim. Biophys. Acta Biomembr. 2012, 1818, 2550–2562. [Google Scholar] [CrossRef]
- Lin, X.; Wang, C.; Wang, M.; Fang, K.; Gu, N. Computer Simulation of the Effects of Nanoparticles’ Adsorption on the Properties of Supported Lipid Bilayer. J. Phys. Chem. C 2016, 116, 17960–17968. [Google Scholar] [CrossRef]
- Willson, D.F.; Notter, R.H. The Future of Exogenous Surfactant Therapy. Respir. Care 2011, 56, 1369–1386. [Google Scholar] [CrossRef]
- Lin, X.; Zuo, Y.Y.; Gu, N. Shape Affects the Interactions of Nanoparticles with Pulmonary Surfactant. Sci. China Mater. 2015, 58, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Schleh, C.; Hohlfeld, J.M. Interaction of Nanoparticles with the Pulmonary Surfactant System. Inhal. Toxicol. 2009, 21, 97–103. [Google Scholar] [CrossRef]
- Geng, Y.; Zhang, L.; Li, Y.; Cao, Y.; Tian, S.; Zhao, Q.; Chai, X. Effect of Pulmonary Surfactant on the Dispersion of Carbon Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2021, 629, 127399. [Google Scholar] [CrossRef]
- Kendall, M.; Guntern, J.; Lockyer, N.P.; Jones, F.H.; Hutton, B.M.; Lippmann, M.; Tetley, T.D. Urban PM2.5 Surface Chemistry and Interactions with Bronchoalveolar Lavage Fluid. Inhal. Toxicol. 2004, 16, 115–129. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Wang, L.; Cao, Z.; Zhou, X.; Yang, F.; Fu, P.; Wang, Z.; Hu, J.; Ding, L.; Jiang, W. Dispersion of Atmospheric Fine Particulate Matters in Simulated Lung Fluid and Their Effects on Model Cell Membranes. Sci. Total Environ. 2016, 542, 36–43. [Google Scholar] [CrossRef] [PubMed]
CNCP (mg/L) | C | a | τ | r2 |
---|---|---|---|---|
0 | 0.948 | 0.054 | 1.284 | 0.977 |
5 | 0.902 | 0.090 | 4.351 | 0.929 |
10 | 0.788 | 0.192 | 4.717 | 0.965 |
50 | 0.643 | 0.346 | 6.363 | 0.995 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Y.; Zhao, Q.; Wang, J.; Cao, Y.; Wang, Y.; Gou, W.; Zhang, L.; Tian, S. Evaluating the Impact of Carbon Nanoparticles on the Interfacial Properties of the Pulmonary Surfactant Film. Nanomaterials 2025, 15, 1244. https://doi.org/10.3390/nano15161244
Geng Y, Zhao Q, Wang J, Cao Y, Wang Y, Gou W, Zhang L, Tian S. Evaluating the Impact of Carbon Nanoparticles on the Interfacial Properties of the Pulmonary Surfactant Film. Nanomaterials. 2025; 15(16):1244. https://doi.org/10.3390/nano15161244
Chicago/Turabian StyleGeng, Yingxue, Qun Zhao, Junfeng Wang, Yan Cao, Yunshan Wang, Wenshi Gou, Linfeng Zhang, and Senlin Tian. 2025. "Evaluating the Impact of Carbon Nanoparticles on the Interfacial Properties of the Pulmonary Surfactant Film" Nanomaterials 15, no. 16: 1244. https://doi.org/10.3390/nano15161244
APA StyleGeng, Y., Zhao, Q., Wang, J., Cao, Y., Wang, Y., Gou, W., Zhang, L., & Tian, S. (2025). Evaluating the Impact of Carbon Nanoparticles on the Interfacial Properties of the Pulmonary Surfactant Film. Nanomaterials, 15(16), 1244. https://doi.org/10.3390/nano15161244