Application of Sequential Extraction Using Pressurized Fluids to Obtain Compounds from Pereskia aculeata Leaves
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Acquisition and Preparation
2.2. Materials
2.3. Extraction
2.4. Characterization Analyses
3. Results
3.1. Extraction Yield
3.2. Extracts Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Catchpole, O.; Moreno, T.; Montañes, F.; Tallon, S. Perspectives on Processing of High Value Lipids Using Supercritical Fluids. J. Supercrit. Fluids 2018, 134, 260–268. [Google Scholar] [CrossRef]
- Knez Hrnčič, M.; Cör, D.; Knez, Ž. Subcritical Extraction of Oil from Black and White Chia Seeds with N-Propane and Comparison with Conventional Techniques. J. Supercrit. Fluids 2018, 140, 182–187. [Google Scholar] [CrossRef]
- Correa, M.S.; Fetzer, D.L.; Hamerski, F.; Corazza, M.L.; Scheer, A.P.; Ribani, R.H. Pressurized Extraction of High-Quality Blackberry (Rubus Spp. Xavante Cultivar) Seed Oils. J. Supercrit. Fluids 2021, 169, 105101. [Google Scholar] [CrossRef]
- Kondo, S.; Takizawa, K.; Takahashi, A.; Tokuhashi, K. On the Temperature Dependence of Flammability Limits of Gases. J. Hazard. Mater. 2011, 187, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Iwassa, I.J.; Saldaña, M.D.A.; Cardozo-Filho, L.; da Silva, C. Yield and Quality Parameters of Pretreated Crambe Seed Oil Extracted Using C3H8, CO2 and C3H8+CO2 Mixtures under Pressurized Conditions. J. Supercrit. Fluids 2021, 175, 105277. [Google Scholar] [CrossRef]
- Barbosa Abrantes, K.K.; Colombo Pimentel, T.; da Silva, C.; Santos Junior, O.d.O.; Barão, C.E.; Cardozo-Filho, L. Brazil Nut Semi-Defatted Flour Oil: Impact of Extraction Using Pressurized Solvents on Lipid Profile, Bioactive Compounds Composition, and Oxidative Stability. Plants 2024, 13, 2678. [Google Scholar] [CrossRef] [PubMed]
- Torres, T.M.S.; Guedes, J.A.C.; de Brito, E.S.; Mazzutti, S.; Ferreira, S.R.S. High-Pressure Biorefining of Ora-pro-Nobis (Pereskia aculeata). J. Supercrit. Fluids 2022, 181, 105514. [Google Scholar] [CrossRef]
- Martinez-Correa, H.A.; Paula, J.T.; Kayano, A.C.A.V.; Queiroga, C.L.; Magalhães, P.M.; Costa, F.T.M.; Cabral, F.A. Composition and Antimalarial Activity of Extracts of Curcuma longa L. Obtained by a Combination of Extraction Processes Using Supercritical CO2, Ethanol and Water as Solvents. J. Supercrit. Fluids 2017, 119, 122–129. [Google Scholar] [CrossRef]
- Reyes-Giraldo, A.F.; Gutierrez-Montero, D.J.; Rojano, B.A.; Andrade-Mahecha, M.M.; Martínez-Correa, H.A. Sequential Extraction Process of Oil and Antioxidant Compounds from Chontaduro Epicarp. J. Supercrit. Fluids 2020, 166, 105022. [Google Scholar] [CrossRef]
- Krümmel, A.; Gonçalves Rodrigues, L.G.; Vitali, L.; Ferreira, S.R.S. Bioactive Compounds from Pleurotus Sajor-Caju Mushroom Recovered by Sustainable High-Pressure Methods. LWT 2022, 160, 113316. [Google Scholar] [CrossRef]
- Mazzutti, S.; Rodrigues, L.G.G.; Mezzomo, N.; Venturi, V.; Ferreira, S.R.S. Integrated Green-Based Processes Using Supercritical CO2 and Pressurized Ethanol Applied to Recover Antioxidant Compouds from Cocoa (Theobroma cacao) Bean Hulls. J. Supercrit. Fluids 2018, 135, 52–59. [Google Scholar] [CrossRef]
