Supercritical Fluid Extraction of Peruvian Schinus molle Leaves: Yield, Kinetics, Mathematical Modeling, and Chemical Composition
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Material
2.1.1. Preparation
2.1.2. Particle Size
2.1.3. Colorimetric Analysis
2.2. SFE Equipment
2.3. SFE Experiments
2.3.1. Experimental
2.3.2. Overall Extraction Curves and Mathematical Modelling
- b0 (g) is the linear coefficient, b1 (or MCER, in g/min) is the slope of constant extraction rate (CER) straight period, physically expressed as MCER, which is the extraction rate for the CER period; b2 (or MFER, in g/min) is the slope of falling extraction rate (FER) straight line; mEXT (g) is the mass of extract, t is the time of extraction (min), and tCER (min) is CER period.
2.4. Characterization of Extract
Gas Chromatography–Mass Spectrometry (GC–MS)
2.5. Statistical Analysis
3. Results and Discussions
3.1. Effect of SFE Parameters
3.2. Mathematical Modeling
3.3. SFE Extract Composition
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Royal Botanic Gardens Kew Schinus molle L.|Plants of the World Online|Kew Science. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:71044-1 (accessed on 11 February 2024).
- Lalia, A.; Harizia, A.; Righi, K.; Daikh, Z.E. Chemical Composition and Allelopathic Potential of Schinus molle L. (Anacardiaceae) Essential Oils against Common Weeds of Wheat Crop. Nat. Prod. Res. 2025, 39, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Irahal, I.N.; Lahlou, F.A.; Hmimid, F.; Errami, A.; Guenaou, I.; Diawara, I.; Kettani-Halabi, M.; Fahde, S.; Ouafik, L.; Bourhim, N. Identification of the Chemical Composition of Six Essential Oils with Mass Spectroscopy and Evaluation of Their Antibacterial and Antioxidant Potential. Flavour Fragr J. 2021, 465–476. [Google Scholar] [CrossRef]
- Belhoussaine, O.; El Kourchi, C.; Harhar, H.; Bouyahya, A.; Yadini, A.E.; Fozia, F.; Alotaibi, A.; Ullah, R.; Tabyaoui, M. Chemical Composition, Antioxidant, Insecticidal Activity, and Comparative Analysis of Essential Oils of Leaves and Fruits of Schinus molle and Schinus terebinthifolius. Evid.-Based Complement. Altern. Med. 2022, 2022, 4288890. [Google Scholar]
- Volpini-klein, A.F.N.; Júnior, S.E.L.; Cardoso, C.A.L.; Cabral, R.P.; Louro, G.M.; Coutinho, E.J.; de Jesus, D.A.; Junior, D.P.; Simionatto, E. Chemical Composition of Essential Oils from Leaves and Fruits of Schinus molle Obtained by Different Extraction Methods (Hydrodistillation, Fractional Hydrodistillation and Steam Distillation) and Seasonal Variations. J. Essent. Oil Bear. Plants 2021, 24, 228–242. [Google Scholar] [CrossRef]
- Umay, A. Investigation of Chemical Composition and Phytotoxic Effects of Essential Oils Obtained from Schinun Molle Leaves and Resins. Tome 2022, 75, 26–33. [Google Scholar] [CrossRef]
- Salas, J.M.Z.; Quiroz, K.D.A.; Miranda, L.F.C.; Sanchez, J.M.C. Use of Molle (Schinus molle) Essential Oil as a Biocide against Potato Aphid (Macrosiphum euphorbiae). Neuro Quantology 2022, 20, 5752–5759. [Google Scholar] [CrossRef]
