Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (554)

Search Parameters:
Keywords = supercritical fluid extract

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4423 KiB  
Review
Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis
by Gbolahan Alagbe, Klara Urbanova and Olajumoke Alagbe
Processes 2025, 13(8), 2444; https://doi.org/10.3390/pr13082444 (registering DOI) - 1 Aug 2025
Abstract
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and [...] Read more.
Nuts are nutrient-dense foods recognized for their complex chemical composition and associated health benefits. This review provides a comprehensive overview of the botanical classification, morphology, production, and consumption patterns of key nut species, including walnuts, almonds, pistachios, pecans, peanuts, cashews, bitter kola, and kola nuts. It emphasizes the fatty acid profiles, noting that palmitic acid (C16:0) is the predominant saturated fatty acid, while oleic acid (C18:1) and linoleic acid (C18:2) are the most abundant monounsaturated and polyunsaturated fatty acids, respectively. The review also details various analytical techniques employed for extracting and characterizing bioactive compounds, which are crucial for assessing nut quality and health benefits. Methods such as Soxhlet extraction, solid-phase microextraction (SPME), supercritical fluid extraction (SFE), gas chromatography (GC-FID and GC-MS), and high-performance liquid chromatography (HPLC) are highlighted. Furthermore, it discusses scientific evidence linking nut consumption to antioxidant and anti-inflammatory properties, improved cardiovascular health, and a reduced risk of type 2 diabetes, establishing nuts as important components in a healthy diet. This review underscores the role of nuts as functional foods and calls for standardized methodologies in future lipidomic and volatilomic studies. Full article
Show Figures

Figure 1

20 pages, 4117 KiB  
Review
Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection
by Yingfei Liu, Mengyuan Lv, Yuyang Wang, Jinchao Wei and Di Chen
Pharmaceuticals 2025, 18(8), 1137; https://doi.org/10.3390/ph18081137 - 30 Jul 2025
Viewed by 82
Abstract
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud [...] Read more.
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud and regulatory demands. Analytical challenges, such as matrix effects in complex oils and the cost trade-offs of green extraction methods, complicate these processes. This review examines recent advances in tocopherol analysis, focusing on extraction and detection techniques. Green methods like supercritical fluid extraction and deep eutectic solvents offer selectivity and sustainability, though they are costlier than traditional approaches. On the analytical side, hyphenated techniques such as supercritical fluid chromatography-mass spectrometry (SFC-MS) achieve detection limits as low as 0.05 ng/mL, improving sensitivity in complex matrices. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides robust analysis, while spectroscopic and electrochemical sensors offer rapid, cost-effective alternatives for high-throughput screening. The integration of chemometric tools and miniaturized systems supports scalable workflows. Looking ahead, the incorporation of Artificial Intelligence (AI) in oil authentication has the potential to enhance the accuracy and efficiency of future analyses. These innovations could improve our understanding of tocopherol compositions in vegetable oils, supporting more reliable assessments of nutritional value and product authenticity. Full article
Show Figures

