Effect of Polymer Concentration on the Rheology and Surface Activity of Cationic Polymer and Anionic Surfactant Mixtures
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymer Solutions and Surfactant–Polymer Mixtures
2.3. Measurement of Steady Rheological Properties
2.4. Surface Tension Measurement
2.5. Electrical Conductivity Measurement of Solutions
3. Results and Discussion
3.1. Rheology and Surface Activity of Polymer Solutions Without Surfactant
3.2. Rheology and Surface Activity of Polymer Solutions with Added Surfactant
3.3. Reliability of Rheological and Surface Tension Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gradzielski, M. Polymer–surfactant interaction for controlling the rheological properties of aqueous surfactant solutions. Curr. Opin. Colloid Interface Sci. 2023, 63, 101662. [Google Scholar] [CrossRef]
- Nnyigide, O.S.; Nnyigide, T.O.; Hyun, K.Y. The degradation of xanthan gum in ionic and non-ionic denaturants studied by rheology and molecular dynamics simulation. Carbohydr. Polym. 2021, 251, 117061. [Google Scholar]
- Halthur, T.; Carlstedt, J. Polymer–surfactant interactions and compatability for ionic surfactanst combined with hydrophillic polymers: Stability and miscibility vs. segregative or associative phase separation and deposition. Curr. Opin. Colloid Interface Sci. 2025, 76, 101894. [Google Scholar] [CrossRef]
- Yang, J.; Pal, R. Investigation of surfactant-polymer interactions using rheology and surface tension measurements. Polymers 2020, 12, 2302. [Google Scholar] [CrossRef] [PubMed]
- Mohsenipour, A.A.; Pal, R. A review of polymer-surfactant interactions. In Handbook of Surface and Colloid Chemistry, 4th ed.; Birdi, K.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 639–684. [Google Scholar]
- Diamant, H.; Andelman, D. Onset of self-assembly in polymer-surfactant systems. Europhys. Lett. 1999, 48, 170. [Google Scholar] [CrossRef]
- Hansson, P.; Lindman, B. Surfactant-polymer interactions. Curr. Opin. Colloid Interface Sci. 1996, 1, 604–613. [Google Scholar] [CrossRef]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S. A comprehensive review of beneficial applications of viscoelastic surfactants in wellbore hydraulic fracturing fluids. Fuel 2023, 338, 127228. [Google Scholar] [CrossRef]
- Machale, J.; Majumder, S.K.; Ghosh, P.; Sen, T.K. Role of chemical additives and their rheological properties in enhanced oil recovery. Rev. Chem. Eng. 2020, 36, 789–830. [Google Scholar] [CrossRef]
- Raffa, P.; Broekhuis, A.A.; Picchioni, F. Polymeric surfactants for enhanced oil recovery: A review. J. Pet. Sci. Eng. 2016, 145, 723–733. [Google Scholar] [CrossRef]
- Liu, J.; Liu, P.; Du, J.; Wang, Q.; Chen, X.; Zhao, L. Review on High-Temperature-Resistant Viscoelastic Surfactant Fracturing Fluids: State-of-the-Art and Perspectives. Energy Fuels 2023, 37, 9790–9821. [Google Scholar] [CrossRef]
- Taylor, D.J.F.; Thomas, R.K.; Penfold, J. Polymer/surfactant interactions at the air/water interface. Adv. Colloid Interface Sci. 2007, 132, 69–110. [Google Scholar] [CrossRef]
- Talwar, S.; Scanu, L.F.; Khan, S.A. Hydrophobic interactions in associative polymer/nonionic surfactant systems: Effects of surfactant architecture and system parameters. J. Rheol. 2006, 50, 831–847. [Google Scholar] [CrossRef]
- Duro, R.; Souto, C.; Gómez-Amoza, J.L.; Martínez-Pacheco, R.; Concheiro, A. Interfacial Adsorption of Polymers and Surfactants: Implications for the Properties of Disperse Systems of Pharmaceutical Interest. Drug Dev. Ind. Pharm. 1999, 25, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Cazeneuve, C.; Baghdadli, N.; Ringeissen, S.; Leermakers, F.A.M.; Luengo, G.S. Surfactant–polymer interactions: Molecular architecture does matter. Soft Matter 2015, 11, 2504–2511. [Google Scholar] [CrossRef]
- Tam, K.C.; Wyn-Jones, E. Insights on polymer surfactant complex structures during the binding of surfactants to polymers as measured by equilibrium and structural techniques. Chem. Soc. Rev. 2006, 35, 693–709. [Google Scholar] [CrossRef]
- Cao, Z.; Yan, J.; Miao, J.; Wang, J.; Wang, Z.; Zhang, L. Synthesis and evaluation of Gemini surfactant-polymer copolymers as viscosity reducer for enhancing heavy oil recovery. Chem. Eng. J. 2025, 521, 166868. [Google Scholar] [CrossRef]
- Chen, X.; Hou, Q.; Liu, Y.; Liu, G.; Zhang, H.; Sun, H.; Zhu, Z.; Liu, W. Experimental Study on Surfactant–Polymer Flooding After Viscosity Reduction for Heavy Oil in Matured Reservoir. Energies 2025, 18, 756. [Google Scholar] [CrossRef]
