Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis
Abstract
1. Introduction
2. Review of Literature
2.1. Tree Nuts
2.1.1. Walnuts
2.1.2. Almonds
2.1.3. Pistachio
2.1.4. Pecan
2.1.5. Peanuts
2.1.6. Cashew
2.1.7. Kola Nut
2.1.8. Bitter Kola
Nut Type | Main Fatty Acids | Key Volatile Compounds | Notable Nutrients | References |
---|---|---|---|---|
Almond | Oleic, linoleic, palmitic | Hexanal, benzaldehyde, 2-pentylfuran | Vitamin E, magnesium, fiber, protein | [24,90,91,92] |
Cashew | Oleic, linoleic, palmitic | Hexanal, 2-heptanone, limonene | Copper, iron, magnesium, protein | [24,92,93,94] |
Peanut | Oleic, linoleic, palmitic | Hexanal, pyrazines, alcohols | Folate, niacin, protein, magnesium | [24,60,92,95,96] |
Pistachio | Oleic, linoleic, palmitic | Linalool, hexanal, α-pinene | Vitamin B6, potassium, antioxidants | [24,92,97,98,99,100] |
Walnut | Linoleic, linolenic, Oleic | Hexanal, methanol, juglone | Omega-3, polyphenols, magnesium | [24,91,92,101,102] |
Bitter Kola | Linoleic, palmitic, stearic | Camphene, limonene, borneol | Garcinianin, flavonoids, alkaloids, antioxidants | [103,104,105,106,107,108] |
Kolanut | Oleic, linoleic, stearic | Theobromine, caffeine, limonene | Caffeine, theobromine, tannins | [103,109,110,111] |
Pecan | Oleic, linoleic, palmitic | Hexanal, hexanol, heptanol, octanal | Manganese, magnesium phosporus, zinc, thiamine | [24,92,112,113] |
3. Fatty Acid and Volatile Compounds Composition of Selected Nuts
3.1. Fatty Acids
3.2. Volatile Compounds
4. Analytical Techniques for Studying Fatty Acids and Volatiles
4.1. Techniques for Fatty Acid Analysis
4.1.1. Gas Chromatography–Mass Spectrometry (GC-MS)
4.1.2. High-Performance Liquid Chromatography
4.2. Techniques for Volatile Compound Analysis
4.2.1. Headspace Analysis
4.2.2. Solid-Phase Microextraction (SPME)
4.2.3. GC-MS for Volatile Profiling
4.3. Emerging Analytical Tools
4.4. Role of Artificial Intelligence in Lipidomics
Extraction Technique | Principle | Application | References |
---|---|---|---|
Soxhlet extraction | Continuous solvent reflux to extract lipids. | Used for total fat extraction before FA analysis. | [193,194,195] |
Folch/Bligh and Dyer’s method | A biphasic solvent system is used to extract lipids. The nonpolar solvent extracts the lipids, while the polar solvent breaks the bonds between the lipids and water-soluble components, thus allowing more lipids to be extracted. | Used to extract both polar and nonpolar lipids. | [195] |
Supercritical fluid extraction (SFE) | Uses supercritical CO2 for solvent-free lipid extraction. The supercritical CO2 dissolves and separates the lipids from the sample based on the unique properties of each targeted compound, thus fractionating the compounds as they are extracted. | Used to obtain high-purity lipid extraction without solvent contamination. | [147,195,196,197,198,199,200,201] |
Solid-phase extraction (SPE) | A solid phase (a sorbent) is used to selectively extract the analyte of interest, such as lipids or volatiles, before eluting them from the sorbent using a suitable solvent. | Used to effectively extract and purify FAs before further profiling. | [202] |
Headspace solid-phase microextraction (HS-SPME) | Volatile compounds are adsorbed by a coated fiber in the headspace of the sample. | Used to extract volatiles for further profiling. | [24,102,203] |
Solvent-assisted flavor evaporation (SAFE) | High vacuum is used to extract volatiles while preventing thermal degradation. | Used to extract heat-sensitive volatiles. | [204,205] |
Steam distillation and solvent extraction (SDE) | Volatiles are distilled with steam and extracted with an organic solvent. | Used to extract volatiles for further profiling. | [132,206,207] |
Stir bar sorptive extraction (SBSE) | Lipids or volatiles are extracted based on the sorptive extraction principle using a coated stir bar. The stir bar is coated with polymers such as polydimethylsiloxane (PDMS). | Used to extract lipids or volatiles for further profiling. | [208,209] |
Identification and Quantification Technique | Principle | Application | References |
---|---|---|---|
Gas chromatography–flame ionization detection (GC-FID) | The lipids are separated based on their boiling points using gas chromatography; then, they are identified and quantified by passing them through a hydrogen flame. The compounds ionize in this flame, and they produce a current based on their concentration. | Used to quantify total and individual fatty acids in nuts. | [20,97,123,147,151,210] |
Gas chromatography–mass spectrometry (GC-MS) | The volatiles/lipids are separated based on their boiling points using gas chromatography; then, they are identified and quantified using mass spectrometry-based on the mass-to-charge ratio of the compounds. | Used for detailed fatty acid profiling and as the primary method for nut aroma and volatile analysis. | [25,96,100,102,142,145,146,150,157,191,211] |
High-performance liquid chromatography (HPLC) | Used for liquid samples. The compounds are separated based on their affinities for the column’s stationary phase as they are carried through it using a mobile phase; they are then identified and quantified using a mass spectrometer. | Used to analyze fatty acids without derivatization. | [212,213,214] |
Gas chromatography–olfactometry (GC-O) | Volatiles are separated using a gas chromatograph and passed through an olfactometric port where trained humans can sniff and identify the odor. | Used for aroma analysis and profiling | [215,216] |
Proton transfer reaction mass spectrometry (PTR-MS) | Volatiles are detected through the ionization of the compounds using proton transfer from hydronium ions. The ionized compounds are then identified and quantified using a mass spectrometer. | Used to identify and quantify the volatile compounds responsible for the aroma of nuts. | [217,218] |
5. Health Effects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- George, E.S.; Daly, R.M.; Tey, S.L.; Brown, R.; Wong, T.H.T.; Tan, S.Y. Perspective: Is It Time to Expand Research on “Nuts” to Include “Seeds”? Justifications and Key Considerations. Adv. Nutr. 2022, 13, 1016. [Google Scholar] [CrossRef] [PubMed]
- Curiel-Maciel, N.F.; Arreola-Ávila, J.G.; Esparza-Rivera, J.R.; Luna-Zapién, E.A.; Minjares-Fuentes, J.R.; Sierra-Campos, E.; Meza-Velázquez, J.A. Nutritional Quality, Fatty Acids Content and Antioxidant Capacity of Pecan Nut Fruits from Criolla and Improved Walnut Varieties. Not. Bot. Horti Agrobot. 2021, 49, 12021. [Google Scholar] [CrossRef]
- Bailey, H.M.; Stein, H.H. Raw and Roasted Pistachio Nuts (Pistacia vera L.) Are “good” Sources of Protein Based on Their Digestible Indispensable Amino Acid Score as Determined in Pigs. J. Sci. Food Agric. 2020, 100, 3878–3885. [Google Scholar] [CrossRef] [PubMed]
- Lutz, M.; Luna, L. Nuts and Body Weight—An Overview. J. Nutr. Health Sci. 2016, 3, 1. [Google Scholar] [CrossRef]
- USDA Food Search | USDA FoodData Central. Available online: https://fdc.nal.usda.gov/food-search?type=Foundation&query=nuts&SFFoodCategory=Nut%20and%20Seed%20Products (accessed on 4 May 2025).
- Balakrishna, R.; Bjørnerud, T.; Bemanian, M.; Aune, D.; Fadnes, L.T. Consumption of Nuts and Seeds and Health Outcomes Including Cardiovascular Disease, Diabetes and Metabolic Disease, Cancer, and Mortality: An Umbrella Review. Adv. Nutr. 2022, 13, 2136. [Google Scholar] [CrossRef]
- Hayes, D.G. Oils and Their Use Beyond the Food Industry. In Oil and Oilseed Processing: Opportunities and Challenges; Wiley: Hoboken, NJ, USA, 2021; pp. 119–148. [Google Scholar] [CrossRef]
- GVR. Nuts Market Size, Share & Trends Analysis Report By Product (Almonds, Peanuts, Cashew, Walnuts, Hazelnuts, Pistachios, And Others), By Distribution Channel (Offline, Online), By Region, And Segment Forecasts, 2023–2030; Grand View Research, Inc.: San Francisco, CA, USA, 2022. [Google Scholar]
- INC. Nuts and Dried Fruits Statistical Yearbook 2022/2023; International Nuts and Dried Fruits Counci: Reus, Spain, 2023. [Google Scholar]
- Grosso, G.; Yang, J.; Marventano, S.; Micek, A.; Galvano, F.; Kales, S.N. Nut Consumption on All-Cause, Cardiovascular, and Cancer Mortality Risk: A Systematic Review and Meta-Analysis of Epidemiologic Studies. Am. J. Clin. Nutr. 2015, 101, 783–793. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.B.; Clifton, P.M. Benefits of Nut Consumption on Insulin Resistance and Cardiovascular Risk Factors: Multiple Potential Mechanisms of Actions. Nutrients 2017, 9, 1271. [Google Scholar] [CrossRef]
- Chen, G.C.; Zhang, R.; Martínez-González, M.A.; Zhang, Z.L.; Bonaccio, M.; Van Dam, R.M.; Qin, L.Q. Nut Consumption in Relation to All-Cause and Cause-Specific Mortality: A Meta-Analysis 18 Prospective Studies. Food Funct. 2017, 8, 3893–3905. [Google Scholar] [CrossRef]
- De Souza, R.J.; Dehghan, M.; Mente, A.; Bangdiwala, S.I.; Ahmed, S.H.; Alhabib, K.F.; Altuntas, Y.; Basiak-Rasała, A.; Dagenais, G.R.; Diaz, R.; et al. Association of Nut Intake with Risk Factors, Cardiovascular Disease, and Mortality in 16 Countries from 5 Continents: Analysis from the Prospective Urban and Rural Epidemiology (PURE) Study. Am. J. Clin. Nutr. 2020, 112, 208–219. [Google Scholar] [CrossRef]
- Kim, Y.; Keogh, J.; Clifton, P.M. Nuts and Cardio-Metabolic Disease: A Review of Meta-Analyses. Nutrients 2018, 10, 1935. [Google Scholar] [CrossRef]
- Coates, A.; Hill, A.; Tan, S. Nuts and Cardiovascular Disease Prevention. Curr. Atheroscler. Rep. 2018, 20, 48. [Google Scholar] [CrossRef] [PubMed]
- Nezhad, M.J.Z.; Aghasadeghi, K.; Hakimi, H.; Yarmohammadi, H.; Nikaein, F. The Effect of Walnut Oil Consumption on Blood Sugar in Patients with Diabetes Mellitus Type 2. Int. J. Endocrinol. Metab. 2016, 14, e34889. [Google Scholar] [CrossRef]