Graphical abstract

30 pages, 1991 KiB  
Review
Emerging Technologies for Extracting Antioxidant Compounds from Edible and Medicinal Mushrooms: An Efficient and Sustainable Approach
by Salome Mamani Parí, Erick Saldaña, Juan D. Rios-Mera, María Fernanda Quispe Angulo and Nils Leander Huaman-Castilla
Compounds 2025, 5(3), 29; https://doi.org/10.3390/compounds5030029 - 28 Jul 2025
Viewed by 191
Abstract
Edible mushrooms are well-known for their culinary and nutritional values. Additionally, they serve as a natural source of polyphenols, a group of bioactive compounds that significantly treat diseases associated with oxidative stress. The polyphenolic profile of mushrooms mainly consists of phenolic acids and [...] Read more.
Edible mushrooms are well-known for their culinary and nutritional values. Additionally, they serve as a natural source of polyphenols, a group of bioactive compounds that significantly treat diseases associated with oxidative stress. The polyphenolic profile of mushrooms mainly consists of phenolic acids and flavonoids, whose chemical properties have attracted the attention of both the food and pharmaceutical industries. Consequently, methods for extracting polyphenols from mushrooms encompass conventional techniques (maceration and Soxhlet extraction) as well as innovative or green methods (ultrasound-assisted extraction, microwave-assisted extraction, pressurized liquid extraction, supercritical fluid extraction, enzyme-assisted extraction, and pulsed electric field extraction). Nonetheless, extraction with pressurized liquids and supercritical fluids is considered the most suitable method, as they function in a gentle and selective manner, preserving the integrity of the phenolic compounds. The use of mushroom-derived phenolic compounds in food and pharmaceutical formulations continues to face challenges concerning the safety of these extracts, as they might contain unwanted substances. Future applications should incorporate purification systems to yield highly pure extracts, thereby creating safe polyphenol carriers (for food and pharmaceutical products) for consumers. Full article
(This article belongs to the Special Issue Compounds–Derived from Nature)
Show Figures

Graphical abstract

22 pages, 844 KiB  
Article
Anti-Hair Loss Potential of Perilla Seed Extracts: In Vitro Molecular Insights from Supercritical Fluid Extraction
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Foods 2025, 14(15), 2583; https://doi.org/10.3390/foods14152583 - 23 Jul 2025
Viewed by 361
Abstract
Perilla seed has long been recognized in traditional diets for its health-promoting properties, but its potential role in hair loss prevention remains underexplored. This study compared three extraction methods—maceration (MAC), screw pressing (SC), and supercritical fluid extraction (SFE)—to determine their efficiency in recovering [...] Read more.
Perilla seed has long been recognized in traditional diets for its health-promoting properties, but its potential role in hair loss prevention remains underexplored. This study compared three extraction methods—maceration (MAC), screw pressing (SC), and supercritical fluid extraction (SFE)—to determine their efficiency in recovering bioactive compounds and their effects on androgenetic alopecia (AGA)-related pathways. The SFE extract contained the highest levels of polyunsaturated fatty acids and tocopherols, while MAC uniquely recovered a broader range of polyphenols. Among all extracts, SFE-derived perilla seed extract showed the most consistent biological effects, promoting proliferation of human hair follicle dermal papilla cells (HFDPCs) by 139.4 ± 1.1% at 72 h (p < 0.05). It also reduced TBARS and nitrite levels in HFDPCs to 66.75 ± 0.62% of control and 0.87 ± 0.01 μM, respectively, indicating strong antioxidant and anti-inflammatory effects. Importantly, the SFE extract significantly downregulated SRD5A1-3 and TGF-β1 expression—key genes involved in androgen-mediated hair follicle regression—outperforming finasteride, dutasteride, and minoxidil in vitro by approximately 1.10-fold, 1.25-fold, and 1.50-fold, respectively (p < 0.05). These findings suggest that perilla seed extract obtained via supercritical fluid extraction may offer potential as a natural candidate to prevent hair loss through multiple biological mechanisms. These in vitro results support its further investigation for potential application in functional food or nutraceutical development targeting scalp and hair health. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