- Cruz, T.M.; Santos, J.S.; do Carmo, M.A.V.; Hellström, J.; Pihlava, J.M.; Azevedo, L.; Granato, D.; Marques, M.B. Extraction Optimization of Bioactive Compounds from Ora-pro-Nobis (Pereskia aculeata Miller) Leaves and Their in Vitro Antioxidant and Antihemolytic Activities. Food Chem. 2021, 361, 130078. [Google Scholar] [CrossRef] [PubMed]
- Macedo, M.C.C.; Silva, V.D.M.; Serafim, M.S.M.; da Veiga Correia, V.T.; Pereira, D.T.V.; Amante, P.R.; da Silva, A.S.J.; de Oliveira Prata Mendonça, H.; Augusti, R.; de Paula, A.C.C.F.F.; et al. Elaboration and Characterization of Pereskia Aculeate Miller Extracts Obtained from Multiple Ultrasound-Assisted Extraction Conditions. Metabolites 2023, 13, 691. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.A.A.; Corrêa, R.C.G.; Barros, L.; Pereira, C.; Abreu, R.M.V.; Alves, M.J.; Calhelha, R.C.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Phytochemical Profile and Biological Activities of “Ora-pro-Nobis” Leaves (Pereskia aculeata Miller), an Underexploited Superfood from the Brazilian Atlantic Forest. Food Chem. 2019, 294, 302–308. [Google Scholar] [CrossRef]
- Pinto, N.D.C.C.; Machado, D.C.; Da Silva, J.M.; Conegundes, J.L.M.; Gualberto, A.C.M.; Gameiro, J.; Moreira Chedier, L.; Castañon, M.C.M.N.; Scio, E. Pereskia aculeata Miller Leaves Present In Vivo Topical Anti-Inflammatory Activity in Models of Acute and Chronic Dermatitis. J. Ethnopharmacol. 2015, 173, 330–337. [Google Scholar] [CrossRef]
- Torres, T.M.S.; Álvarez-Rivera, G.; Mazzutti, S.; Sánchez-Martínez, J.D.; Cifuentes, A.; Ibáñez, E.; Ferreira, S.R.S. Neuroprotective Potential of Extracts from Leaves of Ora-pro-Nobis (Pereskia aculeata) Recovered by Clean Compressed Fluids. J. Supercrit. Fluids 2021, 179, 105390. [Google Scholar] [CrossRef]
- Torres, T.M.S.; Mendiola, J.A.; Álvarez-Rivera, G.; Mazzutti, S.; Ibáñez, E.; Cifuentes, A.; Ferreira, S.R.S. Protein Valorization from Ora-pro-Nobis Leaves by Compressed Fluids Biorefinery Extractions. Innov. Food Sci. Emerg. Technol. 2022, 76, 102926. [Google Scholar] [CrossRef]
- Rodrigues, V.G.S. Cultivo, Uso e Manipulação de Plantas Medicinais; Porto Velho, Brazil, 2004. Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/916031 (accessed on 23 June 2025).
- dos Passos, F.R.; Fiorese, M.L.; da Silva, E.A.; Santos, O.O., Jr.; Cardozo Filho, L.; da Silva, C. Pereskia aculeata Leaves Valorization from the Application of Pressurized Liquid Extraction. J. Braz. Chem. Soc. 2025, 36, e-20250036. [Google Scholar] [CrossRef]
- Bobo-García, G.; Davidov-Pardo, G.; Arroqui, C.; Vírseda, P.; Marín-Arroyo, M.R.; Navarro, M. Intra-Laboratory Validation of Microplate Methods for Total Phenolic Content and Antioxidant Activity on Polyphenolic Extracts, and Comparison with Conventional Spectrophotometric Methods. J. Sci. Food Agric. 2015, 95, 204–209. [Google Scholar] [CrossRef]
- Li, Z.; Lan, Y.; Miao, J.; Chen, X.; Chen, B.; Liu, G.; Wu, X.; Zhu, X.; Cao, Y. Phytochemicals, Antioxidant Capacity and Cytoprotective Effects of Jackfruit (Artocarpus heterophyllus Lam.) Axis Extracts on HepG2 Cells. Food Biosci. 2021, 41, 100933. [Google Scholar] [CrossRef]
- Rodrigues, C.A.; Zomer, A.P.L.; Rotta, E.M.; Visentainer, J.V.; Maldaner, L. A μ-QuEChERS Method Combined with UHPLC-MS/MS for the Analysis of Phenolic Compounds in Red Pepper Varieties. J. Food Compos. Anal. 2022, 112, 104647. [Google Scholar] [CrossRef]