- Becerra-Tomás, N.; Paz-Graniel, I.; Hernández-Alonso, P.; Jenkins, D.J.A.; Kendall, C.W.C.; Sievenpiper, J.L.; Salas-Salvadó, J. Nut Consumption and Type 2 Diabetes Risk: A Systematic Review and Meta-Analysis of Observational Studies. Am. J. Clin. Nutr. 2021, 113, 960–971. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, Y.; Ding, Y.; Shan, Z.; Chen, S.; Yu, M.; Hu, F.B.; Liu, L. Nut Consumption and Risk of Type 2 Diabetes, Cardiovascular Disease, and All-Cause Mortality: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2014, 100, 256–269. [Google Scholar] [CrossRef]
- Ros, E.; Mataix, J. Fatty Acid Composition of Nuts–Implications for Cardiovascular Health. Br. J. Nutr. 2006, 96 (Suppl. S2), S29–S35. [Google Scholar] [CrossRef]
- Kesen, S.; Amanpour, A.; Selli, S. Comparative Evaluation of the Fatty Acids and Aroma Compounds in Selected Iranian Nut Oils. Eur. J. Lipid Sci. Technol. 2018, 120, 1800152. [Google Scholar] [CrossRef]
- Levent, O. A Detailed Comparative Study on Some Physicochemical Properties, Volatile Composition, Fatty Acid, and Mineral Profile of Different Almond (Prunus dulcis L.) Varieties. Horticulturae 2022, 8, 488. [Google Scholar] [CrossRef]
- Memon, N.N. Nutritional Characteristics (Fatty Acid Profile, Proximate Composition and Dietary Feature) of Selected Nuts Available in Local Market. Pak. J. Anal. Environ. Chem. 2019, 20, 39–46. [Google Scholar] [CrossRef]
- Murley, T.; Kelly, B.; Adhikari, J.; Reid, W.; Koppel, K. A Comparison of Fatty Acid and Sensory Profiles of Raw and Roasted Pecan Cultivars. J. Food Sci. 2020, 85, 2665–2672. [Google Scholar] [CrossRef]
- Valdés García, A.; Sánchez Romero, R.; Juan Polo, A.; Prats Moya, S.; Maestre Pérez, S.E.; Beltrán Sanahuja, A. Volatile Profile of Nuts, Key Odorants and Analytical Methods for Quantification. Foods 2021, 10, 1611. [Google Scholar] [CrossRef] [PubMed]
- Machova, M.; Bajer, T.; Silha, D.; Ventura, K.; Bajerova, P. Volatiles Composition and Antimicrobial Activities of Areca Nut Extracts Obtained by Simultaneous Distillation-Extraction and Headspace Solid-Phase Microextraction. Molecules 2021, 26, 7422. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.; Beltran, A.; Karabagias, I.; Badeka, A.; Kontominas, M.G.; Carmen Garrigos, M. Monitoring the Oxidative Stability and Volatiles in Blanched, Roasted and Fried Almonds under Normal and Accelerated Storage Conditions by DSC, Thermogravimetric Analysis and ATR-FTIR. Eur. J. Lipid Sci. Technol. 2015, 117, 1199–1213. [Google Scholar] [CrossRef]
- Sheikh, M.A.; Saini, C.S.; Sharma, H.K. Antioxidant Potential, Anti-Nutritional Factors, Volatile Compounds and Phenolic Composition of Microwave Heat-Treated Plum (Prunus domestica. L.) Kernels: An Analytical Approach. Br. Food J. 2022, 124, 3236–3256. [Google Scholar] [CrossRef]
- Grierson, A.J.C.; Long, D.G. Flora of Bhutan: Including a Record of Plants from Sikkim, 1st ed.; Royal Botanic Garden: Edinburgh, UK, 1983; Volume 1, ISBN 9780950427010. [Google Scholar]
- INC. Nuts and Dried Fruits Statistical Yearbook 2024; International Nuts and Dried Fruits Council: Reus, Spain, 2024. [Google Scholar]
- Aranceta, J.; Pérez Rodrigo, C.; Naska, A.; Vadillo, V.R.; Trichopoulou, A. Nut Consumption in Spain and Other Countries. Br. J. Nutr. 2006, 96 (Suppl. S2), S3–S11. [Google Scholar] [CrossRef]
- Jenab, M.; Sabaté, J.; Slimani, N.; Ferrari, P.; Mazuir, M.; Casagrande, C.; Deharveng, G.; Tjønneland, A.; Olsen, A.; Overvad, K.; et al. Consumption and Portion Sizes of Tree Nuts, Peanuts and Seeds in the European Prospective Investigation into Cancer and Nutrition (EPIC) Cohorts from 10 European Countries. Br. J. Nutr. 2006, 96, S12–S23. [Google Scholar] [CrossRef] [PubMed]
- The Observatory of Economic Complexity Walnuts with Shell (HS: 080231) Product Trade, Exporters and Importers. Available online: https://oec.world/en/profile/hs/walnuts-with-shell (accessed on 27 January 2025).
- Böhringer, F. Walnut Shell Inside Its Green Husk [Image]; Licensed under CC BY-SA 2.5.20. September 2008. Available online: https://commons.wikimedia.org/wiki/File:Juglans_regia_Echte_Walnussfrucht_2.jpg (accessed on 4 May 2025).
- Toe River Club Black Walnut (Juglans nigra). Available online: https://sites.duke.edu/toeriverclub/flora/trees/ (accessed on 6 June 2025).
- Batsch, A.J.G.K. Prunus Amygdalus. In Beytrage und Entwurfe zur Pragmatischen Geschicte der Drey Natur-Reiche Nach Ihren Verwandtschaften… Gewachsreich; Industrie Comptoir: Jena, Germany, 1801; Volume 1, p. 30. [Google Scholar]
- Rohrer, J.R. Feddes Repert: Prunus dulcis. In Flora of North America; Flora of North America Association: Point Arena, CA, USA, 1967; Volume 9, p. 372. [Google Scholar]
- Nikolaus, J. Almonds in International Cuisines and Cultures. Available online: https://www.confettitravelcafe.com/almonds-in-international-cuisines-and-cultures/ (accessed on 3 February 2025).
- The Observatory of Economic Complexity Almonds with Shell (HS: 080211) Product Trade, Exporters and Importers. Available online: https://oec.world/en/profile/hs/almonds-with-shell (accessed on 3 February 2025).
- Google Image Result Almond in Shell with Leaves. Available online: https://www.google.com/imgres?imgurl=https://media.istockphoto.com/id/939391834/photo/almonds-on-the-tree.jpg?s%3D612x612%26w%3D0%26k%3D20%26c%3DGhAnH2qteSpMjW84SpBbQiKAmfgJXXo-90MGT5V9yzk%3D&tbnid=q6GCKncdWm0F-M&vet=1&imgrefurl=https://www.istockphoto.com/photos/almonds-in-shell-with-leaf&docid=aJXRDGmkr3B-TM&w=612&h=406&source=sh/x/im/m1/1&kgs=69aa651ebc458546 (accessed on 6 June 2025).
- Leidus, I. Almond. Available online: https://en.wikipedia.org/wiki/Almond (accessed on 6 June 2025).
- WFO. Pistacia vera L. Available online: https://www.worldfloraonline.org/taxon/wfo-0000393766 (accessed on 3 February 2025).
- Kew Science. Pistacia vera L. Available online: https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:70280-1 (accessed on 3 February 2025).
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-Based Milk Alternatives an Emerging Segment of Functional Beverages: A Review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef]
- Mateos, R.; Salvador, M.D.; Fregapane, G.; Goya, L. Why Should Pistachio Be a Regular Food in Our Diet? Nutrients 2022, 14, 3207. [Google Scholar] [CrossRef]
- The Observatory of Economic Complexity Nuts, Edible: Pistachios, Fresh or Dried, in Shell (HS: 080251) Product Trade, Exporters and Importers. Available online: https://oec.world/en/profile/hs/nuts-edible-pistachios-fresh-or-dried-in-shell (accessed on 4 February 2025).
- Pixabay. Pistachio Seeds Shelled—Free Photo. Available online: https://pixabay.com/photos/pistachio-seeds-shelled-oilseeds-7574180/ (accessed on 28 June 2025).
- Pixabay. Pistachios on Pistachio Tree—Free Photo. Available online: https://pixabay.com/photos/pistachios-pistachio-tree-tree-1540134/ (accessed on 28 June 2025).
- WFO. Carya illinoinensis (Wangenh.) K.Koch. Available online: https://www.worldfloraonline.org/taxon/wfo-0000588763 (accessed on 5 February 2025).
- Wangenheim, F.A.J.; Koch, K.H.E. Carya illinoinensis. In Dendrologie. Bäume, Sträucher und Halbsträucher, welche in Mittel- und Nord-Europa im Freien kultivirt werden. Kritisch Beleuchtet von Karl Koch; Ferdinand Enke: Erlangen, Germany, 1869; Volume 1, p. 593. [Google Scholar]
- Stone, D.E. Dendrologie: Carya illinoinensis. In Flora of North America; Flora of North America Association: Point Arena, CA, USA, 1869; p. 3. [Google Scholar]
- Prasad, R.B.N. Walnuts and Pecans. In Encyclopedia of Food Sciences and Nutrition; Academic Press: Cambridge, MA, USA, 2003; pp. 6071–6079. [Google Scholar]
- Carunchia, M.; Wang, L.; Han, J.H. The Use of Antioxidants in the Preservation of Snack Foods. In Handbook of Antioxidants for Food Preservation; Woodhead Publishing: Cambridge, UK, 2015; pp. 447–474. ISBN 9781782420972. [Google Scholar]
- Du, C. Chinese Consumer Preferences for and Attitudes Towards Pecans; Oklahoma State University: Oklahoma, OK, USA, 2020. [Google Scholar]
- Pixabay. Pecan Toasted Nuts Candied—Free Photo. Available online: https://pixabay.com/photos/pecan-toasted-nuts-candied-nuts-1090266/ (accessed on 28 June 2025).
- Pixabay. Pecan Tree Pecans Agriculture—Free Photo. Available online: https://pixabay.com/photos/pecan-tree-pecans-agriculture-grove-186328/ (accessed on 28 June 2025).
- WFO. Arachis hypogaea L. Available online: https://www.worldfloraonline.org/taxon/wfo-0000174378 (accessed on 11 February 2025).
- Linnaeus, C. Arachis hypogaea. In Species Plantarum; Laurentii Salvii: Stockholm, Sweden, 1753; Volume 2, p. 741. [Google Scholar]
- Kline, M. Manufacturing Foods with Peanut Ingredients. In Peanuts: Genetics, Processing, and Utilization; AOCS Press: Urbana, IL, USA, 2016; pp. 429–445. ISBN 9781630670382. [Google Scholar]
- Rachaputi, R.C.N.; Wright, G. Peanuts, Overview; Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Davis, J.P.; Dean, L.L. Peanut Composition, Flavor and Nutrition. In Peanuts: Genetics, Processing, and Utilization; AOCS Press: Urbana, IL, USA, 2016; pp. 289–345. ISBN 9781630670382. [Google Scholar]
- Arya, S.S.; Salve, A.R.; Chauhan, S. Peanuts as Functional Food: A Review. J. Food Sci. Technol. 2015, 53, 31. [Google Scholar] [CrossRef]
- The Observatory of Economic Complexity Ground Nuts (HS: 1202) Product Trade, Exporters and Importers. Available online: https://oec.world/en/profile/hs/ground-nuts (accessed on 12 February 2025).
- Hassani, N. How to Grow and Care for Peanut Plants. Available online: https://www.thespruce.com/peanut-plant-profile-4797389 (accessed on 6 June 2025).
- FreePik. Peanut Pods Photos—Free Photo. Available online: https://www.freepik.com/photos/peanut-pods (accessed on 28 June 2025).