25 pages, 2029 KiB  
Article
Germination Enhances Phytochemical Profiles of Perilla Seeds and Promotes Hair Growth via 5α-Reductase Inhibition and Growth Factor Pathways
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Biology 2025, 14(7), 889; https://doi.org/10.3390/biology14070889 - 20 Jul 2025
Viewed by 446
Abstract
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated [...] Read more.
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated (NG-PS) and germinated in distilled water (0 ppm selenium; G0-PS), and germinated with 80 ppm selenium (G80-PS)—obtained from supercritical fluid extraction (SFE) and screw compression (SC). SFE extracts exhibited significantly higher levels of polyphenols, tocopherols, and fatty acids compared to SC extracts. Among the germinated groups, G0-PS showed the highest bioactive compound content and antioxidant capacity. Remarkably, treatment with SFE-G0-PS led to a significant increase in the proliferation and migration of hair follicle cells, reaching 147.21 ± 2.11% (p < 0.05), and resulted in complete wound closure. In addition, its antioxidant and anti-inflammatory properties were reflected by a marked scavenging effect on TBARS (59.62 ± 0.66% of control) and suppressed nitrite amounts (0.44 ± 0.01 µM). Moreover, SFE-G0-PS markedly suppressed SRD5A1-3 gene expression—key regulators in androgenetic alopecia—in both DU-145 and HFDPCs, with approximately 2-fold and 1.5-fold greater inhibition compared to finasteride and minoxidil, respectively. Simultaneously, it upregulated the expression of hair growth-related genes, including CTNNB1, SHH, SMO, GLI1, and VEGF, by approximately 1.5-fold, demonstrating stronger activation than minoxidil. These findings suggest the potential of SFE-G0-PS as a natural therapeutic agent for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

16 pages, 1211 KiB  
Article
Exploring the Chemical Composition and Antimicrobial Activity of Extracts from the Roots and Aboveground Parts of Limonium gmelini
by Dariya Kassymova, Francesco Cairone, Donatella Ambroselli, Rosa Lanzetta, Bruno Casciaro, Aizhan Zhussupova, Deborah Quaglio, Angela Casillo, Galiya E. Zhusupova, Maria Michela Corsaro, Bruno Botta, Silvia Cammarone, Maria Luisa Mangoni, Cinzia Ingallina and Francesca Ghirga
Molecules 2025, 30(14), 3024; https://doi.org/10.3390/molecules30143024 - 18 Jul 2025
Viewed by 310
Abstract
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and [...] Read more.
Limonium gmelini (Willd.) Kuntze, a plant widely used in traditional medicine, has garnered increasing attention for its diverse pharmacological activities, including anti-inflammatory, hepatoprotective, antioxidant, and antimicrobial effects. This study aimed to explore the chemical composition and biological activities of polysaccharides and polyphenolic compounds extracted from both the roots and aboveground parts of Limonium gmelini. Several methods of extraction, including ultrasound-assisted extraction (UAE), conventional maceration (CM), and supercritical fluid extraction (SFE), were employed to obtain bioactive fractions. Chemical profiling, primarily represented by monosaccharides and polyphenolic compounds, was characterized and analyzed using proton nuclear magnetic resonance spectroscopy (1H-NMR) and gas chromatography-mass spectrometry (GC-MS) techniques. While polyphenol-rich fractions exhibited significant antibacterial activity, particularly against Staphylococcus epidermidis, polysaccharide-rich aqueous fractions showed minimal antibacterial activity. Among the methods, CM and UAE yielded higher polyphenol content, whereas SFE provided more selective extractions. Notably, methanolic SPE fractions derived from the roots were especially enriched in active polyphenols such as gallic acid, myricetin, and naringenin, and they exhibited the highest antibacterial activity against Staphylococcus epidermidis. In contrast, extracts from the aboveground parts showed more moderate activity and a partially different chemical profile. These findings underscore the importance of plant part selection and support the targeted use of root-derived polyphenol-enriched fractions from L. gmelini as promising candidates for the development of natural antibacterial agents. Further investigation is needed to isolate and validate the most active constituents for potential therapeutic applications. Full article
Show Figures