- da Rosa, A.C.S.; Hoscheid, J.; Garcia, V.A.d.S.; de Oliveira Santos Junior, O.; da Silva, C. Phytochemical Extract from Syzygium cumini Leaf: Maximization of Compound Extraction, Chemical Characterization, Antidiabetic and Antibacterial Activity, and Cell Viability. Processes 2024, 12, 2270. [Google Scholar] [CrossRef]
- AOAC. Chapter 39. In Official Methods of Analysis; AOAC: Rockville, MD, USA, 2016. [Google Scholar]
- Hamdan, S.; Daood, H.G.; Toth-Markus, M.; Illés, V. Extraction of Cardamom Oil by Supercritical Carbon Dioxide and Sub-Critical Propane. J. Supercrit. Fluids 2008, 44, 25–30. [Google Scholar] [CrossRef]
- Lim, K.J.A.; Cabajar, A.A.; Lobarbio, C.F.Y.; Taboada, E.B.; Lacks, D.J. Extraction of Bioactive Compounds from Mango (Mangifera indica L. Var. carabao) Seed Kernel with Ethanol-Water Binary Solvent Systems. J. Food Sci. Technol. 2019, 56, 2536–2544. [Google Scholar] [CrossRef]
- Vardanega, R.; Fuentes, F.S.; Palma, J.; Bugueño-Muñoz, W.; Cerezal-Mezquita, P.; Ruiz-Domínguez, M.C. Valorization of Granadilla Waste (Passiflora ligularis, Juss.) by Sequential Green Extraction Processes Based on Pressurized Fluids to Obtain Bioactive Compounds. J. Supercrit. Fluids 2023, 194, 105833. [Google Scholar] [CrossRef]
- Magnani, C.; Isaac, V.L.B.; Correa, M.A.; Salgado, H.R.N. Caffeic Acid: A Review of Its Potential Use in Medications and Cosmetics. Anal. Methods 2014, 6, 3203–3210. [Google Scholar] [CrossRef]
- Lisicki, D.; Nowak, K.; Orlińska, B. Methods to Produce Nicotinic Acid with Potential Industrial Applications. Materials 2022, 15, 765. [Google Scholar] [CrossRef]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective Extraction of Bioactive Compounds from Plants Using Recent Extraction Techniques: A Review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef]
- dos Santos, L.C.; Johner, J.C.F.; Scopel, E.; Pontes, P.V.A.; Ribeiro, A.P.B.; Zabot, G.L.; Batista, E.A.C.; Meireles, M.A.A.; Martínez, J. Integrated Supercritical CO2 Extraction and Fractionation of Passion Fruit (Passiflora edulis Sims) by-Products. J. Supercrit. Fluids 2021, 168, 105093. [Google Scholar] [CrossRef]
- Amaral, T.N.; Junqueira, L.A.; Tavares, L.S.; Oliveira, N.L.; Prado, M.E.T.; de Resende, J.V. Effects of Salts and Sucrose on the Rheological Behavior, Thermal Stability, and Molecular Structure of the Pereskia aculeata Miller Mucilage. Int. J. Biol. Macromol. 2019, 131, 218–229. [Google Scholar] [CrossRef] [PubMed]
Assay- | Extraction Type | Step | T (°C) | P (bar) | EY (wt%) |
---|---|---|---|---|---|
1 | SFE/Propane + CO2 | 1 | 40 | 120 | 1.1 ± 0.03 bc |
PLE | 2 | 100 | 50 | 19.2 ± 0.8 AB | |
2 | SFE/Propane + CO2 | 1 | 40 | 100 | 1.3 ± 0.2 b |
PLE | 2 | 100 | 50 | 18.9 ± 1.1 AB | |
3 | SFE/Propane | 1 | 40 | 20 | 1.9 ± 0.2 a |
PLE | 2 | 100 | 50 | 16.5 ± 0.2 B | |
4 1 | PLE | - | 100 | 50 | 21.1 ± 0.9 A |
Property | Assay 1 | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||||
SFE | PLE | SFE | PLE | SFE | PLE | PLE | ||
TPC (mgGAE g dry extract 1) | 21.5 ± 0.5 c | 34.0 ± 0.6 b | 15.9 ± 0.5 d | 40.7 ± 2.2 a | 20.7 ± 0.3 c | 37.5 ± 1.2 ab | 40.1 ± 0.8 ab | |
Phenolic acid 2 | Gallic | nd | + | + | + | nd | + | + |
4-Hydroxybenzoic | + | + | + | + | + | + | + | |
p-Coumaric | − | + | − | + | − | + | + | |
Ferulic | + | + | + | + | + | + | + | |
Siringic | + | + | + | + | + | + | + | |
