Screening of a Plant Extract Library from the Greek Flora for Biological Activities Related to Anti-Aging Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Extraction
- A.
- Accelerated Solvent Extraction (ASE): Extraction of samples was performed using an ASE 300 apparatus (Dionex, Sunnyvale, CA, USA) with a solvent mixture of distilled water and isopropanol (H2O:iPrOH, 1:1 v/v). A total of 20 g of dried plant material was placed into stainless-steel extraction cells, which were heated and extracted with the following conditions: preheating for 3 min at 40 °C with a pressure of 103 bar, heating cells for 5 min, 3 min static time, flush time 3 min, and purge time 120 s. Obtained extracts were evaporated to dryness using a rotary evaporator and were kept at −20 °C pending analysis. Samples derived from ASE were given the suffix “A” following their number (see Table 1).
- B.
- Supercritical Fluid Extraction-CO2 (SFE-CO2): Extraction of samples was performed using an SFE (Separex, Champigneulles, France) system, using a mixture of carbon dioxide (CO2) and 5% of iPrOH as co-solvent. A total o f20 g of dried plant material was placed into a 100 mL stainless-steel extraction cell. CO2 was pumped (Piston pump P200 LGP50, Separex, France) through the system with a flow rate of 25 g/min, while iPrOH was pumped (Series III P300, Teledyne SSI, State College, PA, USA) with a flow rate of 1.58 mL/min. Oven and basket temperature were set at 40 °C and 35 °C, respectively, with a system pressure of 250 bar. Extracts were collected every 30 min for 2 h, and then were evaporated to dryness using a rotary evaporator. All extracts were kept at −20 °C pending analysis. Samples derived from SFE were given the suffix “B” following their number (see Table 1).
2.3. Chemical Analysis
Liquid Chromatography—High Resolution Mass Spectrometry (LC-HRMS/MS)
2.4. Cells and Culture Conditions
2.5. Assessment of Cell Viability
2.6. Free-Radical Scavenging Assay
2.7. Assessment of Intracellular Reactive Oxygen Species (ROS)
2.8. Assessment of Photoprotective Activity
2.9. Inhibition of Enzymatic Activities
2.9.1. Collagenase
2.9.2. Elastase
2.9.3. Tyrosinase
2.10. Inhibition of Melanogenesis in Zebrafish
2.10.1. Zebrafish Maintenance and Breeding
2.10.2. Compound Treatment and Phenotype-Based Evaluation of Melanogenesis
2.11. Effects on Proteasomal and Lysosomal Activities
2.11.1. Proteasomal Activity
2.11.2. Lysosomal Activity
2.12. Assessment of Gene Expression
3. Results
3.1. Plant Material and Assessment of Cytotoxicity
3.2. Antioxidant Activity
3.2.1. Radical Scavenging Activity
3.2.2. Attenuation of ROS
3.3. Photoprotection
3.4. Inhibition of Enzymatic Activities Related to Skin Health
3.4.1. Collagenase Inhibition
3.4.2. Elastase Inhibition
3.4.3. Tyrosinase Inhibition
3.4.4. In Vivo Evaluation of Tyrosinase Inhibition Using a Zebrafish Embryo Melanogenesis Assay
3.5. Effect of the Extracts on the Main Proteostatic Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chuong, C.M.; Nickoloff, B.J.; Elias, P.M.; Goldsmith, L.A.; Macher, E.; Maderson, P.A.; Sundberg, J.P.; Tagami, H.; Plonka, P.M.; Thestrup-Pederson, K.; et al. Contoversies in Experimental Dermatology. Exp. Dermatol. 2002, 11, 159–187. [Google Scholar] [CrossRef]
- Ganceviciene, R.; Liakou, A.I.; Theodoridis, A.; Makrantonaki, E.; Zouboulis, C.C. Skin Anti-Aging Strategies. Endocrinology 2012, 4, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Gilchrest, B.A. Photoaging. J. Investig. Dermatol. 2013, 133, E2–E6. [Google Scholar] [CrossRef]
- Robert, L.; Labat-Robert, J.; Robert, A.-M. Physiology of Skin Aging. Pathol. Biol. 2009, 57, 336–341. [Google Scholar] [CrossRef]
- Skoczyńska, A.; Budzisz, E.; Trznadel-Grodzka, E.; Rotsztejn, H. Melanin and Lipofuscin as Hallmarks of Skin Aging. Adv. Dermatol. Allergol./Postępy Dermatol. I Alergol. 2017, 34, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.C.; Park, T.J.; Kang, H.Y. Skin-Aging Pigmentation: Who Is the Real Enemy? Cells 2022, 11, 2541. [Google Scholar] [CrossRef]
- Papaccio, F.; Caputo, S.; Bellei, B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants 2022, 11, 1121. [Google Scholar] [CrossRef] [PubMed]
- Tobin, D.J. Introduction to Skin Aging. J. Tissue Viability 2017, 26, 37–46. [Google Scholar] [CrossRef]
- Chin, T.; Lee, X.E.; Ng, P.Y.; Lee, Y.; Dreesen, O. The Role of Cellular Senescence in Skin Aging and Age-Related Skin Pathologies. Front. Physiol. 2023, 14, 1297637. [Google Scholar] [CrossRef]
- Wlaschek, M.; Maity, P.; Makrantonaki, E.; Scharffetter-Kochanek, K. Connective Tissue and Fibroblast Senescence in Skin Aging. J. Investig. Dermatol. 2021, 141, 985–992. [Google Scholar] [CrossRef]
- Gilchrest, B.A.; Eller, M.S.; Yaar, M. Telomere-Mediated Effects on Melanogenesis and Skin Aging. J. Investig. Dermatol. Symp. Proc. 2009, 14, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Pratsinis, H.; Mavrogonatou, E.; Zervou, S.-K.; Triantis, T.; Hiskia, A.; Kletsas, D. Natural Product-Derived Senotherapeutics: Extraction and Biological Evaluation Techniques. Methods Mol. Biol. 2025, 2906, 315–359. [Google Scholar] [CrossRef] [PubMed]
- Faccio, G. Plant Complexity and Cosmetic Innovation. iScience 2020, 23, 101358. [Google Scholar] [CrossRef] [PubMed]
- Reid, W.V. Biodiversity Hotspots. Trends Ecol. Evol. 1998, 13, 275–280. [Google Scholar] [CrossRef]
- Kougioumoutzis, K.; Kokkoris, I.P.; Panitsa, M.; Kallimanis, A.; Strid, A.; Dimopoulos, P. Plant Endemism Centres and Biodiversity Hotspots in Greece. Biology 2021, 10, 72. [Google Scholar] [CrossRef]
- Sklirou, A.D.; Angelopoulou, M.T.; Argyropoulou, A.; Chaita, E.; Boka, V.I.; Cheimonidi, C.; Niforou, K.; Mavrogonatou, E.; Pratsinis, H.; Kalpoutzakis, E.; et al. Phytochemical Study and in Vitro Screening Focusing on the Anti-Aging Features of Various Plants of the Greek Flora. Antioxidants 2021, 10, 1206. [Google Scholar] [CrossRef]
- Agalou, A.; Thrapsianiotis, M.; Angelis, A.; Papakyriakou, A.; Skaltsounis, A.-L.; Aligiannis, N.; Beis, D. Identification of Novel Melanin Synthesis Inhibitors from Crataegus Pycnoloba Using an in Vivo Zebrafish Phenotypic Assay. Front. Pharmacol. 2018, 9, 265. [Google Scholar] [CrossRef]
- Beis, D. Zebrafish Research in Greece: Swimming against the Current. Int. J. Dev. Biol. 2022, 66, 155–161. [Google Scholar] [CrossRef]
- Giardoglou, P.; Beis, D. On Zebrafish Disease Models and Matters of the Heart. Biomedicines 2019, 7, 15. [Google Scholar] [CrossRef]
- Fotopoulou, A.; Angelopoulou, M.T.; Pratsinis, H.; Mavrogonatou, E.; Kletsas, D. A Subset of Human Dermal Fibroblasts Overexpressing Cockayne Syndrome Group B Protein Resist UVB Radiation-Mediated Premature Senescence. Aging Cell 2025, 24, e14422. [Google Scholar] [CrossRef]
- Kavvoura, D.-A.; Stefanakis, M.K.; Kletsas, D.; Katerinopoulos, H.E.; Pratsinis, H. Biological Activities of Ceratonia Siliqua Pod and Seed Extracts: A Comparative Analysis of Two Cretan Cultivars. Int. J. Mol. Sci. 2023, 24, 12104. [Google Scholar] [CrossRef] [PubMed]
- Mavrogonatou, E.; Angelopoulou, M.; Rizou, S.V.; Pratsinis, H.; Gorgoulis, V.G.; Kletsas, D. Activation of the JNKs/ATM-P53 Axis Is Indispensable for the Cytoprotection of Dermal Fibroblasts Exposed to UVB Radiation. Cell Death Dis. 2022, 13, 647. [Google Scholar] [CrossRef] [PubMed]
- Beekman, B.; Drijfhout, J.W.; Bloemhoff, W.; Ronday, H.K.; Tak, P.P.; te Koppele, J.M. Convenient Fluorometric Assay for Matrix Metalloproteinase Activity and Its Application in Biological Media. FEBS Lett. 1996, 390, 221–225. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Uyama, H.; Kobayashi, S. Inhibition Effects of (+)-Catechin–Aldehyde Polycondensates on Proteinases Causing Proteolytic Degradation of Extracellular Matrix. Biochem. Biophys. Res. Commun. 2004, 320, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Westerfield, M. A Guide for the Laboratory Use of Zebrafish (Danio Rerio). In THE ZEBRAFISH BOOK, 4th ed.; Available online: https://zfin.org/zf_info/zfbook/zfbk.html (accessed on 5 May 2025).
- OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. In OECD Guidelines for the Testing of Chemicals, Section 2; OECD: Paris, France, 2013. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Majid, I.; Khan, S.; Aladel, A.; Dar, A.H.; Adnan, M.; Khan, M.I.; Mahgoub Awadelkareem, A.; Ashraf, S.A. Recent Insights into Green Extraction Techniques as Efficient Methods for the Extraction of Bioactive Components and Essential Oils from Foods. CyTA-J. Food 2023, 21, 101–114. [Google Scholar] [CrossRef]
- Colanesi, S.; Taylor, K.L.; Temperley, N.D.; Lundegaard, P.R.; Liu, D.; North, T.E.; Ishizaki, H.; Kelsh, R.N.; Patton, E.E. Small Molecule Screening Identifies Targetable Zebrafish Pigmentation Pathways. Pigment. Cell Melanoma Res. 2012, 25, 131–143. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef]
- Li, K.; Landriault, M.; Fingas, M.; Llompart, M. Accelerated Solvent Extraction (ASE) of Environmental Organic Compounds in Soils Using a Modified Supercritical Fluid Extractor. J. Hazard. Mater. 2003, 102, 93–104. [Google Scholar] [CrossRef]
- Fioroni, N.; Mouquet-Rivier, C.; Meudec, E.; Cheynier, V.; Boudard, F.; Hemery, Y.; Laurent-Babot, C. Antioxidant Capacity of Polar and Non-Polar Extracts of Four African Green Leafy Vegetables and Correlation with Polyphenol and Carotenoid Contents. Antioxidants 2023, 12, 1726. [Google Scholar] [CrossRef]
- Isabelle, M.; Lee, B.L.; Lim, M.T.; Koh, W.-P.; Huang, D.; Ong, C.N. Antioxidant Activity and Profiles of Common Vegetables in Singapore. Food Chem. 2010, 120, 993–1003. [Google Scholar] [CrossRef]
- Proteggente, A.R.; Pannala, A.S.; Paganga, G.; Buren, L.V.; Wagner, E.; Wiseman, S.; Put, F.V.D.; Dacombe, C.; Rice-Evans, C.A. The Antioxidant Activity of Regularly Consumed Fruit and Vegetables Reflects Their Phenolic and Vitamin C Composition. Free Radic. Res. 2002, 36, 217–233. [Google Scholar] [CrossRef] [PubMed]
- Lukas, B.; Bragagna, L.; Starzyk, K.; Labedz, K.; Stolze, K.; Novak, J. Polyphenol Diversity and Antioxidant Activity of European Cistus creticus L. (Cistaceae) Compared to Six Further, Partly Sympatric Cistus Species. Plants 2021, 10, 615. [Google Scholar] [CrossRef] [PubMed]
- Parić, A.; Muratović, E.; Murtić, S.; Subašić, M.; Pustahija, F. Biochemical-Physiological Responses of Reseda Lutea, Epilobium Dodonaei, and Gentianella Ciliata to Stress in an Open Pit of an Abandoned Iron Mine. Int. J. Phytoremediation 2025, 27, 1110–1118. [Google Scholar] [CrossRef]
- Couladis, M.; Tzakou, O.; Verykokidou, E.; Harvala, C. Screening of Some Greek Aromatic Plants for Antioxidant Activity. Phytother. Res. 2003, 17, 194–195. [Google Scholar] [CrossRef]
- Ertaş, A.; Boğa, M.; Yılmaz, M.A.; Yeşil, Y.; Haşimi, N.; Kaya, M.Ş.; Temel, H.; Kolak, U. Chemical Compositions by Using LC-MS/MS and GC-MS and Biological Activities of Sedum sediforme (Jacq.) Pau. J. Agric. Food Chem. 2014, 62, 4601–4609. [Google Scholar] [CrossRef]
- Merighi, S.; Travagli, A.; Tedeschi, P.; Marchetti, N.; Gessi, S. Antioxidant and Antiinflammatory Effects of Epilobium parviflorum, Melilotus officinalis and Cardiospermum halicacabum Plant Extracts in Macrophage and Microglial Cells. Cells 2021, 10, 2691. [Google Scholar] [CrossRef]
- Pavić, V.; Jakovljević, M.; Molnar, M.; Jokić, S. Extraction of Carnosic Acid and Carnosol from Sage (Salvia officinalis L.) Leaves by Supercritical Fluid Extraction and Their Antioxidant and Antibacterial Activity. Plants 2019, 8, 16. [Google Scholar] [CrossRef]
- Živković, J.; Ristić, M.; Kschonsek, J.; Westphal, A.; Mihailović, M.; Filipović, V.; Böhm, V. Comparison of Chemical Profile and Antioxidant Capacity of Seeds and Oils from Salvia sclarea and Salvia officinalis. Chem. Biodivers. 2017, 14, e1700344. [Google Scholar] [CrossRef]
- Makarova, K.; Sajkowska-Kozielewicz, J.J.; Zawada, K.; Olchowik-Grabarek, E.; Ciach, M.A.; Gogolewski, K.; Dobros, N.; Ciechowicz, P.; Freichels, H.; Gambin, A. Harvest Time Affects Antioxidant Capacity, Total Polyphenol and Flavonoid Content of Polish St John’s Wort’s (Hypericum perforatum L.) Flowers. Sci. Rep. 2021, 11, 3989. [Google Scholar] [CrossRef]
- Cheraif, K.; Bakchiche, B.; Gherib, A.; Bardaweel, S.K.; Çol Ayvaz, M.; Flamini, G.; Ascrizzi, R.; Ghareeb, M.A. Chemical Composition, Antioxidant, Anti-Tyrosinase, Anti-Cholinesterase and Cytotoxic Activities of Essential Oils of Six Algerian Plants. Molecules 2020, 25, 1710. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Maggi, F.; Quassinti, L.; Bramucci, M.; Lupidi, G.; Ornano, L.; Ballero, M.; Sanna, C.; Bruno, M.; Rosselli, S.; et al. Bioactive Constituents of Juniperus turbinata Guss. from La Maddalena Archipelago. Chem. Biodivers. 2018, 15, e1800148. [Google Scholar] [CrossRef] [PubMed]
- Amer, J.; Jaradat, N.; Hattab, S.; Al-hihi, S.; Juma’a, R. Traditional Palestinian Medicinal Plant Cercis Siliquastrum (Judas Tree) Inhibits the DNA Cell Cycle of Breast Cancer – Antimicrobial and Antioxidant Characteristics. Eur. J. Integr. Med. 2019, 27, 90–96. [Google Scholar] [CrossRef]
- Nićiforović, N.; Mihailović, V.; Mašković, P.; Solujić, S.; Stojković, A.; Muratspahić, D.P. Antioxidant Activity of Selected Plant Species; Potential New Sources of Natural Antioxidants. Food Chem. Toxicol. 2010, 48, 3125–3130. [Google Scholar] [CrossRef]
- Pavlović, D.R.; Branković, S.; Kovačević, N.; Kitić, D.; Veljković, S. Comparative Study of Spasmolytic Properties, Antioxidant Activity and Phenolic Content of Arbutus unedo from Montenegro and Greece. Phytother. Res. 2011, 25, 749–754. [Google Scholar] [CrossRef]
- Topçu, G.; Ay, M.; Bilici, A.; Sarıkürkcü, C.; Öztürk, M.; Ulubelen, A. A New Flavone from Antioxidant Extracts of Pistacia Terebinthus. Food Chem. 2007, 103, 816–822. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and Limitations of Common Testing Methods for Antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef]
- Furger, C. Live Cell Assays for the Assessment of Antioxidant Activities of Plant Extracts. Antioxidants 2021, 10, 944. [Google Scholar] [CrossRef]
- Coccimiglio, J.; Alipour, M.; Jiang, Z.-H.; Gottardo, C.; Suntres, Z. Antioxidant, Antibacterial, and Cytotoxic Activities of the Ethanolic Origanum vulgare Extract and Its Major Constituents. Oxid. Med. Cell Longev. 2016, 2016, 1404505. [Google Scholar] [CrossRef]
- Esmaeili, M.A.; Alilou, M. Naringenin Attenuates CCl4 -Induced Hepatic Inflammation by the Activation of an Nrf2-Mediated Pathway in Rats. Clin. Exp. Pharmacol. Physiol. 2014, 41, 416–422. [Google Scholar] [CrossRef]