- Phiri, N.; Serame, E.L.; Pheko, T. Extraction, Chemical Composition, and Antioxidant Activity Analysis of Essential Oil from Schinus molle Medicinal Plant Found in Botswana. Am. J. Essent. Oils Nat. Prod. 2021, 9, 1–9. [Google Scholar]
- Herrera-calderon, O.; Chavez, H.; Enciso-Roca, E.C.; Común-Ventura, P.W.; Hañari-Quispe, R.D.; Figueroa-Salvador, L.; Loyola-Gonzales, E.L.; Pari-Olarte, J.B.; Aljarba, N.H.; Alkahtani, S.; et al. GC-MS Profile, Antioxidant Activity, and In Silico Study of the Essential Oil from Schinus molle L. Leaves in the Presence of Mosquito Juvenile Hormone-Binding Protein (MJHBP) from Aedes aegypti. Biomed. Res. Int. 2022, 5601531. [Google Scholar]
- Quiroz, J.R.R.; Salvatierra, M.E.S. Composición Química y Actividad Antibacteriana de Los Aceitrs Esenciales de Citrus Paradisi, Juglans Neotropica, Diels, Schinus molle y Tagetes Elliptica Smith. Rev. Soc. Química del Perú 2021, 87, 228–241. [Google Scholar] [CrossRef]
- Landero-valenzuela, N.; Alonso-hernández, N.; Lara-Viveros, F.; Gómez-Domínguez, N.S.; Juárez-Pelcastre, J.; Aguado-Rodríguez, J.; Luna-cruz, A.; Lagunez-Rivera, L.; Aguilar-Pérez, L.A.; Hinojosa-Garro, D.; et al. Efficiency of Schinus molle Essential Oil against Bactericera cockerelli (Hemiptera: Triozidae) and Sitophilus zeamais (Coleoptera: Dryophthoridae). Agriculture 2022, 12, 554. [Google Scholar] [CrossRef]
- Mellak, N.; Ghali, N.; Messaoudi, N.; Benhelima, A.; Ferhat, M.; Addou, A. Study of Corrosion Inhibition Properties of Schinus molle Essential Oil on Carbon Steel in HCl. Mater. Corros. 2021, 72, 1270–1278. [Google Scholar] [CrossRef]
- Morales-Rabanales, Q.N.; Coyotl-Pérez, W.A.; Rubio-Rosas, E.; Cortes-Ramírez, G.S.; Ramírez, J.F.S.; Villa-Ruano, N. Antifungal Properties of Hybrid Films Containing the Essential Oil of Schinus molle: Protective Effect against Postharvest Rot of Tomato. Food Con 2022, 134, 108766. [Google Scholar]
- Sánchez, J.M.C.; Miranda, L.F.C.; Salas, J.M.Z.; Quiroz, K.D.A. Microencapsulation of Essential Oil of Molle (Schinus molle) against the Aphid Macrosiphum Euphorbiae. J. Pharm. Negat. Results 2022, 13, 1019–1023. [Google Scholar] [CrossRef]
- Chavez-Marquez, E.; Bernedo, M.S.; Jara, E.M.; Quequezana-Bedregal, M.J.; Gutierrez-Oppe, E.E.; de Alcântara Pessôa Filho, P. Development of Intelligent and Active Potato Starch Films Based on Purple Corn Cob Extract and Molle Essential Oil. Int. J. Biol. Macromol. 2023, 242, 125080. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; El-sabrout, A.M. Composition, Toxicity and Developmental Potential of Three Essential Oils on the West Nile Virus Mosquito, Culex pipiens L. Int. J. Pest Manag. 2023, 69, 175–183. [Google Scholar] [CrossRef]
- Gad, H.A.; Hamza, A.F.; Abdelgaleil, S.A.M. Chemical Composition and Fumigant Toxicity of Essential Oils from Ten Aromatic Plants Growing in Egypt against Different Stages of Confused Flour Beetle, Tribolium confusum Jacquelin Du Val. Int. J. Trop. Insect Sci. 2021, 42, 697–706. [Google Scholar] [CrossRef]
- Hussein, H.S.; Tawfeek, M.E.; Abdelgaleil, S.A.M. Chemical Composition, Aphicidal and Antiacetylcholinesterase Activities of Essential Oils against Aphis nerii Boyer de Fonscolombe (Hemiptera: Aphididae). J. Asia. Pac. Entomol. 2021, 24, 259–265. [Google Scholar]