Figure 1

16 pages, 1621 KiB  
Article
Supercritical Fluid Extraction of Peruvian Schinus molle Leaves: Yield, Kinetics, Mathematical Modeling, and Chemical Composition
by Joselin Paucarchuco-Soto, German Padilla Pacahuala, Walter Javier Cuadrado Campó, Perfecto Chagua-Rodríguez, Julio Cesar Maceda Santivañez, Ádina L. Santana, Maria Angela A. Meireles and Larry Oscar Chañi-Paucar
Processes 2025, 13(7), 2191; https://doi.org/10.3390/pr13072191 - 9 Jul 2025
Viewed by 346
Abstract
According to the literature, Schinus molle (SM) is an important source of bioactive phytochemicals, but the phytochemical content and composition of this species, which grows in high Andean geographic zones such as Tarma (Peru), is not known. In an effort to fill this [...] Read more.
According to the literature, Schinus molle (SM) is an important source of bioactive phytochemicals, but the phytochemical content and composition of this species, which grows in high Andean geographic zones such as Tarma (Peru), is not known. In an effort to fill this gap, our work investigated the supercritical carbon dioxide extraction of SM leaves at three temperature levels (35, 45, and 55 °C) and three pressure levels (150, 250, and 350 bar). The results revealed the highest yield of extract at 150 bar, 45 °C, and 3.28 g CO2/min. Under these conditions, the overall extraction curves (OEC) were modeled using the Spline, logistic, and Esquível models, allowing the generation of mass transfer parameters for SFE at the optimized conditions, resulting in a similar correlation with experimental data. Twenty-six compounds were identified in the SFE extract of SM leaves. The most abundant compound classes were sesquiterpenoids (57.17%), sesquiterpenes (24.50%), and triterpenoids (10.48%); of each class, the most abundant compounds were shyobunol (33.60%), bicyclogermacrene (12.68%), and lupeone (6.58%), respectively. The compounds detected possess bioactive properties that support further studies on the application of SFE extracts of SM as a functional ingredient in commercial products. Full article
Show Figures

Figure 1

31 pages, 1909 KiB  
Review
Centella asiatica: Advances in Extraction Technologies, Phytochemistry, and Therapeutic Applications
by Zaw Myo Hein, Prarthana Kalerammana Gopalakrishna, Anil Kumar Kanuri, Warren Thomas, Farida Hussan, Venkatesh R. Naik, Nisha Shantakumari, Muhammad Danial Che Ramli, Mohamad Aris Mohd Moklas, Che Mohd Nasril Che Mohd Nassir and Thirupathirao Vishnumukkala
Life 2025, 15(7), 1081; https://doi.org/10.3390/life15071081 - 9 Jul 2025
Viewed by 1414
Abstract
Centella asiatica (C. asiatica) has attracted significant scientific interest due to its extensive medicinal properties and long-established use in traditional medicine. This review synthesizes recent advances in the technological exploitation of C. asiatica, covering the extraction of bioactive constituents to [...] Read more.
Centella asiatica (C. asiatica) has attracted significant scientific interest due to its extensive medicinal properties and long-established use in traditional medicine. This review synthesizes recent advances in the technological exploitation of C. asiatica, covering the extraction of bioactive constituents to product development. Modern extraction techniques such as supercritical fluid extraction (SFE) and microwave-assisted extraction (MAE) have substantially improved the yield, selectivity, and preservation of key phytochemicals, particularly triterpenoids, saponins, and flavonoids. These compounds are now routinely characterized using advanced analytical platforms, ensuring product quality, consistency, and standardization. Moreover, the use of innovative formulation technologies and advanced delivery systems has facilitated the development of C. asiatica-based products tailored for various therapeutic areas, including pharmaceuticals, nutraceuticals, and cosmeceuticals targeting neuroprotection, wound healing, skin aging, and stress modulation. Alongside these developments, stringent quality control protocols, toxicological evaluations, and adherence to evolving regulatory standards enhance the safety and efficacy of C. asiatica-derived interventions. This review highlights the integration of traditional knowledge with modern science across the domains of extraction, analysis, formulation, and regulation. It serves as a comprehensive resource for researchers, formulators, and regulatory stakeholders aiming to develop high-quality, evidence-based C. asiatica products with improved bioavailability and therapeutic value. Full article
Show Figures