- Johnson, J.; Maher, P.; Hanneken, A. The Flavonoid, Eriodictyol, Induces Long-Term Protection in ARPE-19 Cells through Its Effects on Nrf2 Activation and Phase 2 Gene Expression. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2398–2406. [Google Scholar] [CrossRef]
- Ke, Z.; Fan, C.; Li, J.; Wang, L.; Li, H.; Tian, W.; Yu, Q. Nobiletin Intake Attenuates Hepatic Lipid Profiling and Oxidative Stress in HFD-Induced Nonalcoholic-Fatty-Liver-Disease Mice. Molecules 2023, 28, 2570. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-S.; Zhang, Y.; Liu, B.; Li, C.-B.; Wu, J.; Li, Y. Nomilin Protects against Cerebral Ischemia-Reperfusion Induced Neurological Deficits and Blood-Brain Barrier Disruption via the Nrf2 Pathway. Food Funct. 2019, 10, 5323–5332. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.-Y.; Chien, J.-C.; Tung, Y.-C.; Wu, T.-Y.; Liao, J.-A.; Wei, G.-J. Tangeretin and 4’-Demethyltangeretin Prevent Damage to Mouse Hepatocytes from Oxidative Stress by Activating the Nrf2-Related Antioxidant Pathway via an Epigenetic Mechanism. Chem. Biol. Interact. 2023, 382, 110650. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Song, C.; Chen, J.; Zhou, L.; Jiang, X.; Cao, X.; Sun, Y.; Zhang, Q. Limonin Ameliorates Acetaminophen-Induced Hepatotoxicity by Activating Nrf2 Antioxidative Pathway and Inhibiting NF-κB Inflammatory Response via Upregulating Sirt1. Phytomedicine 2020, 69, 153211. [Google Scholar] [CrossRef]
- Morquio, A.; Rivera-Megret, F.; Dajas, F. Photoprotection by Topical Application of Achyrocline satureioides (‘Marcela’). Phytother. Res. 2005, 19, 486–490. [Google Scholar] [CrossRef]
- Jurič, A.; Brčić Karačonji, I.; Žunec, S.; Katić, A.; Gašić, U.; Milojković Opsenica, D.; Kopjar, N. Protective Role of Strawberry Tree (Arbutus unedo L.) Honey against Cyto/Genotoxic Effects Induced by Ultraviolet B Radiation in Vitro. J. Apic. Res. 2024, 63, 513–522. [Google Scholar] [CrossRef]
- Mejía-Giraldo, J.C.; Henao-Zuluaga, K.; Gallardo, C.; Atehortúa, L.; Puertas-Mejía, M.A. Novel In Vitro Antioxidant and Photoprotection Capacity of Plants from High Altitude Ecosystems of Colombia. Photochem. Photobiol. 2016, 92, 150–157. [Google Scholar] [CrossRef]
- Gherboudj, O.; Boutaghane, N.; Kabouche, Z.; Djeblia, L.; Zerrougui, L.; Bekrar, M. Phytochemical Profiles and Evaluation of the Biological Potential of Ethyl Acetate and N-Butanol Fractions of the Aerial Parts of Cistus albidus L. Nat. Prod. Res. 2025, 39, 2642–2648. [Google Scholar] [CrossRef]
- Martorana, M.; Arcoraci, T.; Rizza, L.; Cristani, M.; Bonina, F.P.; Saija, A.; Trombetta, D.; Tomaino, A. In Vitro Antioxidant and in Vivo Photoprotective Effect of Pistachio (Pistacia vera L., Variety Bronte) Seed and Skin Extracts. Fitoterapia 2013, 85, 41–48. [Google Scholar] [CrossRef]
- Otto, A.I.; Riou, L.; Marionnet, C.; Mori, T.; Sarasin, A.; Magnaldo, T. Differential Behaviors toward Ultraviolet A and B Radiation of Fibroblasts and Keratinocytes from Normal and DNA-Repair-Deficient Patients1. Cancer Res. 1999, 59, 1212–1218. [Google Scholar]
- Mendiola, J.A.; Herrero, M.; Cifuentes, A.; Ibañez, E. Use of Compressed Fluids for Sample Preparation: Food Applications. J. Chromatogr. A 2007, 1152, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Karakaya, S.; Süntar, I.; Yakinci, O.F.; Sytar, O.; Ceribasi, S.; Dursunoglu, B.; Ozbek, H.; Guvenalp, Z. In Vivo Bioactivity Assessment on Epilobium Species: A Particular Focus on Epilobium angustifolium and Its Components on Enzymes Connected with the Healing Process. J. Ethnopharmacol. 2020, 262, 113207. [Google Scholar] [CrossRef]
- Nowak, A.; Zagórska-Dziok, M.; Ossowicz-Rupniewska, P.; Makuch, E.; Duchnik, W.; Kucharski, Ł.; Adamiak-Giera, U.; Prowans, P.; Czapla, N.; Bargiel, P.; et al. Epilobium angustifolium L. Extracts as Valuable Ingredients in Cosmetic and Dermatological Products. Molecules 2021, 26, 3456. [Google Scholar] [CrossRef] [PubMed]
- Stamou, P.; Mikropoulou, E.V.; Chalkiadaki, M.; Basdeki, A.; Antoniadi, L.; Poigny, S.; Halabalaki, M. Revealing the Potential of Chios Mastic Gum and Its Constituents for Cosmetic Applications through Chemical Profiling and Biological Evaluation. Cosmetics 2024, 11, 155. [Google Scholar] [CrossRef]
- Kamli, H.; Ali, A.-A.M.; Salem, Y.H.; Shaikh, A.; El-Nashar, H.A.S. Chemical Profiling and Enzyme Inhibitory Activities of Essential Oil Isolated from Pistacia khinjuk Leaves: Insights On GC-MS Analysis and Skin Aging-Relevant Enzymes. Chem. Biodivers. 2024, 21, e202302096. [Google Scholar] [CrossRef] [PubMed]
- Senol Deniz, F.S.; Orhan, I.E.; Duman, H. Profiling Cosmeceutical Effects of Various Herbal Extracts through Elastase, Collagenase, Tyrosinase Inhibitory and Antioxidant Assays. Phytochem. Lett. 2021, 45, 171–183. [Google Scholar] [CrossRef]
- Chen, Z.; Hong, N.; Yan, C.; Zheng, Z.; Xi, J.; Cao, P. The Potential of Paeonia lactiflora Pall Seeds Oil as a Pure Natural Cosmetics Raw Material: In Vitro Findings. J. Cosmet. Dermatol. 2024, 23, 1875–1883. [Google Scholar] [CrossRef]
- Quinty, V.; Colas, C.; Nasreddine, R.; Nehmé, R.; Piot, C.; Draye, M.; Destandau, E.; Da Silva, D.; Chatel, G. Screening and Evaluation of Dermo-Cosmetic Activities of the Invasive Plant Species Polygonum cuspidatum. Plants 2023, 12, 83. [Google Scholar] [CrossRef]
- Eruygur, N.; Buyukyildirim, T.; Tetik Rama, S.; Ayaz, F.; Tekin, M.; Tuzcu, M.; Akcakavak, G.; Abdullah Yilmaz, M. Phytochemical Profiling and Biological Activity of Achillea sintenisii Hub.-Mor. Chem. Biodivers. 2023, 20, e202201258. [Google Scholar] [CrossRef]
- Amer, R.I.; Ezzat, S.M.; Aborehab, N.M.; Ragab, M.F.; Mohamed, D.; Hashad, A.; Attia, D.; Salama, M.M.; El Bishbishy, M.H. Downregulation of MMP1 Expression Mediates the Anti-Aging Activity of Citrus Sinensis Peel Extract Nanoformulation in UV Induced Photoaging in Mice. Biomed. Pharmacother. 2021, 138, 111537. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-I.; Jeong, Y.-U.; Kim, J.-H.; Park, Y.-J. 3,5,6,7,8,3’,4’-Heptamethoxyflavone, a Citrus Flavonoid, Inhibits Collagenase Activity and Induces Type I Procollagen Synthesis in HDFn Cells. Int. J. Mol. Sci. 2018, 19, 620. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, F.; Zhang, L.; Yu, H.; Yu, F.; Chen, J. The Effect of Active Components from Citrus Fruits on Dentin MMPs. Arch. Oral. Biol. 2017, 83, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a Hundred Plant Extracts as Tyrosinase and Elastase Inhibitors, Two Enzymatic Targets of Cosmetic Interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Elloumi, W.; Maalej, A.; Ortiz, S.; Michel, S.; Chamkha, M.; Boutefnouchet, S.; Sayadi, S. Pistacia lentiscus L. Distilled Leaves as a Potential Cosmeceutical Ingredient: Phytochemical Characterization, Transdermal Diffusion, and Anti-Elastase and Anti-Tyrosinase Activities. Molecules 2022, 27, 855. [Google Scholar] [CrossRef]