- Belayneh, Y.M.; Mengistu, G.; Hailay, K. Evaluation of Hepatoprotective and Antidiarrheal Activities of the Hydromethanol Crude Extract and Solvent Fractions of Schinus molle L. (Anacardiaceae) Leaf and Fruit in Mice. Metab. Open 2024, 21, 100272. [Google Scholar] [CrossRef]
- Mekuria, A.B.; Geta, M.; Birru, E.M.; Gelayee, D.A. Antimalarial Activity of Seed Extracts of Schinus molle Against Plasmodium berghei in Mice. J. Evidence-Based Integr. Med. 2021, 26. [Google Scholar] [CrossRef]
- Aboalhaija, N.; Afifi, F.; Al-Hussaini, M.; Al-Najjar, M.; Abu-dahab, R.; Hasen, E.; Rashed, M.; Haq, S.A.; Khalil, E. In Vitro and In Vivo Evaluation of the Wound Healing Potential of the Extracts of Schinus molle L. (Anacardiaceae) Grown in Jordan. Indian J. Pharm. Sci. 2021, 83, 261–270. [Google Scholar]
- Bvenura, C.; Kambizi, L. Composition of Phenolic Compounds in South African Schinus molle L. Berries. Foods 2023, 11, 1376. [Google Scholar]
- Bekele, T.; Yimam, B.B. Phytochemical Screening and Antimicrobial Activity of Stem Bark Extracts of Schinus molle Linens. Sch. Int. J. Chem. Mater. Sci. 2023, 6, 108–114. [Google Scholar] [CrossRef]
- Ovidi, E.; Garzoli, S.; Masci, V.L.; Turchetti, G.; Tiezzi, A. GC-MS Investigation and Antiproliferative Activities of Extracts from Male and Female Flowers of Schinus molle L. Nat. Prod. Res. 2021, 35, 1923–1927. [Google Scholar] [CrossRef]
- Sánchez-Mendoza, M.E.; López-Lorenzo, Y.; Cruz-Antonio, L.; Arrieta-Baez, D.; Pérez-González, M.C.; Arrieta, J. First Evidence of Gastroprotection by Schinus molle: Roles of Nitric Oxide, Prostaglandins, and Sulfhydryls Groups in Its Mechanism of Action. Molecules 2022, 27, 7321. [Google Scholar] [CrossRef]
- Hailan, W.A.; Al-Anazi, K.M.; Farah, M.A.; Ali, M.A.; Al-Kawmani, A.A.; Abou-Tarboush, F.M. Reactive Oxygen Species-Mediated Cytotoxicity in Liver Carcinoma Cells Induced by Silver Nanoparticles Biosynthesized Using Schinus molle Extract. Nanomaterials 2022, 12, 161. [Google Scholar] [CrossRef]
- Valdiviezo-Campos, J.E.; Rodriguez-Aredo, C.D.; Ruiz-Reyes, S.G.; Venegas-casanova, E.A.; Bussmann, R.W.; Ganoza-yupanqui, M.L. Identification of Polyphenols by UPLC-MS/MS and Their Potential in Silico Antiviral Activity from Medicinal Plants in Trujillo, Peru. J. Pharm. Pharmacogn. Res. 2024, 12, 323–347. [Google Scholar]
- Kim, M.J.; Kim, D.W.; Kim, J.G.; Shin, Y.; Jung, S.K.; Kim, Y. Analysis of the Chemical, Antioxidant, and Anti-Inflammatory Properties of Pink Pepper (Schinus molle L.). Antioxidants 2021, 10, 1062. [Google Scholar] [CrossRef]
- Osman, E.E.A.; Morsi, E.A.; El-Sayed, M.M.; Gobouri, A.; Abdel-Hameed, E.-S.S. Identification of the Volatile and Nonvolatile Constituents of Schinus molle (L.) Fruit Extracts and Estimation of Their Activities as Anticancer Agents. J. Appl. Pharm. Sci. 2021, 11, 163–171. [Google Scholar] [CrossRef]
- Erenler, R.; Chaoui, R.; Yildiz, I.; Genc, N.; Gecer, E.N.; Temiz, C.; Akkal, S. Biosynthesis, Characterisation, and Antioxidant Activity of Silver Nanoparticles Using Schinus molle L. Trends Sci. 2023, 20, 6105. [Google Scholar]