Figure 1

36 pages, 3577 KiB  
Article
Screening of a Plant Extract Library from the Greek Flora for Biological Activities Related to Anti-Aging Applications
by Harris Pratsinis, Despoina D. Gianniou, Gabriela Belén Lemus Ringele, Adamantia Agalou, Asimina Fotopoulou, Xanthippi P. Louka, Christos Nastos, Eleftherios Kalpoutzakis, Aikaterini Argyropoulou, Dimitris Michailidis, Antonia Theodoridi, Ioanna Eleftheriadou, Adamantia Papadopoulou, Sentiljana Gumeni, Stavros Beteinakis, Konstantina Karamanou, Eleni Mavrogonatou, Georgios Stavropoulos, Dimitris Beis, Maria Halabalaki, Ioannis P. Trougakos and Dimitris Kletsasadd Show full author list remove Hide full author list
Antioxidants 2025, 14(7), 824; https://doi.org/10.3390/antiox14070824 - 4 Jul 2025
Viewed by 619
Abstract
Characteristic manifestations of skin aging, due to either intrinsic or extrinsic factors, such as ultraviolet (UV) radiation and oxidative stress, include cell senescence, alterations in collagen and elastin networks, and melanogenesis disorders. Natural products are considered a rich source of anti-aging molecules. Accordingly, [...] Read more.
Characteristic manifestations of skin aging, due to either intrinsic or extrinsic factors, such as ultraviolet (UV) radiation and oxidative stress, include cell senescence, alterations in collagen and elastin networks, and melanogenesis disorders. Natural products are considered a rich source of anti-aging molecules. Accordingly, the screening of a plant extract library from the Greek flora for a panel of biological activities related to skin aging is presented herein. In particular, 52 plant materials extracted using Accelerated Solvent Extraction (ASE) and Supercritical Fluid Extraction (SFE) were assessed for their effects on (1) human skin cell viability, (2) antioxidant activity—using both cell-free and cell-based methods—(3) photoprotective capacity, and (4) interference with collagenase, elastase, and tyrosinase, as well as with proteasomal and lysosomal activities of human skin cells. In vivo phenotypic screens on Danio rerio (zebrafish) embryos were also used for assessing melanogenesis. Many active extracts were identified, some of them for the first time, and others in agreement with previous reports. In general, ASE extracts exhibited higher activities than SFE ones. Seven extracts showed multiple activities, being highly effective in at least four different assays. These data support the potential use of these extracts against skin aging in medicinal and cosmetic applications. Full article
Show Figures

Graphical abstract

14 pages, 3168 KiB  
Article
Ultrasound-Assisted Dispersive Solid-Phase Filter Extraction Coupled with Green Supercritical Fluid Chromatography Methodology for Simultaneous Determination of Hindered Phenolic Antioxidant Migration from Food Contact Materials
by Shaojie Pan, Chaoyan Lou, Xiaolin Yu, Kaidi Zhang, Kai Zhang, Lei Jiang and Yan Zhu
Foods 2025, 14(13), 2301; https://doi.org/10.3390/foods14132301 - 28 Jun 2025
Viewed by 325
Abstract
The migration of hindered phenolic antioxidants from food contact materials (FCMs) into foodstuffs poses health risks due to endocrine disruption and organ toxicity. Hence, the development of a high-efficiency analytical method for hindered phenolic antioxidants is of great importance for food safety. This [...] Read more.
The migration of hindered phenolic antioxidants from food contact materials (FCMs) into foodstuffs poses health risks due to endocrine disruption and organ toxicity. Hence, the development of a high-efficiency analytical method for hindered phenolic antioxidants is of great importance for food safety. This study developed a novel ultrasound-assisted dispersive solid-phase filter extraction (d-SPFE) coupled with green supercritical fluid chromatography (SFC) method for the simultaneous determination of six representative hindered phenolic antioxidants. Under optimized conditions, the method achieved high extraction efficiency, with the complete separation of all analytes within 10 min. A wide linearity range (0.02–2.0 μg/mL) was achieved, with coefficients of determination all greater than 0.9996. The limits of detection (LOD, S/N = 3) and limits of quantification (LOQ, S/N = 10) were 2.4–3.6 ng/mL and 8–12 ng/mL, respectively. Validation tests demonstrated precise spiked recoveries (89.4–101.6%), with intra-day and inter-day relative standard deviations (RSDs) all less than 10%. The d-SPFE-SFC synergy significantly outperforms conventional techniques in terms of analysis speed and eco-efficiency. Successful application to food simulants confirms its reliability in monitoring hindered phenolic antioxidant migration from FCMs. This green and rapid methodology will enable the direct assessment of migration risks. Full article
(This article belongs to the Special Issue Research on Food Chemical Safety)
Show Figures