- Tilkat, E.A.; Batibay, H.; Yener, I.; Yilmaz, P.K.; Akdeniz, M.; Kaplan, A.; Ercisli, S.; Ertas, A.; Holubec, V. Determination of Enzyme Inhibition Potential and Anticancer Effects of Pistacia khinjuk Stocks Raised in In Vitro and In Vivo Conditions. Agronomy 2021, 11, 154. [Google Scholar] [CrossRef]
- Frazão, D.F.; Martins-Gomes, C.; Steck, J.L.; Keller, J.; Delgado, F.; Gonçalves, J.C.; Bunzel, M.; Pintado, C.M.B.S.; Díaz, T.S.; Silva, A.M. Labdanum Resin from Cistus ladanifer L.: A Natural and Sustainable Ingredient for Skin Care Cosmetics with Relevant Cosmeceutical Bioactivities. Plants 2022, 11, 1477. [Google Scholar] [CrossRef]
- Schmidt, C.; Fronza, M.; Goettert, M.; Geller, F.; Luik, S.; Flores, E.M.M.; Bittencourt, C.F.; Zanetti, G.D.; Heinzmann, B.M.; Laufer, S.; et al. Biological Studies on Brazilian Plants Used in Wound Healing. J. Ethnopharmacol. 2009, 122, 523–532. [Google Scholar] [CrossRef]
- Granica, S.; Czerwińska, M.E.; Żyżyńska-Granica, B.; Kiss, A.K. Antioxidant and Anti-Inflammatory Flavonol Glucuronides from Polygonum aviculare L. Fitoterapia 2013, 91, 180–188. [Google Scholar] [CrossRef]
- Laothaweerungsawat, N.; Sirithunyalug, J.; Chaiyana, W. Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from Tropical and Mediterranean Region. Molecules 2020, 25, 1101. [Google Scholar] [CrossRef]
- Maurya, S.K.; Raj, K.; Srivastava, A.K. Antidyslipidaemic Activity of Glycyrrhiza glabra in High Fructose Diet Induced Dsyslipidaemic Syrian Golden Hamsters. Indian. J. Clin. Biochem. 2009, 24, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Kim, B.J.; Kim, J.H.; Heo, M.Y.; Kim, H.P. Biological Screening of 100 Plant Extracts for Cosmetic Use (I): Inhibitory Activities of Tyrosinase and DOPA Auto-Oxidation. Int. J. Cosmet. Sci. 1997, 19, 291–298. [Google Scholar] [CrossRef]
- Kang, M.H.; Jang, G.Y.; Ji, Y.-J.; Lee, J.H.; Choi, S.J.; Hyun, T.K.; Kim, H.D. Antioxidant and Anti-Melanogenic Activities of Heat-Treated Licorice (Wongam, Glycyrrhiza glabra × G. uralensis) Extract. Curr. Issues Mol. Biol. 2021, 43, 1171–1187. [Google Scholar] [CrossRef] [PubMed]
- Yokota, T.; Nishio, H.; Kubota, Y.; Mizoguchi, M. The Inhibitory Effect of Glabridin from Licorice Extracts on Melanogenesis and Inflammation. Pigment. Cell Res. 1998, 11, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Jung, G.D.; Yang, J.Y.; Song, E.S.; Par, J. WStimulation of Melanogenesis by Glycyrrhizin in B16 Melanoma Cells. Exp. Mol. Med. 2001, 33, 131–135. [Google Scholar] [CrossRef]
- Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A.-L.; Aligiannis, N. Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus Alba Wood. Molecules 2017, 22, 514. [Google Scholar] [CrossRef]
- Uysal, S.; Sinan, K.I.; Jekő, J.; Cziáky, Z.; Zengin, G. Chemical Characterization, Comprehensive Antioxidant Capacity, and Enzyme Inhibitory Potential of Leaves from Pistacia terebinthus L. (Anacardiaceae). Food Biosci. 2022, 48, 101820. [Google Scholar] [CrossRef]
- Gaweł-Bęben, K.; Kukula-Koch, W.; Hoian, U.; Czop, M. Characterization of Cistus × incanus L. and Cistus ladanifer L. Extracts as Potential Multifunctional Antioxidant Ingredients for Skin Protecting Cosmetics. Antioxidants 2020, 9, 202. [Google Scholar] [CrossRef]
- Zalegh, I.; Akssira, M.; Bourhia, M.; Mellouki, F.; Rhallabi, N.; Salamatullah, A.M.; Alkaltham, M.S.; Khalil Alyahya, H.; Mhand, R.A. A Review on Cistus sp.: Phytochemical and Antimicrobial Activities. Plants 2021, 10, 1214. [Google Scholar] [CrossRef]
- Ahmed, S.; Zengin, G.; Selvi, S.; Ak, G.; Cziáky, Z.; Jekő, J.; Rodrigues, M.J.; Custodio, L.; Venanzoni, R.; Flores, G.A.; et al. Characterising the Metabolomic Diversity and Biological Potentials of Extracts from Different Parts of Two Cistus Species Using UHPLC-MS/MS and In Vitro Techniques. Pathogens 2024, 13, 795. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A Comprehensive Review on Tyrosinase Inhibitors. J. Enzym. Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed]
- Ancuceanu, R.; Anghel, A.I.; Hovaneț, M.V.; Ciobanu, A.-M.; Lascu, B.E.; Dinu, M. Antioxidant Activity of Essential Oils from Pinaceae Species. Antioxidants 2024, 13, 286. [Google Scholar] [CrossRef]
- Miyazawa, M.; Tamura, N. Inhibitory Compound of Tyrosinase Activity from the Sprout of Polygonum hydropiper L. (Benitade). Biol. Pharm. Bull. 2007, 30, 595–597. [Google Scholar] [CrossRef]
- Murray, A.F.; Satooka, H.; Shimizu, K.; Chavasiri, W.; Kubo, I. Polygonum odoratum Essential Oil Inhibits the Activity of Mushroom Derived Tyrosinase. Heliyon 2019, 5, e02817. [Google Scholar] [CrossRef]
- Schmitt, M.; Alabdul Magid, A.; Hubert, J.; Etique, N.; Duca, L.; Voutquenne-Nazabadioko, L. Bio-Guided Isolation of New Phenolic Compounds from Hippocrepis Emerus Flowers and Investigation of Their Antioxidant, Tyrosinase and Elastase Inhibitory Activities. Phytochem. Lett. 2020, 35, 28–36. [Google Scholar] [CrossRef]
- Demir, S.; Koyu, H.; Yilmaz, M.A.; Tarhan, A.; Ozturk, S.B. Antityrosinase Activity and LC-MS/MS Analysis of Optimized Ultrasound-Assisted Condition Extracts and Fractions from Strawberry Tree (Arbutus unedo L.). J. Food Drug Anal. 2024, 32, 194–212. [Google Scholar] [CrossRef]
- Habachi, E.; Rebey, I.B.; Dakhlaoui, S.; Hammami, M.; Sawsen, S.; Msaada, K.; Merah, O.; Bourgou, S. Arbutus unedo: Innovative Source of Antioxidant, Anti-Inflammatory and Anti-Tyrosinase Phenolics for Novel Cosmeceuticals. Cosmetics 2022, 9, 143. [Google Scholar] [CrossRef]
- El Jemli, M.; Ezzat, S.M.; Kharbach, M.; Mostafa, E.S.; Radwan, R.A.; El Jemli, Y.; El-Guourrami, O.; Ahid, S.; Cherrah, Y.; Zayed, A.; et al. Bioassay-Guided Isolation of Anti-Inflammatory and Antinociceptive Metabolites among Three Moroccan Juniperus Leaves Extract Supported with in Vitro Enzyme Inhibitory Assays. J. Ethnopharmacol. 2024, 331, 118285. [Google Scholar] [CrossRef]
- Jegal, J.; Chung, K.W.; Chung, H.Y.; Jeong, E.J.; Yang, M.H. The Standardized Extract of Juniperus communis Alleviates Hyperpigmentation in Vivo HRM-2 Hairless Mice and in Vitro Murine B16 Melanoma Cells. Biol. Pharm. Bull. 2017, 40, 1381–1388. [Google Scholar] [CrossRef]