- WFO. Anacardium occidentale L. Available online: https://www.worldfloraonline.org/taxon/wfo-0000533072 (accessed on 12 February 2025).
- DeFilipps, R.A.; Krupnick, G.A. The Medicinal Plants of Myanmar. PhytoKeys 2018, 102, 1–341. [Google Scholar] [CrossRef]
- Linnaeus, C. Anacardium occidentale. In Species Plantarum; Laurentii Salvii: Stockholm, Sweden, 1753; Volume 1, p. 383. [Google Scholar]
- Cashews. Real Food Encyclopedia, FoodPrint, GRACE Communications Foundation. 2025. Available online: https://foodprint.org/real-food/cashews/ (accessed on 30 April 2025).
- Azam-Ali, S.H.; Judge, E.C. Small-Scale Cashew Nut Processing; Food and Agricultural Organisation: Rome, Italy, 2001; Available online: https://openknowledge.fao.org/server/api/core/bitstreams/617adfe0-05b6-4bbc-beec-0e310c074b21/content (accessed on 4 May 2025).
- The Observatory of Economic Complexity Fresh/Dried Cashew Nuts (HS: 080130) Product Trade, Exporters and Importers. Available online: https://oec.world/en/profile/hs/freshdried-cashew-nuts (accessed on 13 February 2025).
- Sabatini. The Process of Planting Cashew Trees (Cashew Nuts). Available online: https://steemit.com/gardening/@sabatini/the-process-of-planting-cashew-trees-cashew-nuts-c9648cc47a355 (accessed on 6 June 2025).
- Molinero Luis Fried Cashew—Free Photo. Available online: https://www.freepik.com/free-photo/fried-cashew_1196998.htm#fromView=search&page=1&position=0&uuid=b645d03b-ac46-4238-831a-2a95f956c648&query=cashew (accessed on 28 June 2025).
- WFO. Cola nitida (Vent.) Schott & Endl. Available online: https://worldfloraonline.org/taxon/wfo-0000614491 (accessed on 11 March 2025).
- Schott, H.W.; Endlicher, S.F.L. Cola nitida. In Meletemata Botanica; Typis Caroli Gerold: Vindobonae, Austria, 1832; p. 36. [Google Scholar]
- Ekalu, A.; Habila, J.D. Phytochemistry, Pharmacology and Medicinal Uses of Cola (Malvaceae) Family: A Review. Med. Chem. Res. 2020, 29, 2089–2105. [Google Scholar] [CrossRef]
- Lateef, A. Cola nitida: Milestones in Catalysis, Biotechnology and Nanotechnology for Circular Economy and Sustainable Development. Biocatal. Agric. Biotechnol. 2023, 53, 102856. [Google Scholar] [CrossRef]
- Oestreich-Janzen, S. Caffeine: Characterization and Properties. Encycl. Food Health 2016, 2016, 556–572. [Google Scholar] [CrossRef]
- FAOSTAT. Crops and Livestock Producrs. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 March 2025).
- The Observatory of Economic Complexity Nuts, Edible: Kola Nuts (Cola spp.), Fresh or Dried, Whether or Not Shelled or Peeled (HS: 080270) Product Trade, Exporters and Importers. Available online: https://oec.world/en/profile/hs/nuts-edible-kola-nuts-cola-spp-fresh-or-dried-whether-or-not-shelled-or-peeled (accessed on 11 March 2025).
- Urban Tropicals. Caffeine Kola Nut Tree (Cola nitida). Available online: https://urbantropicals.com/product/caffeine-kola-nut-tree-cola-nitida/ (accessed on 6 June 2025).
- Neogric. Kola Nut (Cola nitida) Top Exporters & Suppliers (Nigeria & Africa). Available online: https://www.neogric.com/kola-nut-cola-nitida-top-exporters-suppliers-nigeria-africa/ (accessed on 28 June 2025).
- Heckel, É.M. Garcinia kola. J. Pharm. Chim. 1883, 5, 88–89. [Google Scholar]
- WFO. Garcinia kola Heckel. Available online: https://www.worldfloraonline.org/taxon/wfo-0000694394 (accessed on 26 February 2025).
- Ingram, V.; Schure, J. Review of Non Timber Forest Products (NTFPs) in Central Africa; Cameroon: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Awono, A.; Atyi, R.E.A.; Foundjem-Tita, D.; Levang, P. Vegetal Non-Timber Forest Products in Cameroon, Contribution to the National Economy. Int. For. Rev. 2016, 18, 66–77. [Google Scholar] [CrossRef]
- Maňourová, A.; Leuner, O.; Tchoundjeu, Z.; Van Damme, P.; Verner, V.; Přibyl, O.; Lojka, B. Medicinal Potential, Utilization and Domestication Status of Bitter Kola (Garcinia kola Heckel) in West and Central Africa. Forests 2019, 10, 124. [Google Scholar] [CrossRef]
- Onyekwelu, J.C.; Stimm, B. Garcinia kola. In Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie; Wiley: Hoboken, NJ, USA, 2019; pp. 1–16. [Google Scholar] [CrossRef]
- The Green Institute. Garcinia kola. Available online: https://greeninstitute.ng/plants/2023/6/19/garcinia-kola (accessed on 28 June 2025).
- Neogric 10 Amazing Uses and Health Benefits of Bitter (Garcinia) Kola You Probably Don’t Know. Available online: https://www.neogric.com/10-benefits-of-bitter-kola-you-probably-dont-know/ (accessed on 28 June 2025).
- USDA. Nuts, Almonds, Whole, Raw—Nutrients. Available online: https://fdc.nal.usda.gov/food-details/2346393/nutrients (accessed on 6 June 2025).
- Savage, G.P.; Dutta, P.C.; McNeil, D.L. Fatty Acid and Tocopherol Contents and Oxidative Stability of Walnut Oils. JAOCS J. Am. Oil Chem. Soc. 1999, 76, 1059–1063. [Google Scholar] [CrossRef]
- Gonçalves, B.; Pinto, T.; Aires, A.; Morais, M.C.; Bacelar, E.; Anjos, R.; Ferreira-Cardoso, J.; Oliveira, I.; Vilela, A.; Cosme, F. Composition of Nuts and Their Potential Health Benefits—An Overview. Foods 2023, 12, 942. [Google Scholar] [CrossRef] [PubMed]
- USDA. Nuts, Cashew Nuts, Raw—Nutrients. Available online: https://fdc.nal.usda.gov/food-details/2515374/nutrients (accessed on 6 June 2025).
- Liao, M.; Zhao, Y.; Xu, Y.; Gong, C.; Jiao, S. Effects of Hot Air-Assisted Radio Frequency Roasting on Nutritional Quality and Aroma Composition of Cashew Nut Kernels. LWT 2019, 116, 108551. [Google Scholar] [CrossRef]
- USDA. Peanuts, Raw—Nutrients. Available online: https://fdc.nal.usda.gov/food-details/2515376/nutrients (accessed on 6 June 2025).
- Mexis, S.F.; Kontominas, M.G. Effect of Gamma Irradiation on the Physico-Chemical and Sensory Properties of Raw Shelled Peanuts (Arachis hypogaea L.) and Pistachio Nuts (Pistacia vera L.). J. Sci. Food Agric. 2009, 89, 867–875. [Google Scholar] [CrossRef]
- Hojjati, M.; Noguera-Artiaga, L.; Wojdyło, A.; Carbonell-Barrachina, Á.A. Effects of Microwave Roasting on Physicochemical Properties of Pistachios (Pistaciavera L.). Food Sci. Biotechnol. 2015, 24, 1995–2001. [Google Scholar] [CrossRef]
- USDA. Nuts, Pistachio Nuts, Raw—Nutrients. Available online: https://fdc.nal.usda.gov/food-details/2515379/nutrients (accessed on 6 June 2025).
- Kelebek, H.; Sonmezdag, A.S.; Guclu, G.; Cengiz, N.; Uzlasir, T.; Kadiroglu, P.; Selli, S. Comparison of Phenolic Profile and Some Physicochemical Properties of Uzun Pistachios as Influenced by Different Harvest Period. J. Food Process Preserv. 2020, 44, e14605. [Google Scholar] [CrossRef]
- Polari, J.J.; Ferguson, L.; Wang, S.C. Pistachio Kernel Composition of “Kalehghouchi”, “Pete 1”, and “Lost Hills” in California. Hortscience 2020, 55, 666–669. [Google Scholar] [CrossRef]
- Zwarts, L.; Savage, G.P.; McNeil, D.L. Fatty Acid Content of New Zealand-Grown Walnuts (Juglans regia L.). Int. J. Food Sci. Nutr. 1999, 50, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lyu, S.; Gao, C.; Si, X.; Wang, K.; Huang, C.; Chen, J.; Huang, J. Comparative Analysis of Aroma Profiles in Walnut, Pecan and Hickory Nuts during the Roasting Process Using E-Nose, HS-SPME-GC-MS, and HS-GC-IMS. LWT 2024, 210, 116810. [Google Scholar] [CrossRef]
- Dah-Nouvlessounon, D.; Adjanohoun, A.; Sina, H.; Noumavo, P.A.; Diarrasouba, N.; Parkouda, C.; Madodé, Y.E.; Dicko, M.H.; Baba-Moussa, L.; Dah-Nouvlessounon, D.; et al. Nutritional and Anti-Nutrient Composition of Three Kola Nuts (Cola nitida, Cola acuminata and Garcinia kola) Produced in Benin. Food Nutr. Sci. 2015, 6, 1395–1407. [Google Scholar] [CrossRef]
- Farombi, E.O.; Owoeye, O. Antioxidative and Chemopreventive Properties of Vernonia amygdalina and Garcinia biflavonoid. Int. J. Environ. Res. Public Health 2011, 8, 2533. [Google Scholar] [CrossRef]
- Adesuyi, A.O.; Elumm, I.K.; Adaramola, F.B.; Nwokocha, A.G. Nutritional and Phytochemical Screening of Garcinia kola. Adv. J. Food Sci. Technol. 2012, 1, 9–14. [Google Scholar]
- Terashima, K.; Aqil, M.; Niwa, M. Garcinianin, a Novel Biflavonoid from the Roots of Garcinia kola. Heterocycles 1995, 41, 2245–2250. [Google Scholar] [CrossRef]
- Iwu, M.; Igboko, O. Flavonoids of Garcinia kola Seeds. J. Nat. Prod. 1982, 45, 650–651. [Google Scholar] [CrossRef]
- Niwa, M.; Ito, J.; Terashima, K.; Aqil, M. Garcipyran, a Novel 6-Aryl-1,2-Benzopyran Derivative from Garcinia kola. Heterocycles 1994, 38, 1927–1932. [Google Scholar] [CrossRef]
- Atawodi, S.E.O.; Pfundstein, B.; Haubner, R.; Spiegelhalder, B.; Bartsch, H.; Owen, R.W. Content of Polyphenols Compounds in the Nigerian Stimulants Cola nitida ssp. Alba, Cola nitida ssp. Rubra A. Chev, and Cola acuminata Schott & Endl and Their Antioxidant Capacity. J. Agric. Food Chem. 2007, 55, 9824–9828. [Google Scholar] [CrossRef]
- Adeyeye, A.; Ayodele, O.D.; Akinnuoye, G.A. Comparative Study of the Proximate and Fatty Acid Profiles of Cola nitida, Cola acuminata and Garcinia kola. Am. J. Food Sci. Nutr. 2017, 4, 80–84. [Google Scholar]
- Adesanwo, J.K.; Ogundele, S.B.; Akinpelu, D.A.; McDonald, A.G. Chemical Analyses, Antimicrobial and Antioxidant Activities of Extracts from Cola nitida Seed. J. Explor. Res. Pharmacol. 2017, 2, 67–77. [Google Scholar] [CrossRef]
- USDA. Nuts, Pecans—Nutrients. Available online: https://fdc.nal.usda.gov/food-details/170182/nutrients (accessed on 6 June 2025).