- Mügge, F.L.B.; Morlock, G.E. Chemical and Cytotoxicity Profiles of 11 Pink Pepper (Schinus Spp.) Samples via Non-Targeted Hyphenated High-Performance Thin-Layer Chromatography. Metabolomics 2023, 19, 48. [Google Scholar] [CrossRef]
- İlgün, S.; Karatoprak, G.Ş.; Polat, D.Ç.; Şafak, E.K.; Yücel, Ç.; İnce, U.; Uvat, H.Ö.; Akkol, E.K. Assessment of Phenolic Composition, Antioxidant Potential, Antimicrobial Properties, and Antidiabetic Activity in Extracts Obtained from Schinus molle L. Leaves and Fruits. Front. Biosci. (Landmark Ed.) 2023, 28, 353. [Google Scholar]
- Feriani, A.; Tir, M.; Mufti, A.; Caravaca, A.M.G.; Contreras, M.D.M.; Taamalli, A.; Carretero, A.S.; Aldawood, N.; Nahdi, S.; Alwasel, S.; et al. HPLC-ESI-QTOF-MS/MS Profiling and Therapeutic Effects of Schinus terebinthifolius and Schinus molle Fruits: Investigation of Their Antioxidant, Antidiabetic, Anti-Inflammatory and Antinociceptive Properties. Inflammopharmacology 2021, 29, 467–481. [Google Scholar] [CrossRef]
- Mengistu, G.; Hailay, K.; Misganaw, D.; Andualem, A.; Belayneh, Y.M. In Vivo Antidiarrheal Activities of the Hydro Alcoholic Extracts of Schinus molle L. (Anarcardiaceae) Leaf in Mice. bioRxiv 2022. [Google Scholar] [CrossRef]
- Pravalika, K.; Kulkarni, N.M.; Kumar, G.V.; Murali, S. Pharmacological Study of Analgesic Activity of Schinus molle. J. Pharm. Negat. Results 2022, 13, 8226–8231. [Google Scholar] [CrossRef]
- Pintado, M.E.; Saraiva, J.M.A.; da Cruz Alexandre, E.M. Technologies to Recover Polyphenols from AgroFood By-Products and Wastes; Academic Press: Cambridge, MA, USA, 2022; ISBN 978-0-323-85273-9. [Google Scholar]
- Santana, Á.L.; Paucar, L.O.C.; Veggi, P.C.; Viganó, J.; Meireles, M.A.A. Supercritical Fluid Extraction. In Green Extraction Techniques in Food Analysis; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023; pp. 280–323. [Google Scholar]
- Chañi-Paucar, L.O.; Santana, Á.L.; Albarelli, J.Q.; Meireles, M.A.A. Extraction of Polyphenols by Sub/Supercritical Based Technologies. In Technologies to Recover Polyphenols from AgroFood By-Products and Wastes; Academic Press: Cambridge, MA, USA, 2022; pp. 137–168. ISBN 9780323852739. [Google Scholar]
- Barroso, M.S.T.; Villanueva, G.; Lucas, A.M.; Perez, G.P.; Vargas, R.M.F.; Brun, G.W.; Cassel, E. Supercritical Fluid Extraction of Volatile and Non-Volatile Compounds from Schinus molle L. Brazilian J. Chem. Eng. 2011, 28, 305–312. [Google Scholar] [CrossRef]
- Marongiu, B.; Porcedda, A.P.S.; Casu, R.; Pierucci, P. Chemical Composition of the Oil and Supercritical CO2 Extract of Schinus molle L. Flavour Fragr. J. 2004, 19, 554–558. [Google Scholar] [CrossRef]
- Prado, J.M.; Prado, G.H.C.; Meireles, M.A.A. Scale-up Study of Supercritical Fluid Extraction Process for Clove and Sugarcane Residue. J. Supercrit. Fluids 2011, 56, 231–237. [Google Scholar]
- ANSI-ASAE Method of Determining and Expressing Particle Size of Chopped Forage Materials by Screening. In ASAE STANDARDS; EUA: Brussels, Belgium, 1998; pp. 562–564.