- Goddard, E.D.; Ananthapadmanabhan, K.P. Interactions of Surfactants with Polymers and Proteins; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- Somasundaran, P.; Krishnakumar, S. Adsorption of surfactants and polymers at the solid-liquid interface. Colloids Surf. A Physicochem. Eng. Asp. 1997, 123–124, 491–513. [Google Scholar] [CrossRef]
- Lu, Q.; Pal, R. Steady shear rheology and surface activity of polymer-surfactant mixtures. Polymers 2025, 17, 364. [Google Scholar] [CrossRef]
- Mohsenipour, A.A.; Pal, R. The role of surfactants in mechanical degradation of drag-reducing polymers. Ind. Eng. Chem. Res. 2013, 52, 1291–1302. [Google Scholar] [CrossRef]
- Mohsenipour, A.A.; Pal, R. Drag reduction in turbulent pipeline flow of mixed nonionic polymer and cationic surfactant systems. Can. J. Chem. Eng. 2013, 91, 190–201. [Google Scholar] [CrossRef]
- Mohsenipour, A.A.; Pal, R.; Prajapati, K. Effect of cationic surfactant addition on the drag reduction behaviour of anionic polymer solutions. Can. J. Chem. Eng. 2013, 91, 181–189. [Google Scholar] [CrossRef]
- Narvaez, C.D.V.M.; Mazur, T.; Sharma, V. Dynamics and extensional rheology of polymer-surfactant association complexes. Soft Matter 2021, 17, 6116. [Google Scholar] [CrossRef]
- Massarweh, O.; Abushaikha, A.S. The use of surfactants in enhanced oil recover: A review of recent advances. Energy Rep. 2020, 6, 3150–3178. [Google Scholar] [CrossRef]
- The role of Surface Tension in Advanced Materials. Available online: https://www.numberanalytics.com/blog/surface-tension-advanced-materials (accessed on 17 August 2025).
- Rodriguez, R.; Alvarez-Lorenzo, C.; Concheiro, A. Rheological evaluation of the interactions between cationic celluloses and carbopol 974P in water. Biomacromolecules 2001, 2, 886–893. [Google Scholar] [CrossRef]
- Leung, P.S.; Goddard, E.D. Gels from polymer/surfactant solutions. Langmuir 1991, 7, 608–609. [Google Scholar] [CrossRef]
- Marques, E.F.; Regev, O.; Khan, A.; Miguel, M.; Lindman, B. Interactions between catanionic vesicles and oppositely charged polyelectrolytes-phase behavior and phase structure. Macromolecules 1999, 32, 6626–6637. [Google Scholar] [CrossRef]
- Chen, H.; Muros-Cobos, J.L.; Holgado-Terriza, J.A.; Amirfazli, A. Surface tension measurement with a smartphone using a pendant drop. Colloids Surf. A 2017, 533, 213–217. [Google Scholar] [CrossRef]
- Pal, R. Non-Newtonian behaviour of suspensions and emulsions: Review of different mechanisms. Adv. Colloid Interface Sci. 2024, 333, 103299. [Google Scholar] [CrossRef]
Viscometer | Inner Cylinder Radius, | Outer Cylinder Radius, | Length of Inner Cylinder | Gap Width |
---|---|---|---|---|
Fann 35A/SR-12 | 1.72 cm | 1.84 cm | 3.8 cm | 0.12 cm |
Haake Roto-visco RV 12 with MV I | 2.00 cm | 2.1 cm | 6.0 cm | 0.10 cm |
Polymer Concentration (ppm) | Consistency Index, K (mPa·sn) | Flow Behavior Index, n | R2 |
---|---|---|---|
1000 | 321.23 | 0.423 | 0.9833 |
2000 | 356.36 | 0.485 | 0.993 |
3000 | 368.7 | 0.538 | 0.9827 |
4000 | 642.22 | 0.505 | 0.9947 |
Surfactant Concentration (ppm) | Sample Size | Mean Surface Tension (mN/m) | Standard Deviation |
---|---|---|---|
0 | 12 | 64.09 | 0.9788 |
50 | 12 | 50.253 | 1.5325 |
100 | 12 | 38.323 | 1.5588 |
150 | 12 | 32.223 | 1.9077 |
200 | 12 | 29.446 | 2.0281 |
250 | 12 | 27.058 | 1.6438 |
300 | 12 | 28.084 | 2.1795 |
350 | 12 | 29.025 | 3.1398 |
400 | 12 | 37.057 | 1.7749 |
450 | 12 | 46.064 | 2.1008 |
500 | 12 | 49.3 | 0.9688 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, C.-C.; Pal, R. Effect of Polymer Concentration on the Rheology and Surface Activity of Cationic Polymer and Anionic Surfactant Mixtures. Fluids 2025, 10, 253. https://doi.org/10.3390/fluids10100253
Sun C-C, Pal R. Effect of Polymer Concentration on the Rheology and Surface Activity of Cationic Polymer and Anionic Surfactant Mixtures. Fluids. 2025; 10(10):253. https://doi.org/10.3390/fluids10100253
Chicago/Turabian StyleSun, Chung-Chi, and Rajinder Pal. 2025. "Effect of Polymer Concentration on the Rheology and Surface Activity of Cationic Polymer and Anionic Surfactant Mixtures" Fluids 10, no. 10: 253. https://doi.org/10.3390/fluids10100253
APA StyleSun, C.-C., & Pal, R. (2025). Effect of Polymer Concentration on the Rheology and Surface Activity of Cationic Polymer and Anionic Surfactant Mixtures. Fluids, 10(10), 253. https://doi.org/10.3390/fluids10100253