Figure 1

10 pages, 435 KiB  
Communication
Application of Sequential Extraction Using Pressurized Fluids to Obtain Compounds from Pereskia aculeata Leaves
by Fernanda Rengel dos Passos, Mônica Lady Fiorese, Edson Antonio da Silva, Oscar de Oliveira Santos Junior, Lúcio Cardozo-Filho and Camila da Silva
Plants 2025, 14(13), 1956; https://doi.org/10.3390/plants14131956 - 26 Jun 2025
Viewed by 394
Abstract
The aim of this study was to use high-pressure extraction methods to obtain compounds of different classes from the leaves of Pereskia aculeata Mill. For this purpose, Supercritical Fluid Extraction (SFE) and Pressurized Liquid Extraction (PLE) were used. SFE was performed with Pereskia [...] Read more.
The aim of this study was to use high-pressure extraction methods to obtain compounds of different classes from the leaves of Pereskia aculeata Mill. For this purpose, Supercritical Fluid Extraction (SFE) and Pressurized Liquid Extraction (PLE) were used. SFE was performed with Pereskia aculeata leaves to evaluate the application of propane and carbon dioxide as solvents, and the residual biomass from this stage was used in PLE with hydroethanolic solvent. The extracts were characterized in relation to the content of phenolic compounds, antioxidant potential and content of nonpolar compounds. In the first stage, despite the low yield (1.09–1.94%) compared to PLE (16.56–19.26%), the extracts presented a high content of lipophilic compounds (squalene, octacosanol, α-tocopherol and β-sitosterol) compared to the PLE technique. The sequential extraction process benefited the greater recovery of phenolic compounds and extracts with greater antioxidant potential. Caffeic and nicotinic acids were the major compounds identified in the phenolic profile. The processes applied did not influence the protein content of the final extraction residue, which was similar to that of the in natura leaf. The results and approach demonstrate that sequential extraction is an excellent alternative for the use of Pereskia aculeata, which allows for the production of extracts with varied composition and/or extracts with greater recovery of compounds available in the plant. Full article
Show Figures

Graphical abstract

14 pages, 857 KiB  
Article
Rapid and Effective Recovery of Oleanolic and Maslinic Acids from Olive Leaves Using SFE and pH-Zone Centrifugal Partition Chromatography
by Lemonia Antoniadi, Apostolis Angelis, Theodora Nikou, Dimitris Michailidis and Leandros A. Skaltsounis
Molecules 2025, 30(13), 2709; https://doi.org/10.3390/molecules30132709 - 24 Jun 2025
Viewed by 335
Abstract
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to [...] Read more.
Olive leaves, the main byproducts of olive cultivation, are characterized by a plethora of bioactive metabolites with significant nutritional value. Their main pentacyclic triterpenes, Oleanolic Acid (OA) and Maslinic Acid (MA), are two high added-value compounds with remarkable activities. This study aimed to develop an efficient methodology for extracting and purifying OA and MA, utilizing Supercritical Fluid Extraction (SFE) and Centrifugal Partition Chromatography (CPC)—two modern, scalable, and green techniques. A total of 21 g of olive leaves were subjected to SFE using supercritical CO2 and ethanol as co-solvent. The extraction employed a step gradient mode, starting with 100% CO2 and incrementally increasing ethanol (0–10% w/w) every 20 min. Fractions rich in OA and MA (500 mg) were further purified via CPC, utilizing pH zone refining to exploit the protonation and deprotonation properties of acidic triterpenes. The biphasic solvent system consisted of n-hexane, ethyl acetate, ethanol, and water (8:2:5:5 v/v/v/v), with trifluoroacetic acid added to the stationary phase and triethylamine added to the mobile phase. This two-step process yielded 89.5 mg of OA and 28.5 mg of MA with over 95% purity, as confirmed by HPLC-ELSD and 1H-NMR. Moreover, purified compounds and SFE fractions exhibited promising elastase and collagenase inhibition, highlighting them as dermocosmetic agents. Full article
(This article belongs to the Special Issue Supercritical Fluid Extraction of Natural Bioactive Compounds)
Show Figures