- Thewes, F.R.; Both, V.; Thewes, F.R.; Brackmann, A.; Wagner, R.; Ribeiro, S.R.; Ludwig, V.; Rossato, F.P. Pecan Storage: Effects of 1-MCP on the Overall Quality and Volatile Compounds Profile of Shelled and Unshelled Pecans. LWT 2021, 145, 111298. [Google Scholar] [CrossRef]
- Lund, J.; Rustan, A.C. Fatty Acids: Structures and Properties. Encycl. Life Sci. 2020, 1, 283–292. [Google Scholar] [CrossRef]
- Lichtenstein, A.H. Fats and Oils. In Encyclopedia of Human Nutrition; Academic Press: Cambridge, MA, USA, 2013; Volumes 2–4, pp. 201–208. ISBN 9780123848857. [Google Scholar]
- Lu, Y.; Zhao, J.; Xin, Q.; Yuan, R.; Miao, Y.; Yang, M.; Mo, H.; Chen, K.; Cong, W. Protective Effects of Oleic Acid and Polyphenols in Extra Virgin Olive Oil on Cardiovascular Diseases. Food Sci. Hum. Wellness 2024, 13, 529–540. [Google Scholar] [CrossRef]
- Lopez-Huertas, E. Health Effects of Oleic Acid and Long Chain Omega-3 Fatty Acids (EPA and DHA) Enriched Milks. A Review of Intervention Studies. Pharmacol. Res. 2010, 61, 200–207. [Google Scholar] [CrossRef]
- Miraliakbari, H.; Shahidi, F. Oxidative Stability of Tree Nut Oils. J. Agric. Food Chem. 2008, 56, 4751–4759. [Google Scholar] [CrossRef]
- Martínez, M.L.; Labuckas, D.O.; Lamarque, A.L.; Maestri, D.M. Walnut (Juglans regia L.): Genetic Resources, Chemistry, by-Products. J. Sci. Food Agric. 2010, 90, 1959–1967. [Google Scholar] [CrossRef]
- Andrés-Bello, A.; García-Segovia, P.; Martínez-Monzó, J. Vacuum Frying: An Alternative to Obtain High-Quality Dried Products. Food Eng. Rev. 2011, 3, 63–78. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Katan, M.B.; Ascherio, A.; Stampfer, M.J.; Willett, W.C. Trans Fatty Acids and Cardiovascular Disease. N. Engl. J. Med. 2006, 354, 1601–1613. [Google Scholar] [CrossRef]
- Salcedo, C.L.; Nazareno, M.A. Effect of Phenolic Compounds on the Oxidative Stability of Ground Walnuts and Almonds. RSC Adv. 2015, 5, 45878–45887. [Google Scholar] [CrossRef]
- Ojeda-Amador, R.M.; Desamparados Salvador, M.; Gomez-Alonso, S.; Fregapane, G. Characterization of Virgin Walnut Oils and Their Residual Cakes Produced from Different Varieties. Food Res. Int. 2018, 108, 396–404. [Google Scholar] [CrossRef]
- Okatan, V.; Gündeşli, M.A.; Kafkas, N.E.; Attar, Ş.H.; Kahramanoğlu, İ.; Usanmaz, S.; Aşkın, M.A. Phenolic Compounds, Antioxidant Activity, Fatty Acids and Volatile Profiles of 18 Different Walnut (Juglans regia L.) Cultivars and Genotypes. Erwerbs-Obstbau 2022, 64, 247–260. [Google Scholar] [CrossRef]
- Ampofo, J.; Grilo, F.S.; Langstaff, S.; Wang, S.C. Oxidative Stability of Walnut Kernel and Oil: Chemical Compositions and Sensory Aroma Compounds. Foods 2022, 11, 3151. [Google Scholar] [CrossRef]
- Mu, H.; Gao, H.; Chen, H.; Fang, X.; Zhou, Y.; Wu, W.; Han, Q. Study on the Volatile Oxidation Compounds and Quantitative Prediction of Oxidation Parameters in Walnut (Carya cathayensis Sarg.) Oil. Eur. J. Lipid Sci. Technol. 2019, 121, 16044–16050. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, W.; Chu, F.; Wang, C.; Pei, D. Identification of Volatile Oxidation Compounds as Potential Markers of Walnut Oil Quality. J. Food Sci. 2018, 83, 2745–2752. [Google Scholar] [CrossRef]
- Li, H.; Han, J.; Zhao, Z.; Tian, J.; Fu, X.; Zhao, Y.; Wei, C.; Liu, W. Roasting Treatments Affect Oil Extraction Rate, Fatty Acids, Oxidative Stability, Antioxidant Activity, and Flavor of Walnut Oil. Front. Nutr. 2023, 9, 1077081. [Google Scholar] [CrossRef]
- Elmore, J.S.; Nisyrios, I.; Mottram, D.S. Analysis of the Headspace Aroma Compounds of Walnuts (Juglans regia L.). Flavour. Fragr. J. 2005, 20, 501–506. [Google Scholar] [CrossRef]
- Yoshinaga-Kiriake, A.; Takata, D.; Norito, T.; Maki, M.; Mochizuki, S.; Yoshinaga, K. Comparative Evaluation of Fatty Acid Composition, Tocopherols, and Volatile Compounds of Walnut Oil between Juglans mandshurica Maxim. Var. Sachalinensis (Komatsu) Kitam and J. regia L. J. Oleo Sci. 2022, 71, 1743–1748. [Google Scholar] [CrossRef]
- Masoodi, L.; Masoodi, F.A.; Gull, A.; Gani, A.; Muzaffer, S.; Sidiq, M. Effect of γ-Irradiation on the Physicochemical and Sensory Properties of Fresh Walnut Kernels (Juglans regia) during Storage. Food Chem. Adv. 2023, 3, 100301. [Google Scholar] [CrossRef]
- Niu, B.K.; Olajide, T.M.; Liu, H.A.; Pasdar, H.; Weng, X.C. Effects of Different Baking Techniques on the Quality of Walnut and Its Oil. Grasas Y Aceites 2021, 72, e406. [Google Scholar] [CrossRef]
- Vidrih, R.; Hribar, J.; Solar, A.; Zlatic, E. The Influence of Atmosphere on the Oxidation of Ground Walnut During Storage at 20 °C. Food Technol. Biotechnol. 2012, 50, 454–460. [Google Scholar]
- Athaillah, Z.A.; Wang, S.C. Physical and Chemical Characteristics of Walnut (Juglans regia L.) Kernels with Different Skin Lightness. J. Food Sci. 2024, 89, 2730–2746. [Google Scholar] [CrossRef] [PubMed]
- Crowe, T.D.; Crowe, T.W.; Johnson, L.A.; White, P.J. Impact of Extraction Method on Yield of Lipid Oxidation Products from Oxidized and Unoxidized Walnuts. J. Am. Oil Chem. Soc. 2002, 79, 453–456. [Google Scholar] [CrossRef]
- Martinez, M.L.; Maestri, D.M. Oil Chemical Variation in Walnut (Juglans regia L.) Genotypes Grown in Argentina. Eur. J. Lipid Sci. Technol. 2008, 110, 1183–1189. [Google Scholar] [CrossRef]
- Martinez, M.L.; Mattea, M.A.; Maestri, D.M. Varietal and Crop Year Effects on Lipid Composition of Walnut (Juglans regia) Genotypes. J. Am. Oil Chem. Soc. 2006, 83, 791–796. [Google Scholar] [CrossRef]
- Mexis, S.F.; Badeka, A.V.; Chouliara, E.; Riganakos, K.A.; Kontominas, M.G. Effect of γ-Irradiation on the Physicochemical and Sensory Properties of Raw Unpeeled Almond Kernels (Prunus dulcis). Innov. Food Sci. Emerg. Technol. 2009, 10, 87–92. [Google Scholar] [CrossRef]
- Oliveira, I.; Meyer, A.S.; Afonso, S.; Sequeira, A.; Vilela, A.; Goufo, P.; Trindade, H.; Gonçalves, B. Effects of Different Processing Treatments on Almond (Prunus dulcis) Bioactive Compounds, Antioxidant Activities, Fatty Acids, and Sensorial Characteristics. Plants 2020, 9, 1627. [Google Scholar] [CrossRef]
- Karaat, F.E. Organic vs conventional almond: Market quality, fatty acid composition and volatile aroma compounds. Appl. Ecol. Env. Res. 2019, 17, 7783–7793. [Google Scholar] [CrossRef]
- Hojjati, M.; Lipan, L.; Carbonell-Barrachina, A.A. Effect of Roasting on Physicochemical Properties of Wild Almonds (Amygdalus scoparia). J. Am. Oil Chem. Soc. 2016, 93, 1211–1220. [Google Scholar] [CrossRef]
- Mexis, S.F.; Kontominas, M.G. Effect of Oxygen Absorber, Nitrogen Flushing, Packaging Material Oxygen Transmission Rate and Storage Conditions on Quality Retention of Raw Whole Unpeeled Almond Kernels (Prunus dulcis). LWT-Food Sci. Technol. 2010, 43, 1–11. [Google Scholar] [CrossRef]
- Mexis, S.F.; Riganakos, K.A.; Kontominas, M.G. Effect of Irradiation, Active and Modified Atmosphere Packaging, Container Oxygen Barrier and Storage Conditions on the Physicochemical and Sensory Properties of Raw Unpeeled Almond Kernels (Prunus dulcis). J. Sci. Food Agric. 2011, 91, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Tietel, Z.; Veksler, N.; Galilov, I.; Melamed, S.; Harel-Beja, R.; Holland, D. A New Israeli Almond “Shefa”: Phytochemical Composition and Response to Roasting Temperature and Duration. Int. J. Food Prop. 2024, 27, 883–896. [Google Scholar] [CrossRef]
- Roxas, A.A.; Marino, G.; Avellone, G.; Caruso, T.; Marra, F.P. The Effect of Plant Water Status on the Chemical Composition of Pistachio Nuts (Pistacia vera L. Cultivar Bianca). Agriculture 2020, 10, 167. [Google Scholar] [CrossRef]
- Polari, J.J.; Zhang, L.; Ferguson, L.; Maness, N.O.; Wang, S.C. Impact of Microclimate on Fatty Acids and Volatile Terpenes in “Kerman” and “Golden Hills” Pistachio (Pistacia vera) Kernels. J. Food Sci. 2019, 84, 1937–1942. [Google Scholar] [CrossRef]
- Demirkoz, A.B.; Karakas, M.; Bayramoglu, P.; Uner, M. Analysis of Volatile Flavour Components by Dynamic Headspace Analysis/Gas Chromatography-Mass Spectrometry in Roasted Pistachio Extracts Using Supercritical Carbon Dioxide Extraction and Sensory Analysis. Int. J. Food Prop. 2018, 21, 972–981. [Google Scholar] [CrossRef]
- Ozturk, I.; Sagdic, O.; Yalcin, H.; Capar, T.D.; Asyali, M.H. The Effects of Packaging Type on the Quality Characteristics of Fresh Raw Pistachios (Pistacia vera L.) during the Storage. LWT-Food Sci. Technol. 2016, 65, 457–463. [Google Scholar] [CrossRef]
- Ling, B.; Yang, X.; Li, R.; Wang, S. Physicochemical Properties, Volatile Compounds, and Oxidative Stability of Cold Pressed Kernel Oils from Raw and Roasted Pistachio (Pistacia vera L. Var Kerman). Eur. J. Lipid Sci. Technol. 2016, 118, 1368–1379. [Google Scholar] [CrossRef]