- Park, J.S.; Ko, K.; Kim, S.-H.; Lee, J.K.; Park, J.-S.; Park, K.; Kim, M.R.; Kang, K.; Oh, D.-C.; Kim, S.Y.; et al. Tropolone-Bearing Sesquiterpenes from Juniperus chinensis: Structures, Photochemistry and Bioactivity. J. Nat. Prod. 2021, 84, 2020–2027. [Google Scholar] [CrossRef]
- Wedel, S.; Manola, M.; Cavinato, M.; Trougakos, I.P.; Jansen-Dürr, P. Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing. Molecules 2018, 23, 1219. [Google Scholar] [CrossRef] [PubMed]
- Hipp, M.S.; Kasturi, P.; Hartl, F.U. The Proteostasis Network and Its Decline in Ageing. Nat. Rev. Mol. Cell Biol. 2019, 20, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Tundo, G.R.; Sbardella, D.; Santoro, A.M.; Coletta, A.; Oddone, F.; Grasso, G.; Milardi, D.; Lacal, P.M.; Marini, S.; Purrello, R.; et al. The Proteasome as a Druggable Target with Multiple Therapeutic Potentialities: Cutting and Non-Cutting Edges. Pharmacol. Ther. 2020, 213, 107579. [Google Scholar] [CrossRef]
- Elliott, P.J.; Zollner, T.M.; Boehncke, W.-H. Proteasome Inhibition: A New Anti-Inflammatory Strategy. J. Mol. Med. 2003, 81, 235–245. [Google Scholar] [CrossRef]
- Harer, S.L.; Bhatia, M.S.; Bhatia, N.M. Proteasome Inhibitors Mechanism; Source for Design of Newer Therapeutic Agents. J. Antibiot. 2012, 65, 279–288. [Google Scholar] [CrossRef]
- Manasanch, E.E.; Orlowski, R.Z. Proteasome Inhibitors in Cancer Therapy. Nat. Rev. Clin. Oncol. 2017, 14, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Albornoz, N.; Bustamante, H.; Soza, A.; Burgos, P. Cellular Responses to Proteasome Inhibition: Molecular Mechanisms and Beyond. Int. J. Mol. Sci. 2019, 20, 3379. [Google Scholar] [CrossRef]
- Rubinsztein, D.C.; Codogno, P.; Levine, B. Autophagy Modulation as a Potential Therapeutic Target for Diverse Diseases. Nat. Rev. Drug Discov. 2012, 11, 709–730. [Google Scholar] [CrossRef]
- Ma, J.; Teng, Y.; Huang, Y.; Tao, X.; Fan, Y. Autophagy Plays an Essential Role in Ultraviolet Radiation-Driven Skin Photoaging. Front. Pharmacol. 2022, 13, 864331. [Google Scholar] [CrossRef]
- Wang, M.; Charareh, P.; Lei, X.; Zhong, J.L. Autophagy: Multiple Mechanisms to Protect Skin from Ultraviolet Radiation-Driven Photoaging. Oxid. Med. Cell Longev. 2019, 2019, 8135985. [Google Scholar] [CrossRef]
- Yadati, T.; Houben, T.; Bitorina, A.; Shiri-Sverdlov, R. The Ins and Outs of Cathepsins: Physiological Function and Role in Disease Management. Cells 2020, 9, 1679. [Google Scholar] [CrossRef] [PubMed]
- Panwar, P.; Hedtke, T.; Heinz, A.; Andrault, P.-M.; Hoehenwarter, W.; Granville, D.J.; Schmelzer, C.E.H.; Brömme, D. Expression of Elastolytic Cathepsins in Human Skin and Their Involvement in Age-Dependent Elastin Degradation. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2020, 1864, 129544. [Google Scholar] [CrossRef]
- Son, E.D.; Shim, J.H.; Choi, H.; Kim, H.; Lim, K.M.; Chung, J.H.; Byun, S.Y.; Lee, T.R. Cathepsin G Inhibitor Prevents Ultraviolet B-Induced Photoaging in Hairless Mice via Inhibition of Fibronectin Fragmentation. Dermatology 2012, 224, 352–360. [Google Scholar] [CrossRef]
- Moon, D.O. Review of Cathepsin K Inhibitor Development and the Potential Role of Phytochemicals. Molecules 2025, 30, 91. [Google Scholar] [CrossRef] [PubMed]
- Vidal-Albalat, A.; González, F.V. Chapter 6—Natural Products as Cathepsin Inhibitors. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 50, pp. 179–213. ISBN 1572 5995. [Google Scholar]
- Kim, C.S.; Subedi, L.; Kim, S.Y.; Choi, S.U.; Kim, K.H.; Lee, K.R. Diterpenes from the Trunk of Abies holophylla and Their Potential Neuroprotective and Anti-Inflammatory Activities. J. Nat. Prod. 2016, 79, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.-W.; Feng, L.; Li, S.-M.; Liu, X.-H.; Li, Y.-L.; Wu, L.; Shen, Y.-H.; Tian, J.-M.; Zhang, X.; Liu, X.-R.; et al. Isolation, Structure, and Bioactivities of Abiesadines A–Y, 25 New Diterpenes from Abies Georgei Orr. Bioorganic Med. Chem. 2010, 18, 744–754. [Google Scholar] [CrossRef]
- Baosong, C.; Sixian, W.; Gaoqiang, L.; Li, B.; Ying, H.; Ruilin, Z.; Hongwei, L. Anti-Inflammatory Diterpenes and Steroids from Peels of the Cultivated Edible Mushroom Wolfiporia Cocos. Phytochem. Lett. 2020, 36, 11–16. [Google Scholar] [CrossRef]
- Lee, T.H.; Subedi, L.; Ha, Y.J.; Moon, G.; Kim, S.Y.; Kim, C.S. Glycosylated Constituents Isolated from the Trunk of Abies Holophylla and Their Anti-Inflammatory and Neurotrophic Activity. Phytochemistry 2021, 192, 112962. [Google Scholar] [CrossRef]
- Vitalone, A.; Allkanjari, O. Epilobium Spp: Pharmacology and Phytochemistry. Phytother. Res. 2018, 32, 1229–1240. [Google Scholar] [CrossRef]
- Shawky, E.M.; Elgindi, M.R.; Ibrahim, H.A.; Baky, M.H. The Potential and Outgoing Trends in Traditional, Phytochemical, Economical, and Ethnopharmacological Importance of Family Onagraceae: A Comprehensive Review. J. Ethnopharmacol. 2021, 281, 114450. [Google Scholar] [CrossRef]
- Granica, S.; Piwowarski, J.P.; Czerwińska, M.E.; Kiss, A.K. Phytochemistry, Pharmacology and Traditional Uses of Different Epilobium Species (Onagraceae): A Review. J. Ethnopharmacol. 2014, 156, 316–346. [Google Scholar] [CrossRef] [PubMed]
- Batovska, D. Advancing Pistacia terebinthus L. (Anacardiaceae) Research: Food Preservation, Functional Foods, and Nutraceutical Potential. Foods 2025, 14, 1245. [Google Scholar] [CrossRef]
- Winekenstädde, D.; Angelis, A.; Waltenberger, B.; Schwaiger, S.; Tchoumtchoua, J.; König, S.; Werz, O.; Aligiannis, N.; Skaltsounis, A.-L.; Stuppner, H. Phytochemical Profile of the Aerial Parts of Sedum Sediforme and Anti-Inflammatory Activity of Myricitrin. Nat. Prod. Commun. 2015, 10, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.H.A.; Elwekeel, A.; Moawad, A.; Afifi, N.; Amin, E.; Amir, D.E. Phytochemical Constituents and Biological Activity of Selected Genera of Family Crassulaceae: A Review. South. Afr. J. Bot. 2021, 141, 383–404. [Google Scholar] [CrossRef]
- Trabsa, H.; Krach, I.; Boussoualim, N.; Ouhida, S.; Arrar, L.; Baghiani, A. Evaluation of Anti-Inflammatory and Antioxidant Activities of Sedum Sediforme Extracts. Trop. J. Pharm. Res. 2020, 19, 2109–2114. [Google Scholar] [CrossRef]
- Carev, I.; Maravić, A.; Ilić, N.; Čikeš Čulić, V.; Politeo, O.; Zorić, Z.; Radan, M. UPLC-MS/MS Phytochemical Analysis of Two Croatian Cistus Species and Their Biological Activity. Life 2020, 10, 112. [Google Scholar] [CrossRef] [PubMed]
- Maggi, F.; Lucarini, D.; Papa, F.; Peron, G.; Dall’Acqua, S. Phytochemical Analysis of the Labdanum-Poor Cistus creticus Subsp. Eriocephalus (Viv.) Greuter et Burdet Growing in Central Italy. Biochem. Syst. Ecol. 2016, 66, 50–57. [Google Scholar] [CrossRef]