Figure 1

18 pages, 4247 KiB  
Article
Synergistic Effects of Pressure, Temperature, CO2 Flow Rate and Co-Solvent on Bioactive Contents of Thai Fingerroot (Boesenbergia rotunda (L.) Mansf.) Extracts
by Fahmi Ilman Fahrudin, Suphat Phongthai, Tri Indrarini Wirjantoro and Pilairuk Intipunya
Foods 2025, 14(13), 2189; https://doi.org/10.3390/foods14132189 - 23 Jun 2025
Viewed by 755
Abstract
This study investigated the use of supercritical carbon dioxide (CO2) to extract bioactive compounds from Thai fingerroot (Boesenbergia rotunda), focusing on the effects of pressure, temperature, CO2 flow rate, and ethanol co-solvent concentration. A central composite design within [...] Read more.
This study investigated the use of supercritical carbon dioxide (CO2) to extract bioactive compounds from Thai fingerroot (Boesenbergia rotunda), focusing on the effects of pressure, temperature, CO2 flow rate, and ethanol co-solvent concentration. A central composite design within a response surface methodology framework was employed to optimize the total extraction yield, total phenolic content (TPC), and total flavonoid content (TFC). Conventional ethanol maceration was used as a benchmark. High-performance liquid chromatography identified the major compounds in the extracts, such as pinostrobin and pinocembrin. The results showed that the yield, TPC, and TFC increased with higher pressure, CO2 flow rate, and co-solvent levels, whereas higher temperatures had a negative effect (p ≤ 0.05). Interactions between pressure and temperature favored the yield and TPC but not TFC. The optimal conditions—250 bar, 45 °C, 3 L/min CO2 flow rate, and 100% ethanol—produced a yield of 28.67%, TPC of 354.578 mg GAE/g, and TFC of 273.479 mg QE/g. These values exceeded those obtained using conventional extraction (9.91% yield, 332.86 mg GAE/g TPC, and 77.57 mg QE/g TFC at 60 min). The regression models showed strong predictive accuracy (R2 > 0.9). Pinostrobin and pinocembrin were the dominant phenolic compounds. These findings demonstrate the superior efficiency of supercritical CO2 extraction for isolating phenolic compounds from B. rotunda. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