- NIST-National Institute of Standards and Technology Propiedades Termofísicas de Sistemas Fluidos. Available online: https://webbook.nist.gov/chemistry/fluid/ (accessed on 28 October 2024).
- Martínez, J.; Monteiro, A.R.; Rosa, P.T.V.; Marques, M.O.M.; Meireles, M.A.A. Multicomponent Model to Describe Extraction of Ginger Oleoresin with Supercritical Carbon Dioxide. Ind. Eng. Chem. Res. 2003, 42, 1057–1063. [Google Scholar] [CrossRef]
- Santana, Á.L.; Albarelli, J.Q.; Santos, D.T.; Souza, R.; Machado, N.T.; Araújo, M.E.; Meireles, M.A.A. Kinetic Behavior, Mathematical Modeling, and Economic Evaluation of Extracts Obtained by Supercritical Fluid Extraction from Defatted Assaí Waste. Food Bioprod. Process. 2018, 107, 25–35. [Google Scholar] [CrossRef]
- Meireles, M.A.A. Extraction of Bioactive Compounds from Latin American Plants. In Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds; Martinez, J., Ed.; CRC Press—Taylor & Francis Group: Boca Raton, FL, USA, 2008; pp. 243–274. [Google Scholar]
- Esquível, M.M.; Bernardo-Gil, M.G.; King, M.B. Mathematical Models for Supercritical Extraction of Olive Husk Oil. J. Supercrit. Fluids 1999, 16, 43–58. [Google Scholar] [CrossRef]
- Bendif, H.; Miara, M.D.; Kalboussi, Z.; Grauzdytė, D.; Povilaitis, D.; Venskutonis, P.R.; Maggi, F. Supercritical CO2 Extraction of Rosmarinus eriocalyx Growing in Algeria: Chemical Composition and Antioxidant Activity of Extracts and Their Solid Plant Materials. Ind. Crops Prod. 2018, 111, 768–774. [Google Scholar] [CrossRef]
- Scopel, R.; Neto, R.G.; Falcão, M.A.; Cassel, E.; Vargas, R.M.F. Supercritical CO2 Extraction of Schinus molle L. with Co-Solvents: Mathematical Modeling and Antimicrobial Applications. Braz. Arch. Biol. Technol. 2013, 56, 513–519. [Google Scholar] [CrossRef]
- Essien, S.O.; Young, B.; Baroutian, S. Recent Advances in Subcritical Water and Supercritical Carbon Dioxide Extraction of Bioactive Compounds from Plant Materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- de Melo, S.A.V.; Costa, G.M.; Viana, A.C.; Pessoa, F.L. Computation of Crossover Pressure for Synthesis of Supercritical Fluid Separation Systems. In 10th International Symposium on Process Systems Engineering: Part A; de Brito Alves, R.M., do Nascimento, C.A.O., Biscaia, E.C., Eds.; Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2009; Volume 27, pp. 399–404. [Google Scholar]
- Lemmon, E.W.; Bell, I.H.; Huber, M.L.; McLinden, M.O. Thermophysical Properties of Fluid Systems; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2024.