- Mukwevho, P.L.; Kaseke, T.; Fawole, O.A. Optimisation Using Response Surface Methodology of Quality, Nutritional and Antioxidant Attributes of “Wichita” Pecan Nuts Roasted by Microwaves. Processes 2023, 11, 2503. [Google Scholar] [CrossRef]
- Ribeiro, S.R.; Klein, B.; Machado Ribeiro, Q.; Duarte dos Santos, I.; Gomes Genro, A.L.; de Freitas Ferreira, D.; Janner Hamann, J.; Smanioto Barin, J.; Cichoski, A.J.; Fronza, D.; et al. Chemical Composition and Oxidative Stability of Eleven Pecan Cultivars Produced in Southern Brazil. Food Res. Int. 2020, 136, 109596. [Google Scholar] [CrossRef]
- Alinezhad, M.; Hojjati, M.; Barzegar, H.; Shahbazi, S.; Askari, H. Effect of Gamma Irradiation on the Physicochemical Properties of Pistachio (Pistacia vera L.) Nuts. J. Food Meas. Charact. 2021, 15, 199–209. [Google Scholar] [CrossRef]
- Descalzo, A.M.; Biolatto, A.; Rizzo, S.A.; Pérez, C.D.; Frusso, E.A.; Carduza, F.; Rossetti, L. Oxidative Stability Parameters and Sensory Properties of In-Shell “Stuart” Pecans [Carya illinoinensis (Wangenh.) K.Koch] Stored at Different Temperatures under Non-Accelerated Conditions. Postharvest Biol. Technol. 2021, 179, 111591. [Google Scholar] [CrossRef]
- Juan-Polo, A.; Beltran Sanahuja, A.; Monedero Prieto, M.; Sanchez Reig, C.; Valdes Garcia, A.; Maestre Perez, S.E. Impact of UV-Light Irradiation on Sensory Properties, Volatile, Fatty Acid, and Tocopherol Composition of Peanuts (Arachis hypogaea L.). LWT-Food Sci. Technol. 2023, 173, 114247. [Google Scholar] [CrossRef]
- de Camargo, A.C.; Bismara Regitano-d’Arce, M.A.; de Alencar, S.M.; Canniatti-Brazaca, S.G.; de Souza Vieira, T.M.; Shahidi, F. Chemical Changes and Oxidative Stability of Peanuts as Affected by the Dry-Blanching. J. Am. Oil Chem. Soc. 2016, 93, 1101–1109. [Google Scholar] [CrossRef]
- Reed, K.A.; Sims, C.A.; Gorbet, D.W.; O’Keefe, S.F. Storage Water Activity Affects Flavor Fade in High and Normal Oleic Peanuts. Food Res. Int. 2002, 35, 769–774. [Google Scholar] [CrossRef]
- Mexis, S.F.; Kontominas, M.G. Effect of γ-Irradiation on the Physicochemical and Sensory Properties of Cashew Nuts (Anacardium occidentale L.). LWT-Food Sci. Technol. 2009, 42, 1501–1507. [Google Scholar] [CrossRef]
- Sharma, G.K.; Semwal, A.D.; Mahesh, C.; Murthy, M.C.N.; Arya, S.S. Enhancement of the Shelf-Life of Deep Fat Fried Cashewnuts. LWT-Food Sci. Technol. 2000, 33, 173–177. [Google Scholar] [CrossRef]
- Leal, A.R.; Dionísio, A.P.; de Abreu, F.A.P.; de Oliveira, G.F.; da Araújo, I.M.S.; Magalhães, H.C.R.; Leite, A.B.; da Silva, E.K.M.; do Nascimento, R.F.; do Nascimento, H.O.; et al. Impact of Different Kernel Grades on Volatile Compounds Profile, Fatty Acids and Oxidative Quality of Cashew Nut Oil. Food Res. Int. 2023, 165, 112526. [Google Scholar] [CrossRef]
- Eleyinmi, A.F.; Bressler, D.C.; Amoo, I.A.; Sporns, P.; Oshodi, A.A. Chemical composition of bitter cola (Garcinia kola) seed and hulls. Pol. J. Food Nutr. Sci. 2006, 15, 395–400. [Google Scholar]
- Oyekanmi, A.M.; Adejoro, A.; Adeleke, B.B. The Fatty Acid Profile of Oils from Garcinia kola, Tetracarpodium Conopodium and Tectona Grandis. Int. J. Biochem. Res. Rev. 2019, 27, 1–5. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, D.; Xing, W.; Tang, C.; Feng, X.; Zhang, J. Simulating Fatty Acid Autoxidation and Exploring the Related Volatiles Formation Mechanism. LWT 2024, 214, 117083. [Google Scholar] [CrossRef]
- Shahidi, F.; Hossain, A. Role of Lipids in Food Flavor Generation. Molecules 2022, 27, 5014. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zhang, K.; Xu, C.; Lai, C.; Liu, Y.; Cao, Y.; Zhao, L. Contribution of Lipid to the Formation of Characteristic Volatile Flavor of Peanut Oil. Food Chem. 2024, 442, 138496. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, R.; Yang, F.; Xie, Y.; Guo, Y.; Yao, W.; Zhou, W. Control Strategies of Pyrazines Generation from Maillard Reaction. Trends Food Sci. Technol. 2021, 112, 795–807. [Google Scholar] [CrossRef]
- Shahidi, F.; Oh, W.Y. Lipid-Derived Flavor and off-Flavor of Traditional and Functional Foods: An Overview. J. Food Bioact. 2020, 10, 20–31. [Google Scholar] [CrossRef]
- Rodríguez-Bencomo, J.J.; Kelebek, H.; Sonmezdag, A.S.; Rodríguez-Alcalá, L.M.; Fontecha, J.; Selli, S. Characterization of the Aroma-Active, Phenolic, and Lipid Profiles of the Pistachio (Pistacia vera L.) Nut as Affected by the Single and Double Roasting Process. J. Agric. Food Chem. 2015, 63, 7830–7839. [Google Scholar] [CrossRef] [PubMed]
- Prabhakar, H.; Stoner-Harris, T.; Adhikari, K.; Mishra, A.; Bock, C.H.; Kong, F. Changes in Chemical Characteristics and Modeling Sensory Parameters of Stored Pecan Nutmeats. J. Food Sci. 2023, 88, 1816–1834. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, S.R.; Ribeiro, Q.M.; Klein, B.; Duarte dos Santos, I.; Forgiarini, S.; Hamann, J.J.; Cichoski, A.J.; Fronza, D.; Brackmann, A.; Both, V.; et al. Effect of Low Oxygen on Quality Attributes of ‘Barton’ Pecan Nuts after Long-Term Storage at Different Temperatures. Sci. Hortic. 2020, 263, 109098. [Google Scholar] [CrossRef]
- Yang, K.-M.; Chao, L.K.; Wu, C.-S.; Ye, Z.-S.; Chen, H.-C. Headspace Solid-Phase Microextraction Analysis of Volatile Components in Peanut Oil. Molecules 2021, 26, 3306. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; He, S.; Pei, H.; Gao, K.; Gao, L.; Cao, X.; Sun, H.; Song, J. Effect of Hot Air Circulation Roasting Temperature on the Sensory Property and Odor Characteristics of Cashew Nut (Anacardium occidentale L.). J. Food Process Eng. 2024, 47, e14546. [Google Scholar] [CrossRef]
- Salahdeen, M.H.; Omoaghe, O.A.; Isehunwa, O.G.; Murtala, A.B.; Alada, A.A.R. Gas Chromatography Mass Spectrometry (GC-MS) Analysis of Ethanolic Extracts of Kolanut (Cola nitida) (Vent) and Its Toxicity Studies in Rats. J. Med. Plants Res. 2015, 9, 56–70. [Google Scholar] [CrossRef]
- Hussain, R.A.; Owegby, A.G.; Waterman, P.G. Kolanone, a Novel Polyisoprenylated Benzophenone with Antimicrobial Properties from the Fruit of Garcinia kola. Planta Med. 1982, 44, 78–81. [Google Scholar] [CrossRef]
- Madubunyi, I.I. Antimicrobial Activities of the Constituents of Garcinia kola Seeds. Int. J. Pharmacogn. 1995, 33, 232–237. [Google Scholar] [CrossRef]
- Ajayi, T.O.; Moody, J.O.; Fukushi, Y.; Adeyemi, T.A.; Fakeye, T.O. Antimicrobial Activity of Garcinia kola (Heckel) Seed Extracts and Isolated Constituents Against Caries-Causing Microorganisms. Afr. J. Biomed. Res. 2014, 17, 165–171. [Google Scholar]
- Terashima, K.; Shimamura, T.; Tanabayashi, M.; Aqil, M.; Akinniyi, J.A.; Niwa, M. Constituents of the Seeds of Garcinia kola: Two New Antioxidants, Garcinoic Acid and Garcinal. Heterocycles 1997, 45, 1559–1566. [Google Scholar] [CrossRef]
- Erukainure, O.L.; Salau, V.F.; Chukwuma, C.I.; Md Islam, S. Kolaviron: A Biflavonoid with Numerous Health Benefits. Curr. Pharm. Des. 2020, 27, 490–504. [Google Scholar] [CrossRef]
- Emmanuel, O.; Uche, M.E.; Dike, E.D.; Etumnu, L.R.; Ugbogu, O.C.; Ugbogu, E.A. A Review on Garcinia kola Heckel: Traditional Uses, Phytochemistry, Pharmacological Activities, and Toxicology. Biomarkers 2022, 27, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Srigley, C.T.; Mossoba, M.M. Food Safety: Innovative Analytical Tools for Safety Assessment. In Current Analytical Techniques for Food Lipids; Spizzirri, U.G., Cirillo, G., Eds.; United States Food and Drug Administration Publications: Silver Spring, MD, USA, 2017; Volume 7. [Google Scholar]
- Xie, C.; Ma, Z.F.; Li, F.; Zhang, H.; Kong, L.; Yang, Z.; Xie, W. Storage Quality of Walnut Oil Containing Lycopene during Accelerated Oxidation. J. Food Sci. Technol. 2018, 55, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Mahrous, E.; Chen, R.; Zhao, C.; Farag, M.A. Lipidomics in Food Quality and Authentication: A Comprehensive Review of Novel Trends and Applications Using Chromatographic and Spectroscopic Techniques. Crit. Rev. Food Sci. Nutr. 2023, 64, 9058–9081. [Google Scholar] [CrossRef]
- Øvrebø, T. Identification and Quantification of Fatty Acids in Nut Oils by GC-MS; Norwegian University of Life Sciences: Ås, Norway, 2019. [Google Scholar]