27 pages, 3488 KiB  
Review
Current Perspectives on the Extraction, Isolation, and Identification of Fats and Fatty Acids Using Conventional and Green Methods
by Ytaiara Lima-Pereira, Esther Maria Oliveira de Souza, David Silva dos Reis, Ian Gardel Carvalho Barcellos-Silva, Karine Sayuri Lima Miki, Valdir F. Veiga-Júnior and Barbara Elisabeth Teixeira-Costa
Separations 2025, 12(6), 160; https://doi.org/10.3390/separations12060160 - 13 Jun 2025
Viewed by 858
Abstract
The global demand for oils and lipids, particularly those derived from vegetable sources with high polyunsaturated fatty acid content, has posed significant challenges for the food industry. This trend is largely driven by growing consumer awareness of health and nutrition. To meet this [...] Read more.
The global demand for oils and lipids, particularly those derived from vegetable sources with high polyunsaturated fatty acid content, has posed significant challenges for the food industry. This trend is largely driven by growing consumer awareness of health and nutrition. To meet this demand, it is essential to not only identify richer sources of lipids but also develop efficient, sustainable, and environmentally friendly methods for their extraction, isolation, and characterization. In this context, the present work provides a comprehensive review of current perspectives on the extraction, isolation, and identification of lipids and fatty acids, comparing conventional and green methodologies for food applications. Ideally, analytical and processing methodologies for obtaining food-grade materials should prioritize low energy consumption, minimal or no use of hazardous substances, and the generation of non-polluting residues, thereby safeguarding both human health and the environment. In recent years, green extraction techniques have emerged as promising alternatives to conventional methods, offering partial or complete replacements, such as ultrasound-assisted extraction, microwave-assisted extraction, supercritical and subcritical fluid extraction, and others. However, significant advancements are still required to fully address these concerns. Techniques such as chromatography and spectrometry play pivotal roles in the isolation and identification process, especially gas chromatography coupled with mass spectrometry or with flame ionization detectors; while separating individual fatty acids based on their chain length and degree of unsaturation, reversed-phase high-performance liquid chromatography (HPLC) is quite a helpful approach. Furthermore, the isolation and structural elucidation of fatty acids are critical steps in ensuring the nutritional quality and commercial viability of lipid products. Full article
(This article belongs to the Special Issue Extraction and Characterization of Food Components)
Show Figures

Graphical abstract

21 pages, 3940 KiB  
Article
Therapeutic Potential of Plantago ovata Bioactive Extracts Obtained by Supercritical Fluid Extraction as Influenced by Temperature on Anti-Obesity, Anticancer, and Antimicrobial Activities
by Husam Qanash, Abdulrahman S. Bazaid, Naif K. Binsaleh, Amirah S. Alshammari and Reem Eltayeb
Plants 2025, 14(12), 1813; https://doi.org/10.3390/plants14121813 - 12 Jun 2025
Viewed by 1725
Abstract
Plantago ovata has been utilized as an effective natural remedy with minimal side effects, offering a promising alternative to synthetic pharmaceuticals. The supercritical fluid extraction (SFE) of Plantago ovata leaves yielded 0.417 g and 0.532 g at 40 °C and 80 °C, respectively. [...] Read more.
Plantago ovata has been utilized as an effective natural remedy with minimal side effects, offering a promising alternative to synthetic pharmaceuticals. The supercritical fluid extraction (SFE) of Plantago ovata leaves yielded 0.417 g and 0.532 g at 40 °C and 80 °C, respectively. The 40 °C extract exhibited stronger antimicrobial activity, with minimum inhibitory concentrations (MICs) as low as 15.62 µg/mL and minimum bactericidal concentrations (MBCs) as low as 31.25 µg/mL against Bacillus subtilis and Candida albicans. In contrast, the 80 °C extract demonstrated reduced activity, with MICs and MBCs up to 250 and 500 µg/mL, respectively. The 40 °C extract also showed superior lipase inhibition (IC50 = 17.21 µg/mL) compared to the 80 °C extract (IC50 = 26.42 µg/mL), although orlistat remained the most potent (IC50 = 6.02 µg/mL). In addition, cytotoxicity assays revealed stronger effects of the 40 °C extract on Caco-2 colon cancer cells (IC50 = 109.47 µg/mL) compared to the 80 °C extract (IC50 = 174.81 µg/mL). These results suggest that the lower-temperature SFE of P. ovata yields extracts with enhanced antimicrobial, anti-obesity, and anticancer activities, supporting its potential for pharmaceutical and nutraceutical applications. Full article
(This article belongs to the Special Issue Biological Activities of Plant Extracts, 2nd Edition)
Show Figures

Figure 1

Back to TopTop