- Chañi-Paucar, L.O.; Flores Johner, J.C.; Zabot, G.L.; Meireles, M.A.A. Technical and Economic Evaluation of Supercritical CO2 Extraction of Oil from Sucupira Branca Seeds. J. Supercrit. Fluids 2022, 181, 105494. [Google Scholar] [CrossRef]
- Santos, P.H.; Baggio Ribeiro, D.H.; Micke, G.A.; Vitali, L.; Hense, H. Extraction of Bioactive Compounds from Feijoa (Acca Sellowiana (O. Berg) Burret) Peel by Low and High-Pressure Techniques. J. Supercrit. Fluids 2019, 145, 219–227. [Google Scholar] [CrossRef]
- Mukherjee, P.K. Bioactive Phytocomponents and Their Analysis. Qual. Control Eval. Herb. Drugs 2019, 237–328. [Google Scholar] [CrossRef]
- Paucarchuco Soto, J.; Padilla Pacahuala, G. Evaluación de La Capacidad Antioxidante y Composición de Metabolitos Bioactivos Del Extracto Aromático Obtenido de Las Hojas de Schinus molle L. Con CO2 Supercrítico; Universidad Nacional Autónoma Altoandina de Tarma (UNAAT): Tarma, Peru, 2024. [Google Scholar]
- Pereira, C.G.; Meireles, M.A.A. Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives. Food Bioprocess Technol. 2010, 3, 340–372. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Sarma, S.D.; Dutta, P.; Begum, T.; Lal, M.; Perveen, K.; Bukhari, N.A. Insights into Citrus limon (L.) Osbeck Peel Essential Oil from NE India: A Study of Its Pharmacological Properties and Chemical Composition. J. Essent. Oil Bear. Plants 2024, 27, 1362–1376. [Google Scholar] [CrossRef]
- St-Gelais, A.; Mathieu, M.; Levasseur, V.; Ovando, J.F.; Escamilla, R.; Marceau, H. Preisocalamendiol, Shyobunol and Related Oxygenated Sesquiterpenes from Bolivian Schinus molle Essential Oil. Nat. Prod. Commun. 2016, 11, 547–550. [Google Scholar] [CrossRef]
- Govindarajan, M.; Benelli, G. Eco-Friendly Larvicides from Indian Plants: Effectiveness of Lavandulyl Acetate and Bicyclogermacrene on Malaria, Dengue and Japanese Encephalitis Mosquito Vectors. Ecotoxicol. Environ. Saf. 2016, 133, 395–402. [Google Scholar] [CrossRef]
- Carroll, J.F.; Paluch, G.; Coats, J.; Kramer, M. Elemol and Amyris Oil Repel the Ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in Laboratory Bioassays. Exp. Appl. Acarol. 2010, 51, 383–392. [Google Scholar] [CrossRef]
- Moriasi, G.; Ngugi, M.; Mwitari, P.; Omwenga, G. Antioxidant, Anti-Prostate Cancer Potential, and Phytochemical Composition of the Ethyl Acetate Stem Bark Extract of Boascia coriacea (Pax.). PLoS ONE 2024, 19, e0309258. [Google Scholar] [CrossRef]
- Seixas, P.T.L.; Demuner, A.J.; Barbosa, L.C.A.; Cerceau, C.I.; Blank, D.E.; Santos, M.H.D.; de Sá Farias, E.; Picanço, M.C. Chemical Composition and Larvicidal Activity of Essential Oils of Three Artemisia Species. J. Appl. Entomol. 2023, 147, 116–125. [Google Scholar] [CrossRef]
- Sirichaiwetchakoon, K.; Lowe, G.M.; Kupittayanant, S.; Churproong, S.; Eumkeb, G. Pluchea indica (L.) Less. Tea Ameliorates Hyperglycemia, Dyslipidemia, and Obesity in High Fat Diet-Fed Mice. Evid.-Based Complement. Altern. Med. 2020, 2020, 8746137. [Google Scholar] [CrossRef]