Malic | + | + | + | + | + | + | + | |
Protocatechuic | − | + | − | + | − | + | + | |
Vanillic | + | + | + | + | + | + | + | |
Caffeic | + | + | + | + | − | + | + | |
Flavonoid 2 | Quercetin | − | + | − | + | − | + | + |
Rutina | + | + | + | + | + | + | + | |
Nicotinic acid 2 | + | + | + | + | + | + | + | |
DPPH• (µmolTE g dry extract−1) | 87.8 ± 3.0 c | 243.9 ± 6.4 a | 86.7 ± 5.3 c | 247.7 ± 2.9 a | 90.5 ± 2.3 c | 235.3 ± 5.3 a | 155.7 ± 1.7 b |
Compound (mg per 100 g Dry Extract) | Assay from PLE 1 | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Phenolic acids | Gallic | 0.7 ± 0.2 a | 1.4 ± 0.1 a | 0.7 ± 0.1 a | 0.5 ± 0.1 a |
p-Coumaric | 8.7 ± 1.1 a | 9.9 ± 1.0 a | 9.4 ± 1.3 a | 8.3 ± 0.6 a | |
Ferulic | 0.5 ± 0.1 a | 0.6 ± 0.05 a | 0.5 ± 0.05 a | 0.6 ± 0.1 a | |
Siringic | 3.3 ± 0.6 a | 2.2 ± 0.3 a | 3.8 ± 0.2 b | 1.6 ± 0.1 a | |
Protocatechuic | 10.6 ± 0.9 b | 17.3 ± 0.7 a | 10.3 ± 0.9 b | 7.1 ± 0.5 c | |
Caffeic | 31.1 ± 1.0 a | 32.6 ± 0.8 a | 30.5 ± 0.5 a | 29.0 ± 0.7 a | |
Flavonoids | Quercetin | 0.5 ± 0.01 a | 0.7 ± 0.1 a | 0.6 ± 0.1 a | 0.5 ± 0.1 a |
Nicotinic acid | 11.6 ± 0.5 a | 13.8 ± 0.2 a | 12.5 ± 0.4 a | 8.3 ± 0.1 b | |
Total | 67.0 ± 4.4 b | 78.5 ± 3.2 a | 68.4 ± 3.7 b | 55.9 ± 2.3 c |
Compounds Quantified by GC-FID (mg/100 gextract) | Assay 1 | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||||
SFE | PLE | SFE | PLE | SFE | PLE | PLE | |
Squalene | 276.6 ± 2.8 a | nd | 187.1 ± 0.2 b | nd | 167.3 ± 9.9 b | nd | 95.0 ± 3.0 c |
Octacosanol | 8517.5 ± 861.7 a | 664.8 ± 35.4 b | 9804.6 ± 442.6 a | 650.9 ± 8.9 b | 8687.1 ± 743.5 a | 427.8 ± 3.6 c | 1157.3 ± 74.9 d |
α-tocopherol | 271.6 ± 27.2 ab | 49.7 ± 7.6 d | 173.3 ± 2.4 bc | 73.9 ± 9.96 d | 286.7 ± 38.5 a | 64.4 ± 4.2 d | 110.1 ± 11.2 d |
β-sitosterol | 1049.1 ± 52.8 a | 369.1 ± 6.4 b | 1025.0 ± 47.1 a | 327.4 ± 2.2 b | 1125.3 ± 33.3 a | 292.5 ± 21.6 b | 421.6 ± 10.7 b |
Compound (Dry Basis) | Leaf | Assay 1 | |||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | ||
Protein (g/100 g) | 24.0 ± 0.6 a | 22.4 ± 0.5 a | 23.1 ± 0.5 a | 23.7 ± 0.4 a | 23.2 ± 0.07 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Passos, F.R.d.; Fiorese, M.L.; Silva, E.A.d.; Oliveira Santos Junior, O.d.; Cardozo-Filho, L.; Silva, C.d. Application of Sequential Extraction Using Pressurized Fluids to Obtain Compounds from Pereskia aculeata Leaves. Plants 2025, 14, 1956. https://doi.org/10.3390/plants14131956
Passos FRd, Fiorese ML, Silva EAd, Oliveira Santos Junior Od, Cardozo-Filho L, Silva Cd. Application of Sequential Extraction Using Pressurized Fluids to Obtain Compounds from Pereskia aculeata Leaves. Plants. 2025; 14(13):1956. https://doi.org/10.3390/plants14131956
Chicago/Turabian StylePassos, Fernanda Rengel dos, Mônica Lady Fiorese, Edson Antonio da Silva, Oscar de Oliveira Santos Junior, Lúcio Cardozo-Filho, and Camila da Silva. 2025. "Application of Sequential Extraction Using Pressurized Fluids to Obtain Compounds from Pereskia aculeata Leaves" Plants 14, no. 13: 1956. https://doi.org/10.3390/plants14131956
APA StylePassos, F. R. d., Fiorese, M. L., Silva, E. A. d., Oliveira Santos Junior, O. d., Cardozo-Filho, L., & Silva, C. d. (2025). Application of Sequential Extraction Using Pressurized Fluids to Obtain Compounds from Pereskia aculeata Leaves. Plants, 14(13), 1956. https://doi.org/10.3390/plants14131956