- Houdkova, M.; Albarico, G.; Doskocil, I.; Tauchen, J.; Urbanova, K.; Tulin, E.E.; Kokoska, L. Vapors of Volatile Plant-Derived Products Significantly Affect the Results of Antimicrobial, Antioxidative and Cytotoxicity Microplate-Based Assays. Molecules 2020, 25, 6004. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, C.D.; Houdkova, M.; Urbanova, K.; Badarau, S.; Gurean, D.; Pamfil, D.; Kokoska, L. Chemical Composition of the Essential Oils of Aerial Parts of Aconitum, Anemone and Ranunculus (Ranunculaceae) Species from Romania. J. Essent. Oil Bear. Plants 2019, 22, 728–745. [Google Scholar] [CrossRef]
- Rusu, M.E.; Fizeșan, I.; Pop, A.; Gheldiu, A.M.; Mocan, A.; Crișan, G.; Vlase, L.; Loghin, F.; Popa, D.S.; Tomuta, I. Enhanced Recovery of Antioxidant Compounds from Hazelnut (Corylus avellana L.) Involucre Based on Extraction Optimization: Phytochemical Profile and Biological Activities. Antioxidants 2019, 8, 460. [Google Scholar] [CrossRef] [PubMed]
- Costa, T.J.; Domingues, M.R.M.; Alves, E. An Overview on Lipids in Nuts and Oily Fruits: Oil Content, Lipid Composition, Health Effects, Lipidomic Fingerprinting and New Biotechnological Applications of Their by-Products. Crit. Rev. Food Sci. Nutr. 2024, 64, 9132–9160. [Google Scholar] [CrossRef]
- Uriarte, P.S.; Goicoechea, E.; Guillen, M.D. Volatile Components of Several Virgin and Refined Oils Differing in Their Botanical Origin. J. Sci. Food Agric. 2011, 91, 1871–1884. [Google Scholar] [CrossRef]
- Vas, G.; Vékey, K. Solid-Phase Microextraction: A Powerful Sample Preparation Tool Prior to Mass Spectrometric Analysis. J. Mass. Spectrom. 2004, 39, 233–254. [Google Scholar] [CrossRef] [PubMed]
- d’Acampora Zellner, B.; Dugo, P.; Dugo, G.; Mondello, L. Gas Chromatography–Olfactometry in Food Flavour Analysis. J. Chromatogr. A 2008, 1186, 123–143. [Google Scholar] [CrossRef]
- Farag, M.A. Headspace Analysis of Volatile Compounds in Leaves from the Juglandaceae (Walnut) Family. J. Essent. Oil Res. 2008, 20, 323–327. [Google Scholar] [CrossRef]
- Bail, S.; Stuebiger, G.; Unterweger, H.; Buchbauer, G.; Krist, S. Characterization of Volatile Compounds and Triacylglycerol Profiles of Nut Oils Using SPME-GC-MS and MALDI-TOF-MS. Eur. J. Lipid Sci. Technol. 2009, 111, 170–182. [Google Scholar] [CrossRef]
- Ullrich, F.; Grosch, W. Identification of the Most Intense Volatile Flavour Compounds Formed during Autoxidation of Linoleic Acid. Z. Leb. Unters. Forsch. 1987, 184, 277–282. [Google Scholar] [CrossRef]
- Luque-García, J.L.; Luque De Castro, M.D. Ultrasound-Assisted Soxhlet Extraction: An Expeditive Approach for Solid Sample Treatment: Application to the Extraction of Total Fat from Oleaginous Seeds. J. Chromatogr. A 2004, 1034, 237–242. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Özcan, M.M.; Ghafoor, K.; Babiker, E.E.; Hussain, S. Comparison of Cold-Pressing and Soxhlet Extraction Systems for Bioactive Compounds, Antioxidant Properties, Polyphenols, Fatty Acids and Tocopherols in Eight Nut Oils. J. Food Sci. Technol. 2018, 55, 3163–3173. [Google Scholar] [CrossRef] [PubMed]
- Hewavitharana, G.G.; Perera, D.N.; Navaratne, S.B.; Wickramasinghe, I. Extraction Methods of Fat from Food Samples and Preparation of Fatty Acid Methyl Esters for Gas Chromatography: A Review. Arab. J. Chem. 2020, 13, 6865–6875. [Google Scholar] [CrossRef]
- Crowe, T.D.; White, P.J. Oxidative Stability of Walnut Oils Extracted with Supercritical Carbon Dioxide. J. Am. Oil Chem. Soc. 2003, 80, 575–578. [Google Scholar] [CrossRef]
- Teixeira, G.L.; Ghazani, S.M.; Corazza, M.L.; Marangoni, A.G.; Ribani, R.H. Assessment of Subcritical Propane, Supercritical CO2 and Soxhlet Extraction of Oil from Sapucaia (Lecythis pisonis) Nuts. J. Supercrit. Fluids 2018, 133, 122–132. [Google Scholar] [CrossRef]
- Crowe, T.D.; White, P.J. Oxidation, Flavor, and Texture of Walnuts Reduced in Fat Content by Supercritical Carbon Dioxide. J. Am. Oil Chem. Soc. 2003, 80, 569–574. [Google Scholar] [CrossRef]
- de Oliveira, A.L. Study of Extraction of Mesocarp and Almonds from Babaçu, from Brazil Nuts, Pequi Almonds and Sacha Inchi Seeds Using Supercritical CO2 and Pressurized Liquid; Virtual Library–FAPESP: São Paulo, SP, Brazil, 2016. [Google Scholar]
- Nur, N.H.M.; Zaiton, M.S.S.; Jamshed, M.S.; Zaidul, I.S.M.; Mokhlesur, M.R.; Juahir, H.; Tengku, M.A.; Wan, N.W.B.; Nurul, I.M.S. The Superiority of Supercritical Fluid Extraction Over Steam Distillation and Solvent Extraction Methods for the Extraction of Aroma from Salacca zalacca (Gaertn.) Voss. Orient. J. Chem. 2019, 35, 1669–1677. [Google Scholar] [CrossRef]
- Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Karim, A.A.; Abbas, K.A.; Norulaini, N.A.N.; Omar, A.K.M. Application of Supercritical CO2 in Lipid Extraction—A Review. J. Food Eng. 2009, 95, 240–253. [Google Scholar] [CrossRef]
- Ötles, S.; Kartal, C. Solid-Phase Extraction (SPE): Principles and Applications in Food Samples. Acta Sci. Pol. Technol. Aliment. 2016, 15, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Liu, T.; Li, Q.; Wang, D.; Zhang, Y. Analyzing the Effect of Baking on the Flavor of Defatted Tiger Nut Flour by E-Tongue, E-Nose and HS-SPME-GC-MS. Foods 2022, 11, 446. [Google Scholar] [CrossRef] [PubMed]
- Engel, W.; Bahr, W.; Schieberle, P. Solvent Assisted Flavour Evaporation—A New and Versatile Technique for the Careful and Direct Isolation of Aroma Compounds from Complex Food Matrices. Eur. Food Res. Technol. 1999, 209, 237–241. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, Q.; Liang, Z.; Zhao, M.; Yu, X.; Yang, D.; Xu, X. The GC/MS Analysis of Volatile Components Extracted by Different Methods from Exocarpium Citri Grandis. J. Anal. Methods Chem. 2013, 2013, 918406. [Google Scholar] [CrossRef] [PubMed]
- Netiwaranon, S.; Mason, R.; D’Arcy, B.R. Volatile Constituents in Macadamia Nuts. In Proceedings of the 33rd Annual Convention of Australian Institute of Food Science & Technology, Brisbane, Australia, 20–23 August 2000; Australian Institute of Food Science & Technology: Sydney, Australia, 2000; p. 26. [Google Scholar]
- Zhang, Z.; Xie, X.; Jia, H.; Le, W.; Xiang, P. Effect of Freeze-Thaw Treatment on the Yield and Quality of Tiger Nut Oil. Food Chem.-X 2024, 23, 101733. [Google Scholar] [CrossRef]
- Ochiai, N.; Sasamoto, K.; David, F.; Sandra, P. Recent Developments of Stir Bar Sorptive Extraction for Food Applications: Extension to Polar Solutes. J. Agric. Food Chem. 2018, 66, 7249–7255. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Zhang, Q.; Zang, L.; Chen, B.; Hu, B. Stir Bar Sorptive Extraction and Its Application. J. Chromatogr. A 2021, 1637, 461810. [Google Scholar] [CrossRef] [PubMed]
- Phatanayindee, S.; Borompichaichartkul, C.; Srzednicki, G.; Craske, J.; Wootton, M. Changes of Chemical and Physical Quality Attributes of Macadamia Nuts during Hybrid Drying and Processing. Dry. Technol. 2012, 30, 1870–1880. [Google Scholar] [CrossRef]
- Gong, Y.; Kerrihard, A.L.; Pegg, R.B. Characterization of the Volatile Compounds in Raw and Roasted Georgia Pecans by HS-SPME-GC-MS. J. Food Sci. 2018, 83, 2753–2760. [Google Scholar] [CrossRef] [PubMed]
- Pintea, A.; Dulf, F.V.; Bunea, A.; Socaci, S.A.; Pop, E.A.; Opriță, V.A.; Giuffrida, D.; Cacciola, F.; Bartolomeo, G.; Mondello, L. Carotenoids, Fatty Acids, and Volatile Compounds in Apricot Cultivars from Romania—A Chemometric Approach. Antioxidants 2020, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shen, D.; Cao, Y.; Duan, X.; Sun, H. Widely Targeted Metabolomic Approach Reveals Dynamic Changes in Non-Volatile and Volatile Metabolites of Peanuts during Roasting. Food Chem. 2023, 412, 135577. [Google Scholar] [CrossRef]
- Doǧan, H.H. Evaluation of Phenolic Compounds, Antioxidant Activities and Fatty Acid Composition of Amanita ovoidea (Bull.) Link. in Turkey. J. Food Compos. Anal. 2013, 31, 87–93. [Google Scholar] [CrossRef]
- Jia, X.; Deng, Q.; Yang, Y.; Xiang, X.; Zhou, X.; Tan, C.; Zhou, Q.; Huang, F. Unraveling of the Aroma-Active Compounds in Virgin Camellia Oil (Camellia oleifera Abel) Using Gas Chromatography-Mass Spectrometry-Olfactometry, Aroma Recombination, and Omission Studies. J. Agric. Food Chem. 2021, 69, 9043–9055. [Google Scholar] [CrossRef] [PubMed]
- Brattoli, M.; Cisternino, E.; Rosario Dambruoso, P.; de Gennaro, G.; Giungato, P.; Mazzone, A.; Palmisani, J.; Tutino, M. Gas Chromatography Analysis with Olfactometric Detection (GC-O) as a Useful Methodology for Chemical Characterization of Odorous Compounds. Sensors 2013, 13, 16759. [Google Scholar] [CrossRef] [PubMed]
- Biasioli, F.; Gasperi, F.; Yeretzian, C.; Märk, T.D. PTR-MS Monitoring of VOCs and BVOCs in Food Science and Technology. TrAC-Trends Anal. Chem. 2011, 30, 968–977. [Google Scholar] [CrossRef]