- Palaiogiannis, D.; Athanasiadis, V.; Chatzimitakos, T.; Mantiniotou, M.; Bozinou, E.; Makris, D.P.; Lalas, S.I. Extraction of Bioactive Compounds from Cistus creticus Leaves and Their Use in the Preparation of Yogurt Desserts. Oxygen 2024, 4, 90–107. [Google Scholar] [CrossRef]
- Idoudi, S.; Tourrette, A.; Bouajila, J.; Romdhane, M.; Elfalleh, W. The Genus Polygonum: An Updated Comprehensive Review of Its Ethnomedicinal, Phytochemical, Pharmacological Activities, Toxicology, and Phytopharmaceutical Formulation. Heliyon 2024, 10, e28947. [Google Scholar] [CrossRef]
- He, J.; Fu, L.; Shen, Y.; Teng, Y.; Huang, Y.; Ding, X.; Xu, D.; Cui, H.; Zhu, M.; Xie, J.; et al. Polygonum multiflorum Extracellular Vesicle-Like Nanovesicle for Skin Photoaging Therapy. Biomater. Res. 2024, 28, 0098. [Google Scholar] [CrossRef]
N° | Plant | Family | Part of the Plant Collected | Codes |
---|---|---|---|---|
1 | Abies cephalonica | Pinaceae | Stems and bark | COSM_1 |
2 | Achillea millefolium | Asteraceae | Inflorescences | COSM_2 |
3 | Arbutus unedo | Ericaceae | Branches and leaves | COSM_3 |
4 | Ceratonia siliqua | Fabaceae | Aerial parts | COSM_4 |
5 | Cistus parviflorus | Cistaceae | Aerial parts in full flowering | COSM_5 |
6 | Cistus salviifolius | Cistaceae | Aerial parts in flowering | COSM_6 |
7 | Epilobium dodonaei | Onagraceae | Aerial parts | COSM_7 |
8 | Epilobium parviflorum | Onagraceae | Aerial parts | COSM_8 |
9 | Eryngium amorginum | Apiaceae | Aerial parts | COSM_9 |
10 | Glycyrrhiza glabra | Fabaceae | Roots | COSM_10 |
11 | Hypericum perforatum | Guttiferae | Aerial parts | COSM_11 |
12 | Inula candida ssp. candida | Asteraceae | Aerial parts | COSM_12 |
13 | Malva sylvestris | Malvaceae | Aerial parts | COSM_13 |
14 | Melissa officinalis | Lamiaceae | Aerial parts | COSM_14 |
15 | Mentha pulegium | Lamiaceae | Aerial parts | COSM_15 |
16 | Nepeta spruneri | Lamiaceae | Whole plant | COSM_16 |
17 | Origanum dictamnus | Lamiaceae | Flowering stems | COSM_17 |
18 | Origanum majorana | Lamiaceae | Aerial parts in flowering | COSM_18 |
19 | Origanum vulgare ssp. hirtum | Lamiaceae | Aerial parts | COSM_19 |
20 | Pistacia lentiscus | Anacardiaceae | Branches and leaves | COSM_20 |
21 | Pistacia terebinthus | Anacardiaceae | Branches and leaves | COSM_21 |
22 | Sedum sediforme | Crassulaceae | Aerial parts | COSM_22 |
23 | Acantholimon graecum | Plumbaginaceae | Aerial parts in full flowering | COSM_23 |
24 | Anchusa azurea | Boraginaceae | Whole plant in full flowering | COSM_24 |
25 | Armeria canescens | Plumbaginaceae | Whole plant | COSM_25 |
26 | Artemisia absinthium | Asteraceae | Aerial parts | COSM_26 |
27 | Atractylis gummifera Β | Asteraceae | Taproots | COSM_27 |
28 | Atractylis gummifera A | Asteraceae | Aerial parts | COSM_28 |
29 | Cercis siliquastrum | Fabaceae | Aerial parts and some fruits | COSM_29 |
30 | Cistus creticus ssp. eriocephalus | Cistaceae | Aerial parts | COSM_30 |
31 | Caridothymus capitatus | Lamiaceae | Aerial parts in full flowering | COSM_31 |
32 | Cotinus coggygria | Anacardiaceae | Stems and leaves | COSM_32 |
33 | Crithmum maritimum | Apiaceae | Stems and leaves before flowering | COSM_33 |
34 | Dorycnium hirsutum | Fabaceae | Aerial parts, flowers, and few fruits | COSM_34 |
35 | Genista halacsyi | Fabaceae | Aerial parts with fruits | COSM_35 |
36 | Helianthemum salicifolium | Cistaceae | Aerial parts | COSM_36 |
37 | Hippocrepis emerus ssp. emeroides | Fabaceae | Aerial parts at the end of flowering | COSM_37 |
38 | Onosma erecta ssp. erecta | Boraginaceae | Whole plant in full flowering | COSM_38 |
39 | Paeonia mascula ssp. hellenica | Paeoniaceae | Stems and leaves (without seeds) | COSM_39 |
40 | Polygonum idaeum | Polygonaceae | Whole plant and roots | COSM_40 |
41 | Salvia officinalis | Lamiaceae | Aerial parts at the end of flowering | COSM_41 |
42 | Salvia pomifera | Lamiaceae | Aerial parts in flowering | COSM_42 |
43 | Salvia sclarea | Lamiaceae | Aerial parts in flowering | COSM_43 |
44 | Sambucus nigra | Adoxaceae | Stems, leaves and flowers | COSM_44 |
45 | Silybum marianum | Asteraceae | Aerial parts at the beginning of flowering | COSM_45 |
46 | Opuntia ficus indiga | Cactaceae | Liophilized fruits | COSM_46 |
47 | Citrus medica | Rutaceae | Liophilized fruit | COSM_47 |
48 | Ebenus cretica | Fabaceae | Aerial parts in flowering | COSM_48 |
49 | Juniperus oxycedrus ssp. deltoides | Cupressaceae | Branches and leaves | COSM_49 |
50 | Juniperus oxycedrus ssp. deltoides | Cupressaceae | Fruits | COSM_50 |
51 | Juniperus turbinata | Cupressaceae | Branches and leaves | COSM_51 |
52 | Juniperus turbinata | Cupressaceae | Fruits | COSM_52 |
Extract Code | Concentration (μg/mL) | Extract Code | Concentration (μg/mL) | Extract Code | Concentration (μg/mL) | |||
---|---|---|---|---|---|---|---|---|
DSF | HaCaT | DSF | HaCaT | DSF | HaCaT | |||
1A | 4 | 20 | 18B | 20 | 100 | 36A | 100 | 100 |
1B | 100 | 100 | 19A | 100 | 100 | 36B | 20 | 100 |
2A | 4 | 100 | 19B | 100 | 20 | 37A | 100 | 100 |
2B | 20 | 100 | 20A | 100 | 20 | 37B | 100 | 100 |
3A | 20 | 20 | 20B | 100 | 4 | 38A | 100 | 100 |
3B | 20 | 100 | 21A | 20 | 20 | 38B | 20 | 100 |
4A | 20 | 20 | 21B | 100 | 20 | 39A | 4 | 20 |
4Β | 20 | 20 | 22A | 20 | 20 | 39B | 100 | 100 |
5A | 100 | 4 | 22B | 4 | 100 | 40A | 100 | 100 |
5Β | 20 | 100 | 23A | 100 | 20 | 40B | 100 | 100 |
6A | 0.8 | 100 | 23B | 4 | 100 | 41A | 20 | 100 |
6B | 20 | 100 | 24A | 100 | 100 | 41B | 20 | 100 |
7A | 100 | 20 | 24B | 100 | 100 | 42A | 20 | 100 |
7B | 20 | 100 | 25A | 100 | 20 | 42B | 100 | 100 |
8A | 20 | 100 | 25B | 20 | 100 | 43A | 20 | 100 |
8B | 100 | 100 | 26A | 100 | 100 | 43B | 20 | 20 |
9A | 100 | 100 | 26B | 100 | 100 | 44A | 0.16 | 100 |
9B | 20 | 20 | 27A | 100 | 100 | 44B | 100 | 100 |
10A | 100 | 100 | 27B | 20 | 20 | 45A | 20 | 100 |
10B | 20 | 20 | 28A | 100 | 100 | 45B | 100 | 100 |
11A | 100 | 100 | 28B | 100 | 100 | 46A | 4 | 100 |
11B | 20 | 20 | 29A | 100 | 100 | 46B | 0.032 | 0.16 |
12A | 100 | 100 | 29B | 20 | 100 | 47A | 4 | 4 |
12B | 20 | 20 | 30A | 100 | 20 | 47B | 100 | 4 |
13A | 100 | 20 | 30B | 100 | 100 | 48A | 100 | 100 |
13B | 100 | 100 | 31A | 100 | 100 | 48B | 100 | 100 |
14A | 100 | 100 | 31B | 100 | 100 | 49A | 100 | 100 |
14B | 100 | 100 | 32A | 100 | 100 | 49B | 0.16 | 0.032 |
15A | 100 | 20 | 32B | 100 | 4 | 50A | 4 | 4 |
15B | 100 | 20 | 33A | 100 | 100 | 50B | 0.16 | 0.032 |
16A | 100 | 100 | 33B | 100 | 100 | 51A | 100 | 100 |
16B | 20 | 100 | 34A | 100 | 100 | 51B | 100 | 0.032 |