- de Lima Nunes, T.A.; Costa, L.H.; De Sousa, J.M.S.; De Souza, V.M.R.; Rodrigues, R.R.L.; Val, M.D.C.A.; Pereira, A.C.T.d.C.; Ferreira, G.P.; Da Silva, M.V.; Da Costa, J.M.A.R.; et al. Eugenia piauhiensis Vellaff. Essential Oil and γ-Elemene Its Major Constituent Exhibit Antileishmanial Activity, Promoting Cell Membrane Damage and in vitro Immunomodulation. Chem. Biol. Interact. 2021, 339, 109429. [Google Scholar] [CrossRef]
- Chen, W.; Lu, Y.; Wu, J.; Gao, M.; Wang, A.; Xu, B. Beta-Elemene Inhibits Melanoma Growth and Metastasis via Suppressing Vascular Endothelial Growth Factor-Mediated Angiogenesis. Cancer Chemother. Pharmacol. 2011, 67, 799–808. [Google Scholar] [CrossRef]
- Gao, L.; Wei, Y.; Li, K.; Chen, J.; Wang, P.; Du, J.; Peng, J.; Gao, Y.; Zhang, Z.; Liu, Y.; et al. Perilla Frutescens Repels and Controls Bemisia Tabaci MED with Its Key Volatile Linalool and Caryophyllene. Crop Prot. 2024, 184, 106837. [Google Scholar] [CrossRef]
- Bhatia, S.P.; Letizia, C.S.; Api, A.M. Fragrance Material Review on Elemol. Food Chem. Toxicol. 2008, 46, S147–S148. [Google Scholar] [CrossRef]
Source | DF | Seq SS | Contribution (%) | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|---|---|
T | 2 | 0.05065 | 14.43 | 0.05065 | 0.025325 | 10.03 | 0.005 |
P | 2 | 0.06213 | 17.70 | 0.06213 | 0.031064 | 12.30 | 0.003 |
T × P | 4 | 0.21553 | 61.40 | 0.21553 | 0.053883 | 21.34 | 0.000 |
Error | 9 | 0.02272 | 6.47 | 0.02272 | 0.002525 | ||
Total | 17 | 0.35103 | 100.00 |
DLSM | CIELAB Parameters | ||||||
---|---|---|---|---|---|---|---|
L* | ΔL* | a* | Δa* | b* | Δb* | ΔE* | |
Before extraction | 39.19 ± 0.24 | 39.21 | −4.26 ± 0.17 | 0.41 | 18.85 ± 0.15 | 15.48 | 42.16 |
After extraction [56] | 78.40 ± 0.16 | −3.85 ± 0.18 | 34.33 ± 0.23 |
Model | Parameters | Result |
---|---|---|
Spline | tCER (min) | 27.00 |
b0 (g/min) | 5.507 × 10−3 | |
b1 =MCER (g/min) | 3.875 × 10−3 | |
b2 =MFER (g/min) | −3.343 × 10−3 | |
RCER (% g ext/100 g feed) | 4.052 | |
YCER (g ext/g CO2) | 1.178 × 10−3 | |
R2 | 0.984 | |
MSE | 3.95 × 10−4 | |
Esquível | b (min) | 99.08 |
R2 | 0.994 | |
MSE | 7.6 × 10−4 | |
Martínez | tm (min) | 1.0 × 10−11 |
b (min−1) | 2.279 | |
R2 | 0.985 | |
MSE | 4.26 × 10−3 |
RT a | Compounds a | MF | MW | Area (%) a | Some Bioactive Properties/Uses b |
---|---|---|---|---|---|
7.073 | Alpha Phellandrene (M) | C10H16 | 136.23 | 0.19 | |
7.983 | Pseudolimonene (M) | C10H16 | 136.23 | 0.17 | |
19.226 | Gamma-Elemene (S) | C15H24 | 204.35 | 1.17 | Antileishmanial activity [65] |
21.050 | Beta-Elemene (S) | C15H24 | 204.35 | 1.15 | Antiangiogenic activity [66] |
21.591 | Alpha-Gurjunene (S) | C15H24 | 204.35 | 0.51 | |
21.887 | Caryophyllene (S) | C15H24 | 204.35 | 1.83 | Insecticidal activity [67] |
22.959 | Humulene (S) | C15H24 | 204.35 | 0.63 | |