- Zardin, E.; Tyapkova, O.; Buettner, A.; Beauchamp, J. Performance Assessment of Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-TOF-MS) for Analysis of Isobaric Compounds in Food-Flavour Applications. LWT-Food Sci. Technol. 2014, 56, 153–160. [Google Scholar] [CrossRef]
- Wang, D.D.; Li, Y.; Chiuve, S.E.; Stampfer, M.J.; Manson, J.A.E.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Association of Specific Dietary Fats with Total and Cause-Specific Mortality. JAMA Intern. Med. 2016, 176, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Stefan, N.; Kantartzis, K.; Celebi, N.; Staiger, H.; Machann, J.; Schick, F.; Cegan, A.; Elcnerova, M.; Schleicher, E.; Fritsche, A.; et al. Circulating Palmitoleate Strongly and Independently Predicts Insulin Sensitivity in Humans. Diabetes Care 2010, 33, 405–407. [Google Scholar] [CrossRef]
- Yang, Z.H.; Takeo, J.; Katayama, M. Oral Administration of Omega-7 Palmitoleic Acid Induces Satiety and the Release of Appetite-Related Hormones in Male Rats. Appetite 2013, 65, 1–7. [Google Scholar] [CrossRef]
- Hu, W.; Fitzgerald, M.; Topp, B.; Alam, M.; O’Hare, T.J. A Review of Biological Functions, Health Benefits, and Possible de Novo Biosynthetic Pathway of Palmitoleic Acid in Macadamia Nuts. J. Funct. Foods 2019, 62, 103520. [Google Scholar] [CrossRef]
- Daré, R.G.; Oliveira, M.M.; Truiti, M.C.T.; Nakamura, C.V.; Ximenes, V.F.; Lautenschlager, S.O.S. Abilities of Protocatechuic Acid and Its Alkyl Esters, Ethyl and Heptyl Protocatechuates, to Counteract UVB-Induced Oxidative Injuries and Photoaging in Fibroblasts L929 Cell Line. J. Photochem. Photobiol. B 2020, 203, 111771. [Google Scholar] [CrossRef]
- Pervaiz, S.; Holme, A.L. Resveratrol: Its Biologic Targets and Functional Activity. Antioxid. Redox Signal. 2009, 11, 2851–2897. [Google Scholar] [CrossRef]
- Colaric, M.; Veberic, R.; Solar, A.; Hudina, M.; Stampar, F. Phenolic Acids, Syringaldehyde, and Juglone in Fruits of Different Cultivars of Juglans regia L. J. Agric. Food Chem. 2005, 53, 6390–6396. [Google Scholar] [CrossRef]
- Becerra-Tomás, N.; Paz-Graniel, I.; Kendall, C.; Kahleova, H.; Rahelić, D.; Sievenpiper, J.L.; Salas-Salvadó, J. Nut Consumption and Incidence of Cardiovascular Diseases and Cardiovascular Disease Mortality: A Meta-Analysis of Prospective Cohort Studies. Nutr. Rev. 2019, 77, 691–709. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lee Bravatti, M.A.; Johnson, E.J.; Raman, G. Daily Almond Consumption in Cardiovascular Disease Prevention via LDL-C Change in the U.S. Population: A Cost-Effectiveness Analysis. BMC Public Health 2020, 20, 558. [Google Scholar] [CrossRef] [PubMed]
- Houston, L.; Probst, Y.C.; Chandra Singh, M.; Neale, E.P. Tree Nut and Peanut Consumption and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2023, 14, 1029–1049. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Cioccoloni, G.; Bernardini, S.; Abenavoli, L.; Aiello, V.; Marchetti, M.; Cammarano, A.; Alipourfard, I.; Ceravolo, I.; Gratteri, S. A Hazelnut-Enriched Diet Modulates Oxidative Stress and Inflammation Gene Expression without Weight Gain. Oxidative Med. Cell Longev. 2019, 2019, 4683723. [Google Scholar] [CrossRef] [PubMed]
- Dreher, M.L. A Comprehensive Review of Almond Clinical Trials on Weight Measures, Metabolic Health Biomarkers and Outcomes, and the Gut Microbiota. Nutrients 2021, 13, 1968. [Google Scholar] [CrossRef]
- Freisling, H.; Noh, H.; Slimani, N.; Chajès, V.; May, A.M.; Peeters, P.H.; Weiderpass, E.; Cross, A.J.; Skeie, G.; Jenab, M.; et al. Nut Intake and 5-Year Changes in Body Weight and Obesity Risk in Adults: Results from the EPIC-PANACEA Study. Eur. J. Nutr. 2018, 57, 2399–2408. [Google Scholar] [CrossRef]
- Guarneiri, L.L.; Cooper, J.A. Intake of Nuts or Nut Products Does Not Lead to Weight Gain, Independent of Dietary Substitution Instructions: A Systematic Review and Meta-Analysis of Randomized Trials. Adv. Nutr. 2021, 12, 384–401. [Google Scholar] [CrossRef]
- Rusu, M.E.; Simedrea, R.; Gheldiu, A.M.; Mocan, A.; Vlase, L.; Popa, D.S.; Ferreira, I.C.F.R. Benefits of Tree Nut Consumption on Aging and Age-Related Diseases: Mechanisms of Actions. Trends Food Sci. Technol. 2019, 88, 104–120. [Google Scholar] [CrossRef]
- Barbour, J.A.; Howe, P.R.C.; Buckley, J.D.; Bryan, J.; Coates, A.M. Effect of 12 Weeks High Oleic Peanut Consumption on Cardio-Metabolic Risk Factors and Body Composition. Nutrients 2015, 7, 7381–7398. [Google Scholar] [CrossRef]
- Mah, E.; Schulz, J.A.; Kaden, V.N.; Lawless, A.L.; Rotor, J.; Mantilla, L.B.; Liska, D.J. Cashew Consumption Reduces Total and LDL Cholesterol: A Randomized, Crossover, Controlled-Feeding Trial. Am. J. Clin. Nutr. 2017, 105, 1070–1078. [Google Scholar] [CrossRef]
- Mohan, V.; Gayathri, R.; Jaacks, L.M.; Lakshmipriya, N.; Anjana, R.M.; Spiegelman, D.; Jeevan, R.G.; Balasubramaniam, K.K.; Shobana, S.; Jayanthan, M.; et al. Cashew Nut Consumption Increases HDL Cholesterol and Reduces Systolic Blood Pressure in Asian Indians with Type 2 Diabetes: A 12-Week Randomized Controlled Trial. J. Nutr. 2018, 148, 63–69. [Google Scholar] [CrossRef] [PubMed]
- de Vilela, D.L.S.; da Silva, A.; Pelissari Kravchychyn, A.C.; Bressan, J.; Hermsdorff, H.H.M. Effect of Nuts Combined with Energy Restriction on the Obesity Treatment: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Foods 2024, 13, 3008. [Google Scholar] [CrossRef]
- Jung, H.; Chen, C.Y.O.; Blumberg, J.B.; Kwak, H.K. The Effect of Almonds on Vitamin E Status and Cardiovascular Risk Factors in Korean Adults: A Randomized Clinical Trial. Eur. J. Nutr. 2018, 57, 2069–2079. [Google Scholar] [CrossRef] [PubMed]
- Gulati, S.; Misra, A.; Pandey, R.M. Effect of Almond Supplementation on Glycemia and Cardiovascular Risk Factors in Asian Indians in North India with Type 2 Diabetes Mellitus: A 24-Week Study. Metab. Syndr. Relat. Disord. 2017, 15, 98–105. [Google Scholar] [CrossRef]
- Imran, T.F.; Kim, E.; Buring, J.E.; Lee, I.M.; Gaziano, J.M.; Djousse, L. Nut Consumption, Risk of Cardiovascular Mortality, and Potential Mediating Mechanisms: The Women’s Health Study. J. Clin. Lipidol. 2021, 15, 266–274. [Google Scholar] [CrossRef]
- Tindall, A.M.; Johnston, E.A.; Kris-Etherton, P.M.; Petersen, K.S. The Effect of Nuts on Markers of Glycemic Control: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Am. J. Clin. Nutr. 2019, 109, 297–314. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M.; Liu, J.F.; Li, S.C.; Huang, C.L.; Hsirh, A.T.; Weng, S.F.; Chang, M.L.; Li, H.T.; Mohn, E.; Chen, C.Y.O. Almonds Ameliorate Glycemic Control in Chinese Patients with Better Controlled Type 2 Diabetes: A Randomized, Crossover, Controlled Feeding Trial. Nutr. Metab. 2017, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Fatahi, S.; Daneshzad, E.; Lotfi, K.; Azadbakht, L. The Effects of Almond Consumption on Inflammatory Biomarkers in Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Adv. Nutr. 2022, 13, 1462–1475. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.Y.; Ojo, O.; Wang, L.L.; Wang, Q.; Jiang, Q.; Shao, X.Y.; Wang, X.H. A Randomized Controlled Trial to Compare the Effect of Peanuts and Almonds on the Cardio-Metabolic and Inflammatory Parameters in Patients with Type 2 Diabetes Mellitus. Nutrients 2018, 10, 1565. [Google Scholar] [CrossRef]
- Nogueira, M.; Luísa, A.; Afonso, F.; Al-Shammari, S.K.; Al-Nouri, D.M.; Arzoo, S.; Al-Harbi, L.N. Effect of Different Nuts Oil Consumption on Morphological Features and Some Biomarkers of Inflammation in Adjuvant-Induced Arthritis (AIA) Rat Model. Appl. Sci. 2023, 13, 3318. [Google Scholar] [CrossRef]
- Hong, M.Y.; Groven, S.; Marx, A.; Rasmussen, C.; Beidler, J. Anti-Inflammatory, Antioxidant, and Hypolipidemic Effects of Mixed Nuts in Atherogenic Diet-Fed Rats. Molecules 2018, 23, 3126. [Google Scholar] [CrossRef] [PubMed]
- Bento, A.P.N.; Cominetti, C.; Simões Filho, A.; Naves, M.M.V. Baru Almond Improves Lipid Profile in Mildly Hypercholesterolemic Subjects: A Randomized, Controlled, Crossover Study. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 1330–1336. [Google Scholar] [CrossRef] [PubMed]
- Maranhão, P.A.; Kraemer-Aguiar, L.G.; De Oliveira, C.L.; Kuschnir, M.C.C.; Vieira, Y.R.; Souza, M.G.C.; Koury, J.C.; Bouskela, E. Brazil Nuts Intake Improves Lipid Profile, Oxidative Stress and Microvascular Function in Obese Adolescents: A Randomized Controlled Trial. Nutr. Metab. 2011, 8, 32. [Google Scholar] [CrossRef]