17A | 100 | 100 | 34B | 100 | 100 | 52A | 100 | 100 |
17B | 100 | 100 | 35A | 100 | 100 | 52B | 20 | 4 |
18A | 100 | 100 | 35B | 20 | 100 |
Extract Code | Inhibition (% of Control) | Extract Code | Inhibition (% of Control) | Extract Code | Inhibition (% of Control) | |||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||
1A | 27.0 | 1.5 | 19A | 61.1 | 1.8 | 37A | 105.9 | 5.3 |
1B | 105.4 | 0.9 | 19B | 80.9 | 0.6 | 37B | 98.1 | 3.9 |
2A | 62.8 | 0.9 | 20A | 51.7 | 2.1 | 38A | 71.9 | 3.2 |
2B | 102.6 | 3.3 | 20B | 102.8 | 1.2 | 38B | 88.4 | 5.7 |
3A | 45.2 | 3.9 | 21A | 47.5 | 0.6 | 39A | 76.8 | 1.9 |
3B | 109.8 | 1.2 | 21B | 75.2 | 5.3 | 39B | 99.0 | 2.8 |
4A | 31.9 | 3.3 | 22A | 26.3 | 0.6 | 40A | 15.1 | 0.6 |
4Β | 105.4 | 0.8 | 22B | 64.4 | 1.1 | 40B | 93.6 | 1.7 |
5A | 26.3 | 1.2 | 23A | 24.1 | 1.1 | 41A | 28.7 | 0.7 |
5Β | 97.9 | 3.3 | 23B | 97.3 | 1.4 | 41B | 86.6 | 4.1 |
6A | 24.4 | 0.6 | 24A | 73.1 | 3.1 | 42A | 25.2 | 0.5 |
6B | 108.7 | 0.3 | 24B | 100.5 | 2.2 | 42B | 72.6 | 3.3 |
7A | 22.0 | 1.5 | 25A | 32.8 | 0.6 | 43A | 36.4 | 2.2 |
7B | 108.3 | 0.3 | 25B | 101.3 | 1.5 | 43B | 105.4 | 1.7 |
8A | 27.9 | 2.7 | 26A | 94.8 | 0.9 | 44A | 88.0 | 5.1 |
8B | 103.2 | 3.6 | 26B | 105.3 | 1.2 | 44B | 97.6 | 0.3 |
9A | 68.5 | 2.1 | 27A | 101.1 | 1.6 | 45A | 92.9 | 1.6 |
9B | 114.5 | 0.9 | 27B | 107.6 | 0.3 | 45B | 100.9 | 5.6 |
10A | 85.1 | 0.3 | 28A | 102.3 | 0.5 | 46A | 93.2 | 10.5 |
10B | 79.3 | 1.2 | 28B | 106.2 | 0.9 | 46B | 95.8 | 0.9 |
11A | 32.9 | 0.3 | 29A | 39.7 | 0.1 | 47A | 99.9 | 4.8 |
11B | 108.7 | 0.3 | 29B | 95.7 | 1.0 | 47B | 95.1 | 3.7 |
12A | 55.0 | 0.3 | 30A | 13.2 | 0.8 | 48A | 75.8 | 2.6 |
12B | 96.2 | 1.2 | 30B | 103.7 | 1.4 | 48B | 98.7 | 4.5 |
13A | 107.1 | 3.9 | 31A | 64.7 | 0.9 | 49A | 34.6 | 1.7 |
13B | 89.9 | 1.5 | 31B | 94.0 | 1.6 | 49B | 106.8 | 1.3 |
14A | 73.6 | 1.8 | 32A | 40.0 | 0.1 | 50A | 106.4 | 2.6 |
14B | 107.5 | 1.8 | 32B | 101.8 | 1.6 | 50B | 98.4 | 3.1 |
15A | 63.8 | 1.2 | 33A | 98.6 | 2.4 | 51A | 39.2 | 1.3 |
15B | 85.1 | 1.8 | 33B | 99.1 | 0.9 | 51B | 92.4 | 8.7 |
16A | 87.7 | 2.1 | 34A | 70.1 | 1.5 | 52A | 80.2 | 3.8 |
16B | 111.7 | 1.5 | 34B | 99.9 | 3.0 | 52B | 104.1 | 14.9 |
17A | 64.0 | 0.3 | 35A | 95.6 | 0.2 | Trolox a | 18.3 | 0.6 |
17B | 80.0 | 0.3 | 35B | 98.6 | 2.0 | Vehicle | 100.0 | 7.9 |
18A | 66.5 | 0.0 | 36A | 51.8 | 5.4 | |||
18B | 101.9 | 0.3 | 36B | 93.3 | 1.0 |
(A) | ||||||||
---|---|---|---|---|---|---|---|---|
Extract Code | Inhibition (% of Control) | Extract Code | Inhibition (% of Control) | Extract Code | Inhibition (% of Control) | |||
Mean | SD | Mean | SD | Mean | SD | |||
1A | 44.9 | 0.5 | 19A | 69.8 | 2.2 | 37A | 75.1 | 0.3 |
1B | 67.5 | 1.1 | 19B | 62.4 | 2.4 | 37B | 87.8 | 2.5 |
2A | 66.4 | 1.1 | 20A | 59.9 | 2.2 | 38A | 50.7 | 1.1 |
2B | 66.2 | 0.5 | 20B | 68.4 | 0.5 | 38B | 63.4 | 1.4 |
3A | 86.7 | 0.3 | 21A | 70.5 | 1.3 | 39A | 54.1 | 4.6 |
3B | 74.9 | 2.5 | 21B | 65.4 | 1.6 | 39B | 85.4 | 4.2 |
4A | 100.6 | 1.4 | 22A | 68.6 | 0.4 | 40A | 49.9 | 0.7 |
4Β | 100.4 | 1.3 | 22B | 82.0 | 1.1 | 40B | 85.5 | 3.2 |
5A | 49.5 | 0.9 | 23A | 65.6 | 3.9 | 41A | 65.9 | 2.7 |
5Β | 95.1 | 1.3 | 23B | 64.1 | 0.6 | 41B | 47.2 | 0.3 |
6A | 64.4 | 0.8 | 24A | 95.8 | 1.9 | 42A | 51.1 | 0.6 |
6B | 94.8 | 1.1 | 24B | 94.3 | 1.9 | 42B | 55.8 | 0.9 |
7A | 74.8 | 2.6 | 25A | 103.2 | 1.8 | 43A | 87.9 | 0.5 |
7B | 75.3 | 4.3 | 25B | 98.9 | 2.5 | 43B | 48.4 | 0.9 |
8A | 77.8 | 2.2 | 26A | 94.1 | 2.9 | 44A | 45.7 | 0.7 |
8B | 79.4 | 0.2 | 26B | 51.0 | 0.5 | 44B | 77.4 | 2.9 |
9A | 54.6 | 1.0 | 27A | 50.1 | 1.6 | 45A | 63.9 | 1.8 |
9B | 98.2 | 2.0 | 27B | 51.5 | 0.7 | 45B | 92.3 | 3.3 |
10A | 52.2 | 0.4 | 28A | 49.6 | 0.9 | 46A | 54.7 | 1.6 |
10B | 50.4 | 0.7 | 28B | 48.7 | 0.7 | 46B | 55.5 | 2.0 |
11A | 51.1 | 0.2 | 29A | 51.8 | 1.1 | 47A | 97.7 | 2.1 |
11B | 100.2 | 3.3 | 29B | 91.6 | 2.0 | 47B | 47.8 | 5.1 |
12A | 97.1 | 1.7 | 30A | 54.0 | 1.4 | 48A | 45.2 | 0.9 |
12B | 84.0 | 0.4 | 30B | 70.7 | 0.8 | 48B | 46.2 | 0.5 |
13A | 78.4 | 2.1 | 31A | 48.3 | 0.9 | 49A | 96.2 | 0.7 |
13B | 78.5 | 1.2 | 31B | 103.6 | 0.5 | 49B | 40.3 | 0.8 |
14A | 66.5 | 0.9 | 32A | 109.9 | 4.3 | 50A | 99.5 | 0.7 |
14B | 76.0 | 1.0 | 32B | 93.2 | 1.6 | 50B | 89.1 | 0.5 |
15A | 68.0 | 1.2 | 33A | 64.2 | 0.4 | 51A | 96.8 | 2.0 |
15B | 85.2 | 1.1 | 33B | 79.2 | 3.4 | 51B | 42.6 | 1.1 |
16A | 59.7 | 0.9 | 34A | 51.0 | 0.7 | 52A | 42.1 | 0.4 |
16B | 71.7 | 0.7 | 34B | 79.4 | 2.6 | 52B | 83.0 | 2.1 |
17A | 58.5 | 1.6 | 35A | 63.8 | 1.5 | Trolox a | 58.8 | 1.9 |
17B | 69.5 | 4.6 | 35B | 76.5 | 2.5 | Vehicle | 100.0 | 2.3 |
18A | 70.1 | 1.4 | 36A | 65.4 | 1.3 | |||
18B | 49.8 | 0.2 | 36B | 56.8 | 1.0 | |||
(B) | ||||||||
Extract Code | Inhibition (% of Control) | Extract Code | Inhibition (% of Control) | Extract Code | Inhibition (% of Control) | |||
Mean | SD | Mean | SD | Mean | SD | |||
1A | 69.2 | 2.7 | 20A | 97.2 | 1.4 | 39A | 71.6 | 3.1 |
1B | 81.0 | 0.2 | 20B | 108.1 | 3.5 | 39B | 84.7 | 1.0 |
2A | 92.2 | 1.4 | 21A | 130.7 | 2.6 | 40A | 61.3 | 0.6 |
2B | 95.6 | 1.5 | 21B | 101.7 | 2.3 | 40B | 71.7 | 1.7 |
3A | 105.0 | 4.8 | 22A | 127.2 | 0.1 | 41A | 71.2 | 1.2 |
3B | 100.1 | 2.1 | 22B | 64.9 | 0.7 | 41B | 76.6 | 0.8 |
4A | 110.9 | 2.6 | 23A | 61.7 | 0.8 | 42A | 76.0 | 2.1 |
4Β | 99.8 | 2.6 | 23B | 77.7 | 1.0 | 42B | 71.4 | 1.7 |
5A | 83.5 | 0.6 | 24A | 51.8 | 0.2 | 43A | 73.8 | 1.4 |
5Β | 77.5 | 0.9 | 24B | 79.8 | 1.0 | 43B | 73.7 | 0.5 |
6A | 75.0 | 2.0 | 25A | 74.4 | 1.2 | 44A | 73.5 | 0.6 |
6B | 87.3 | 0.8 | 25B | 74.1 | 1.7 | 44B | 81.4 | 0.8 |
7A | 106.5 | 2.0 | 26A | 60.2 | 0.7 | 45A | 82.9 | 1.7 |
7B | 99.3 | 1.6 | 26B | 72.5 | 2.6 | 45B | 88.6 | 0.6 |
8A | 112.6 | 4.4 | 27A | 59.9 | 0.9 | 46A | 88.7 | 2.4 |
8B | 85.5 | 2.4 | 27B | 106.1 | 2.6 | 46B | 99.5 | 2.2 |
9A | 91.2 | 1.5 | 28A | 69.9 | 1.3 | 47A | 88.2 | 1.6 |
9B | 105.0 | 1.0 | 28B | 89.8 | 2.7 | 47B | 77.0 | 1.9 |
10A | 71.2 | 0.2 | 29A | 63.4 | 1.1 | 48A | 54.9 | 0.8 |
10B | 87.6 | 2.7 | 29B | 68.2 | 0.8 | 48B | 73.5 | 0.8 |
11A | 70.9 | 2.8 | 30A | 61.5 | 1.6 | 49A | 56.5 | 1.5 |
11B | 97.5 | 1.2 | 30B | 74.6 | 1.6 | 49B | 90.9 | 1.4 |
12A | 116.8 | 4.6 | 31A | 67.8 | 3.0 | 50A | 65.9 | 1.1 |
12B | 69.6 | 1.1 | 31B | 59.8 | 1.2 | 50B | 112.2 | 3.3 |
13A | 89.5 | 0.5 | 32A | 72.0 | 2.0 | 51A | 61.3 | 1.7 |
13B | 102.8 | 1.4 | 32B | 107.9 | 1.5 | 51B | 85.6 | 2.5 |
14A | 99.3 | 1.3 | 33A | 64.8 | 2.3 | 52A | 62.9 | 0.6 |
14B | 99.8 | 0.7 | 33B | 85.0 | 2.9 | 52B | 93.8 | 7.9 |
15A | 107.1 | 0.6 | 34A | 65.9 | 1.3 | NAC a | 50.3 | 1.7 |
15B | 92.5 | 0.4 | 34B | 81.6 | 1.5 | Vehicle | 100.0 | 1.5 |
16A | 95.6 | 0.4 | 35A | 74.3 | 0.3 | |||