23.194 | 9-epi-(E)-Caryophillene (S) | C15H24 | 204.35 | 0.34 | |
23.828 | Germacrene D (S) | C15H24 | 204.35 | 0.26 | |
24.323 | Bicyclogermacrene (S) | C15H24 | 204.35 | 12.68 | Larvicide [60] |
24.457 | Alpha-Muurolene (S) | C15H24 | 204.35 | 0.20 | |
24.893 | Cubebol (St) | C15H26O | 222.37 | 0.59 | |
25.012 | Not identified | - | - | 4.54 | |
25.183 | 6-epi-shyobunol (St) | C15H26O | 222.37 | 4.35 | |
25.914 | Elemol (St) | C15H26O | 222.37 | 10.42 | Repellent [61] Fragrance [68] |
26.416 | Palustrol (St) | C15H26O | 222.37 | 0.30 | |
26.661 | Germacrene D-4-ol (St) | C15H26O | 222.37 | 6.31 | |
27.124 | Viridiflorol (St) | C15H26O | 222.37 | 0.80 | |
27.242 | Not identified | - | - | 0.71 | |
27.453 | Ledol (St) | C15H26O | 222.37 | 0.48 | |
28.193 | Epiglobulol (St) | C15H26O | 222.37 | 0.32 | |
29.274 | Not identified | - | - | 0.74 | |
29.916 | Shyobunol (St) | C15H26O | 222.37 | 33.60 | |
32.231 | Gamma-Gurjunene (S) | C15H24 | 204.35 | 5.73 | |
33.018 | Not identified | - | - | 1.02 | |
47.281 | Linolenic acid (Fa) | C18H30O2 | 278.4 | 0.09 | |
50.602 | Squalene (T) | C30H50 | 410.7 | 0.36 | |
56.688 | Beta-Amyrone (Tp) | C30H48O | 424.7 | 3.28 | |
57.110 | Beta-Amyrin (Tp) | C30H50O | 426.7 | 0.62 | |
57.564 | Lupeone (Tp) | C30H48O | 424.7 | 6.58 | |
Total area | 99.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paucarchuco-Soto, J.; Padilla Pacahuala, G.; Cuadrado Campó, W.J.; Chagua-Rodríguez, P.; Maceda Santivañez, J.C.; Santana, Á.L.; Meireles, M.A.A.; Chañi-Paucar, L.O. Supercritical Fluid Extraction of Peruvian Schinus molle Leaves: Yield, Kinetics, Mathematical Modeling, and Chemical Composition. Processes 2025, 13, 2191. https://doi.org/10.3390/pr13072191
Paucarchuco-Soto J, Padilla Pacahuala G, Cuadrado Campó WJ, Chagua-Rodríguez P, Maceda Santivañez JC, Santana ÁL, Meireles MAA, Chañi-Paucar LO. Supercritical Fluid Extraction of Peruvian Schinus molle Leaves: Yield, Kinetics, Mathematical Modeling, and Chemical Composition. Processes. 2025; 13(7):2191. https://doi.org/10.3390/pr13072191
Chicago/Turabian StylePaucarchuco-Soto, Joselin, German Padilla Pacahuala, Walter Javier Cuadrado Campó, Perfecto Chagua-Rodríguez, Julio Cesar Maceda Santivañez, Ádina L. Santana, Maria Angela A. Meireles, and Larry Oscar Chañi-Paucar. 2025. "Supercritical Fluid Extraction of Peruvian Schinus molle Leaves: Yield, Kinetics, Mathematical Modeling, and Chemical Composition" Processes 13, no. 7: 2191. https://doi.org/10.3390/pr13072191
APA StylePaucarchuco-Soto, J., Padilla Pacahuala, G., Cuadrado Campó, W. J., Chagua-Rodríguez, P., Maceda Santivañez, J. C., Santana, Á. L., Meireles, M. A. A., & Chañi-Paucar, L. O. (2025). Supercritical Fluid Extraction of Peruvian Schinus molle Leaves: Yield, Kinetics, Mathematical Modeling, and Chemical Composition. Processes, 13(7), 2191. https://doi.org/10.3390/pr13072191