- Li, N.; Jia, X.; Chen, C.Y.O.; Blumberg, J.B.; Song, Y.; Zhang, W.; Zhang, X.; Ma, G.; Chen, J. Almond Consumption Reduces Oxidative DNA Damage and Lipid Peroxidation in Male Smokers. J. Nutr. 2007, 137, 2717–2722. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Liu, Y.H.; Chen, C.M.; Chang, W.H.; Chen, C.Y.O. The Effect of Almonds on Inflammation and Oxidative Stress in Chinese Patients with Type 2 Diabetes Mellitus: A Randomized Crossover Controlled Feeding Trial. Eur. J. Nutr. 2013, 52, 927–935. [Google Scholar] [CrossRef]
- Gulati, S.; Misra, A.; Pandey, R.M.; Bhatt, S.P.; Saluja, S. Effects of Pistachio Nuts on Body Composition, Metabolic, Inflammatory and Oxidative Stress Parameters in Asian Indians with Metabolic Syndrome: A 24-Wk, Randomized Control Trial. Nutrition 2014, 30, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Anselmo, N.A.; Paskakulis, L.C.; Garcias, R.C.; Botelho, F.F.R.; Toledo, G.Q.; Cury, M.F.R.; Carvalho, N.Z.; Mendes, G.E.F.; Iembo, T.; Bizotto, T.S.G.; et al. Prior Intake of Brazil Nuts Attenuates Renal Injury Induced by Ischemia and Reperfusion. J. Bras. Nefrol. 2018, 40, 10–17. [Google Scholar] [CrossRef]
- Rusu, M.E.; Georgiu, C.; Pop, A.; Mocan, A.; Kiss, B.; Vostinaru, O.; Fizesan, I.; Stefan, M.G.; Gheldiu, A.M.; Mates, L.; et al. Antioxidant Effects of Walnut (Juglans regia L.) Kernel and Walnut Septum Extract in a D-Galactose-Induced Aging Model and in Naturally Aged Rats. Antioxidants 2020, 9, 424. [Google Scholar] [CrossRef]
- Sheng, J.; Yang, X.; Chen, J.; Peng, T.; Yin, X.; Liu, W.; Liang, M.; Wan, J.; Yang, X. Antioxidative Effects and Mechanism Study of Bioactive Peptides from Defatted Walnut (Juglans regia L.) Meal Hydrolysate. J. Agric. Food Chem. 2019, 67, 3305–3312. [Google Scholar] [CrossRef]
Fatty Acid | Walnuts | Almonds | Pistachio | Pecan | Peanuts | Cashews | Kola Nut | Bitter Kola |
---|---|---|---|---|---|---|---|---|
References | [20,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137] | [20,21,26,122,138,139,140,141,142,143,144] | [96,97,99,100,145,146,147,148,149] | [23,150,151,152,153] | [96,154,155,156] | [94,157,158,159] | [110,111] | [160,161] |
C12:0 | - | - | 0.01 | 0.01 | - | - | 3.73 | - |
C14:0 | 0.03–0.14 | 0.04–0.06 | 0.09–0.15 | 0.02–0.03 | - | 0.02–0.07 | 2.08 | 2.92 |
C14:1 | - | 0.04 | - | - | - | - | - | - |
C15:0 | - | 0.03 | 0.01–0.02 | 0.01 | - | 0.01–0.02 | - | 0.5 |
C16:0 | 2.80–10.72 | 2.63–9.30 | 8.60–15.60 | 5.64–7.87 | 5.28–13.10 | 8.89–12.97 | 4.35 | 8.32–24.92 |
C16:1 | 0.10–8.50 | 0.41–6.43 | 0.18–1.45 | 0.05–0.18 | 0.04 | 0.06–0.29 | 0.23 | 1.18–1.35 |
C17:0 | - | 0.04–0.06 | 0.02–0.05 | 0.03–0.12 | 0.23 | 0.10–0.13 | 1.21 | 0.66 |
C17:1 | - | 0.07–2.32 | 0.1 | 0.06–0.08 | - | 0.04–0.05 | - | - |
C18:0 | 0.66–3.93 | 0.03–3.73 | 1.00–2.42 | 1.72–4.67 | 1.55–5.21 | 7.08–17.80 | 16.40 | 7.46–8.72 |
C18:1 | 12.70–28.73 | 61.22–82.40 | 51.12–70.7 | 56.47–72.99 | 37.70–79.56 | 49.08–65.28 | 24.64 | 31.05–32.11 |
C18:2 | 57.00–71.70 | 6.20–24.00 | 17.00–35.40 | 16.27–33.16 | 11.37–40.02 | 16.60–19.10 | 38.62 | 18.05–28.57 |
C18:3 | 6.60–45.31 | 14.84–16.21 | 0.02–1.00 | 0.71–1.69 | 0.43 | 0.10–0.14 | 2.62 | 1.29–26.62 |
C20:0 | 0.05–0.99 | 0.07–0.21 | 0.18–0.29 | 0.47–1.31 | 0.62–1.81 | 0.47–1.31 | 1.15 | - |
C20:1 | 0.01 | 0.08–0.23 | 0.01–0.48 | 0.2 | 0.49–1.04 | 0.47 | - | - |
C20:2 | - | 0.01–0.02 | - | - | - | - | - | |
C20:3 | - | 0.37 | 0.03–0.31 | - | - | - | - | - |
C20:4 | - | - | 0.01–0.03 | - | - | - | 2.20 | 3.98 |
C20:5 | - | - | - | 0.03 | - | 0.06 | - | - |
C22:0 | 0.27 | 0.37 | 0.10 | 0.08–0.14 | 1.46 | 0.08–0.16 | 0.17 | - |
C22:1 | - | - | 0.03–0.07 | - | 0.37–1.19 | - | 0.83 | - |
C24:0 | - | 0.01 | 0.03–0.09 | 0.12 | 0.46–1.98 | 0.17 | 0.17 | - |
C24:1 | - | - | 0.03–0.18 | - | - | - | - | - |
Nut | Volatile Compound | Reference |
---|---|---|
Walnut | Hexanal, pentanal, 2-heptenal, 1-octen-3-ol, nonanal, octanal, 1-penten-3-ol, 3-pentel-2-ol, pentan-1-ol, hexan-1-ol, hexanoic acid, heptanoic acid, hexanoic acid, nonanoic acid, octanoic acid, pentanoic acid, 2-pentylfuran, d-limonene, 2,4-decadienal, 2-undecenal, 3-decen-1-ol, deoxy-celidoniol, 7-octen-4-ol, citronellyl, neryl acetate, 2-octenal, 2,4-heptadienal, trans-2-dodecenal, 3,5-octadien-2-one, and 1-phenyl-1-hexanone | [20,122,124,126,127] |
Almond | Hexanal, benzaldehyde, benzyl alcohol, 3-pentel-2-ol, 4-nonanone, methylpyrazine, α-pinene, ß-pinene, sabinene, δ-3-carene, d-limonene, γ-terpinene, p-cymene, 3-methyl-3-buten-1-o, 1-pentanol, octanal, nonanal, 2,4-decadienal, 2-undecenal, and 3-decen-1-ol | [20,26,122,142] |
Pistachio | α-Pinene, d-limonene, α-terpinolene, p-cymene, β-pinene, camphene, hexanoic acid, heptanoic acid, 1,2,4-trimethylbenzene, benzene, β-myrcene, 3-carene, 2-carene, benzaldehyde, α-phellandrene, p-cymene, α-terpinolene, nonanal and p-cymenene, ethylhexanol, camphor, and γ-butyrolactone, | [96,97,145,146,148,167] |
Pecan | α-Pinene, ethanal, hexanal, 2-methyl butanal, and 3-methylbutanal, β-myrcene, camphene, p-cymene, octanal, decanal, (E)-2-decenal, 2-undecenal, isovaleraldehyde, heptanoic acid, pentanoic acid, butanoic acid, 2-methyl propanoic acid, and 2-methyl butanoic acid, ethanol, pentanol, 2-methyl butanol, 2.3-butanediol, 3-methyl butanol, hexanol, octanol, 2-phenyl ethanol, α-terpinolene, dodecanol, hexadecanol, 2-butanone, 2-pentanone, 5,5-dimethyl 2-(5H)-furanone, tetrahydro-(2H)-2-pyranone, 5-ethyl di-hydro-2-(3H)-furanone, ethyl ethanoate, dimethyl butyrolactone, δ-octalactone, pantolactone, α-limonene, γ-terpinene, geranylacetone, and d-germacrene | [147,151,168,169] |
Peanut | 2-Propanone, acetic acid, toluene, hexanal, benzene, α-pinene, benzaldehyde, d-limonene, α-terpinolene, furfural, (E)-2-heptenal, 2-octenal, nonanal, vanillin, acetylfuran, methyl pyrrol-2-yl ketone, acetophenone, γ-nonalactone, 4-ethyl-2-methoxyphenol, p-ethylphenol, 2-methylpyrazine, 2,5-dimethylpyrazine, and β-methoxypyridin | [96,170] |
Cashew | 1-Propanol, naphthalene, 1-pentanol, 1-hexanol, 2,3-butanediol, propylene glycol, hexanal, nonanal, benzaldehyde, ethyl acetate, butyrolactone, furan, 2-pentyl-, 2-furanmethanol, 1h-pyrrole, 1-methyl-, α-pinene, d-limonene, caryophyllene, linalool, styrene, phenol, 2-ethyl-3,6-dimethylpyrazine, 2-methylpyrazine, iso-cyanate, and 3-furfural | [94,157,171] |
Kola nut | Caffeine, hexadecanoic acid, ethyl ester, 9, 12-octadecadienoic acid, ethyl ester, 9-octadecadienoic acid, methyl ester, ethyl oleate, cyclohexanone, 2-methyl-5-(1-methylethenyl) octadec-9-enoic acid, decanoic acid, 10-(2-hexylcyclopropyl), methyl 2-octylcyclopropene-1-octanoate, 8,9-methylene-8-heptadecenoic acid, and 8-oxohexadecanoic acid | [111,172] |
Bitter Kola | 9-Octadecenoic acid, 14-methylpentadecanoic acid, 1-butanol, hexadecanamide, i-4′,ii-4′,i-5,ii-5,i-7,ii-7-hexahydroxy-i-3,ii-8-biflavanone, lanost-7-en-3-one, kolaflavanone (8e)-4-geranyl-3,5-dihydroxybenzophenone, glutinol, garcinia biflavonoid (gb-2a-ii-4′-ome), 9,19-cyclolanost-24-en-3-ol, 24-methylene, tirucallol, lupeol, β–amyrin, obtusifoliol, garcinianin, amentoflavone, kolanone, garcinoic acid, garcinal, δ-tocotrienol, and kolaviron | [106,107,108,173,174,175,176,177,178] |
Health Effects | Implicated Nuts | Type of Study | References |
---|---|---|---|
Improved lipid profile/reduced risk of CVD/weight gain management | Almonds, walnuts, pecans, peanuts, pine nuts, pistachios, hazelnuts, and cashews | RCT/cohort/epidemiological studies | [228,230,234,235,236,237,238,239,240] |
Reduced risk of type 2 diabetes | Pistachios, almonds, and cashews | RCT/cohort/epidemiological studies | [239,241,242] |
Reduced inflammation/cardio-metabolic disorders | Almonds and pistachios | RCT/cohort/epidemiological studies | [243,244] |
Animal studies | [245,246] | ||
Reduced oxidative stress | Pistachios, almonds, peanuts, walnuts, hazelnuts, Brazil nuts, and cashews | RCT/cohort/epidemiological studies | [229,247,248,249,250,251] |
Animal studies | [246,252,253] | ||
In vitro studies | [185,254] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alagbe, G.; Urbanova, K.; Alagbe, O. Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis. Processes 2025, 13, 2444. https://doi.org/10.3390/pr13082444
Alagbe G, Urbanova K, Alagbe O. Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis. Processes. 2025; 13(8):2444. https://doi.org/10.3390/pr13082444
Chicago/Turabian StyleAlagbe, Gbolahan, Klara Urbanova, and Olajumoke Alagbe. 2025. "Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis" Processes 13, no. 8: 2444. https://doi.org/10.3390/pr13082444
APA StyleAlagbe, G., Urbanova, K., & Alagbe, O. (2025). Overview of Fatty Acids and Volatiles in Selected Nuts: Their Composition and Analysis. Processes, 13(8), 2444. https://doi.org/10.3390/pr13082444