16B | 102.3 | 2.9 | 35B | 78.4 | 1.0 | |||
17A | 97.1 | 2.0 | 36A | 64.8 | 0.9 | |||
17B | 95.7 | 1.3 | 36B | 90.4 | 0.5 | |||
18A | 89.7 | 1.3 | 37A | 90.8 | 1.2 | |||
18B | 89.3 | 1.0 | 37B | 94.1 | 0.8 | |||
19A | 105.2 | 1.5 | 38A | 57.7 | 0.5 | |||
19B | 87.6 | 0.8 | 38B | 76.1 | 1.0 |
Extract Code | % Inhibition | Extract Code | % Inhibition | Extract Code | % Inhibition | |||
---|---|---|---|---|---|---|---|---|
DSF | HaCaT | DSF | HaCaT | DSF | HaCaT | |||
1A | 41 | 14 | 18B | 7 | 18 | 36A | 5 | 4 |
1B | 7 | 0 | 19A | 12 | 6 | 36B | 4 | 0 |
2A | 10 | 0 | 19B | 2 | 3 | 37A | 5 | 11 |
2B | 0 | 0 | 20A | 33 | 7 | 37B | 0 | 7 |
3A | 62 | 8 | 20B | 0 | 0 | 38A | 6 | 9 |
3B | 16 | 7 | 21A | 43 | 8 | 38B | 0 | 7 |
4A | 17 | 8 | 21B | 0 | 0 | 39A | 4 | 9 |
4Β | 6 | 10 | 22A | 27 | 30 | 39B | 0 | 3 |
5A | 64 | 65 | 22B | 39 | 6 | 40A | 86 | 24 |
5Β | 5 | 18 | 23A | 48 | 29 | 40B | 19 | 0 |
6A | 28 | 32 | 23B | 0 | 0 | 41A | 21 | 2 |
6B | 0 | 5 | 24A | 0 | 4 | 41B | 11 | 3 |
7A | 14 | 36 | 24B | 5 | 1 | 42A | 15 | 7 |
7B | 0 | 16 | 25A | 19 | 9 | 42B | 13 | 6 |
8A | 88 | 22 | 25B | 19 | 0 | 43A | 18 | 8 |
8B | 7 | 21 | 26A | 29 | 0 | 43B | 10 | 1 |
9A | 2 | 14 | 26B | 0 | 0 | 44A | 14 | 4 |
9B | 0 | 13 | 27A | 7 | 0 | 44B | 8 | 12 |
10A | 0 | 7 | 27B | 7 | 2 | 45A | 13 | 3 |
10B | 2 | 1 | 28A | 16 | 13 | 45B | 8 | 3 |
11A | 56 | 12 | 28B | 3 | 8 | 46A | 7 | 5 |
11B | 4 | 6 | 29A | 26 | 14 | 46B | 6 | 0 |
12A | 0 | 7 | 29B | 33 | 9 | 47A | 5 | 4 |
12B | 14 | 0 | 30A | 54 | 15 | 47B | 0 | 5 |
13A | 9 | 14 | 30B | 0 | 7 | 48A | 13 | 7 |
13B | 9 | 19 | 31A | 6 | 5 | 48B | 0 | 4 |
14A | 8 | 7 | 31B | 0 | 7 | 49A | 28 | 0 |
14B | 0 | 12 | 32A | 7 | 0 | 49B | 6 | 0 |
15A | 33 | 14 | 32B | 0 | 5 | 50A | 7 | 0 |
15B | 2 | 8 | 33A | 27 | 5 | 50B | 0 | 1 |
16A | 17 | 17 | 33B | 6 | 1 | 51A | 13 | 0 |
16B | 7 | 17 | 34A | 11 | 6 | 51B | 0 | 0 |
17A | 38 | 38 | 34B | 0 | 3 | 52A | 9 | 0 |
17B | 13 | 38 | 35A | 23 | 0 | 52B | 6 | 0 |
18A | 18 | 18 | 35B | 0 | 1 |
Extract Code | Inhibition (% of Control) | |
---|---|---|
Mean | SD | |
1A | 23.3 | 2.1 |
2A | 9.7 | 2.7 |
3A | 35.1 | 2.2 |
4A | 18.9 | 9.7 |
5A | 31.2 | 3.1 |
7A | 45.8 | 3.7 |
8A | 26.7 | 2.6 |
10A | 3.3 | 6.7 |
20A | 42.1 | 3.3 |
21A | 40.2 | 2.0 |
30A | 1.2 | 1.7 |
39A | 22.1 | 3.7 |
40A | 21.0 | 10.8 |
47A | 18.3 | 9.9 |
49A | 22.3 | 2.1 |
50A | 19.1 | 4.8 |
51A | 27.0 | 1.3 |
EGCG b | 92.2 | 0.1 |
Extract Code | Inhibition (% of Control) | |
---|---|---|
Mean | SD | |
5A | 25.5 | 5.7 |
15A | 2.0 | 0.2 |
15B | 6.0 | 1.0 |
16A | 9.0 | 1.0 |
17A | 1.0 | 0.1 |
17B | 4.0 | 1.0 |
18A | 4.0 | 0.4 |
18B | 6.0 | 0.2 |
19A | 17.0 | 1.0 |
19B | 9.0 | 1.0 |
20A | 60.0 | 0.3 |
20B | 7.0 | 0.1 |
21A | 45.0 | 0.1 |
21B | 7.0 | 0.3 |
22A | 24.0 | 1.0 |
22B | 1.0 | 0.1 |
23A | 4.0 | 1.0 |
23B | 3.0 | 0.3 |
24A | 4.0 | 1.0 |
25A | 2.0 | 0.4 |
25B | 3.0 | 1.0 |
26A | 3.0 | 0.4 |
26B | 6.0 | 1.3 |
28A | 21.0 | 11.4 |
40A | 24.0 | 0.1 |
46A | 2.0 | 0.2 |
50A | 7.0 | 2.0 |
MeO-Suc-AAPV-CMK b | 97.0 | 3.0 |
Extract Code | Inhibition (% of Control) | Extract Code | Inhibition (% of Control) | Extract Code | Inhibition (% of Control) | |||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||
1A | 62.1 | 1.3 | 20A | 74.9 | 0.1 | 39A | a | |
1B | a | 20B | 16.4 | 0.2 | 39B | a | ||
2A | 7.2 | 0.1 | 21A | 65.2 | 1.5 | 40A | 52.7 | 1.5 |
2B | a | 21B | 51.7 | 1 | 40B | a | ||
3A | 41.4 | 2.9 | 22A | 65.3 | 0.8 | 41A | 20.5 | 0.3 |
3B | 2.7 | 0.04 | 22B | a | 41B | 30.8 | 1.2 | |
4A | 28.8 | 0.2 | 23A | 34.2 | 0.2 | 42A | 32.7 | 0.2 |
4Β | a | 23B | 8.1 | 0.2 | 42B | 16.4 | 0.3 | |
5A | 56.1 | 2.2 | 24A | 22.8 | 0.2 | 43A | 9.8 | 0.7 |
5Β | 4.7 | 0.03 | 24B | a | 43B | a | ||
6A | 7.1 | 0.2 | 25A | 41.1 | 0.4 | 44A | 14.6 | 0.6 |
6B | a | 25B | 7.5 | 0.4 | 44B | a | ||
7A | a | 26A | 12.2 | 0.1 | 45A | a | ||
7B | a | 26B | a | 45B | a | |||
8A | a | 27A | a | 46A | a | |||
8B | a | 27B | a | 46B | a | |||
9A | a | 28A | 3 | 0.03 | 47A | 5.1 | 0.04 | |
9B | a | 28B | a | 47B | a | |||
10A | a | 29A | 22.3 | 2.2 | 48A | 20.8 | 0.02 | |
10B | 99.1 | 0.2 | 29B | 2.5 | 0.1 | 48B | 23.8 | 0.4 |
11A | 3.6 | 0.16 | 30A | 69.3 | 5.8 | 49A | 47.6 | 0.1 |
11B | a | 30B | a | 49B | 23.5 | 0.3 | ||
12A | 6.2 | 0.24 | 31A | 13.1 | 0.16 | 50A | a | |
12B | a | 31B | a | 50B | 8.3 | 0.2 | ||
13A | 2.7 | 0.2 | 32A | 0.2 | 0.01 | 51A | 49.3 | 0.1 |
13B | a | 32B | a | 51B | 31.8 | 1.9 | ||
14A | 20 | 0.2 | 33A | a | 52A | 11.6 | 0.7 | |
14B | a | 33B | a | 52B | 5.4 | 0.1 | ||
15A | 16.8 | 0.1 | 34A | 30.7 | 0.7 | Kojic acid b | 89.8 | 1.4 |
15B | a | 34B | a | |||||
16A | 6.4 | 0.1 | 35A | 10.7 | 0.1 | |||
16B | a | 35B | a | |||||
17A | 18.1 | 0.2 | 36A | a | ||||
17B | 1.9 | 0.1 | 36B | 5.6 | 0.2 | |||
18A | 15.8 | 0.7 | 37A | 64.3 | 0.5 | |||
18B | 33.6 | 0.6 | 37B | 60.7 | 0.6 | |||
19A | 15.9 | 0.8 | 38A | 5.5 | 0.2 | |||
19B | a | 38B | a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pratsinis, H.; Gianniou, D.D.; Ringele, G.B.L.; Agalou, A.; Fotopoulou, A.; Louka, X.P.; Nastos, C.; Kalpoutzakis, E.; Argyropoulou, A.; Michailidis, D.; et al. Screening of a Plant Extract Library from the Greek Flora for Biological Activities Related to Anti-Aging Applications. Antioxidants 2025, 14, 824. https://doi.org/10.3390/antiox14070824
Pratsinis H, Gianniou DD, Ringele GBL, Agalou A, Fotopoulou A, Louka XP, Nastos C, Kalpoutzakis E, Argyropoulou A, Michailidis D, et al. Screening of a Plant Extract Library from the Greek Flora for Biological Activities Related to Anti-Aging Applications. Antioxidants. 2025; 14(7):824. https://doi.org/10.3390/antiox14070824
Chicago/Turabian StylePratsinis, Harris, Despoina D. Gianniou, Gabriela Belén Lemus Ringele, Adamantia Agalou, Asimina Fotopoulou, Xanthippi P. Louka, Christos Nastos, Eleftherios Kalpoutzakis, Aikaterini Argyropoulou, Dimitris Michailidis, and et al. 2025. "Screening of a Plant Extract Library from the Greek Flora for Biological Activities Related to Anti-Aging Applications" Antioxidants 14, no. 7: 824. https://doi.org/10.3390/antiox14070824
APA StylePratsinis, H., Gianniou, D. D., Ringele, G. B. L., Agalou, A., Fotopoulou, A., Louka, X. P., Nastos, C., Kalpoutzakis, E., Argyropoulou, A., Michailidis, D., Theodoridi, A., Eleftheriadou, I., Papadopoulou, A., Gumeni, S., Beteinakis, S., Karamanou, K., Mavrogonatou, E., Stavropoulos, G., Beis, D., ... Kletsas, D. (2025). Screening of a Plant Extract Library from the Greek Flora for Biological Activities Related to Anti-Aging Applications. Antioxidants, 14(7), 824. https://doi.org/10.3390/antiox14070824