Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (379)

Search Parameters:
Keywords = sugar-related enzymes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 500 KB  
Article
Control of Postharvest Longevity of Cut Inflorescences of Matthiola incana (L.) W.T.Aiton ‘Mera’
by Patrycja Kowalicka, Ewa Skutnik, Julita Rabiza-Świder and Jadwiga Treder
Agronomy 2026, 16(2), 165; https://doi.org/10.3390/agronomy16020165 - 8 Jan 2026
Viewed by 299
Abstract
Cut flowers of Matthiola incana ‘Mera’ are widely used in floristics but because of wilting, premature leaf yellowing, and flower/inflorescence drying their ornamental value quickly drops. The postharvest performance of this valuable cut flower in terms of symptoms of wilting, relative water content [...] Read more.
Cut flowers of Matthiola incana ‘Mera’ are widely used in floristics but because of wilting, premature leaf yellowing, and flower/inflorescence drying their ornamental value quickly drops. The postharvest performance of this valuable cut flower in terms of symptoms of wilting, relative water content (RWC), carbohydrate content, enzyme activity, and free proline content was studied in relation to the different preservative added to the vases with flowers. The tested preservatives were based on two biocides: 200 mg/L 8-hydroxyquinoline citrate (8-HQC) and nanosilver (NS) in two concentrations, 1 and 5 mg/L, with the addition of 2% sucrose (S). Control inflorescences were kept in distilled water alone. The above preservatives did not prolong vase life, but, on the contrary, decreased it, so flowers placed in distilled water lasted the longest. The contents of both total soluble and reducing sugars increased during flower senescence, reaching the highest level in flowers held in the solution of 5 mg/L NS plus 2% S. Similarly, the content of free proline increased, especially in flowers held in the 8-HQC with 2% S (standard preservative). The contents of hydrogen peroxide (H2O2) varied in flowers from different solutions; however, they kept increasing during senescence in flowers from all the treatments. The highest activity of the antioxidative enzymes was found in flowers placed in water. Full article
(This article belongs to the Special Issue Fruit Quality Improvement and Postharvest Biotechnology)
Show Figures

Figure 1

20 pages, 1546 KB  
Review
Advances in the Regulatory Mechanism of Enzymes Involved in Soluble Sugar Metabolism in Fruits
by Zixin Meng, Weiming Li, Guodi Huang, Xiang Li, Riwang Li, Yongsen Chen, Shixing Luo, Limei Guo, Yingying Tang, Yujuan Tang, Yu Zhang, Xiaowei Ma and Li Li
Plants 2026, 15(1), 138; https://doi.org/10.3390/plants15010138 - 3 Jan 2026
Viewed by 341
Abstract
Soluble sugars are key determinants of fruit quality, directly influencing sensory attributes such as sweetness and flavor, as well as nutritional value and texture. Their content and composition are precisely regulated by sugar-metabolizing enzymes. Key enzymes, including invertase (INV), sucrose phosphate synthase (SPS), [...] Read more.
Soluble sugars are key determinants of fruit quality, directly influencing sensory attributes such as sweetness and flavor, as well as nutritional value and texture. Their content and composition are precisely regulated by sugar-metabolizing enzymes. Key enzymes, including invertase (INV), sucrose phosphate synthase (SPS), sucrose synthase (SUS), fructokinase (FRK), and hexokinase (HXK), play pivotal roles in these processes. However, a systematic and in-depth analysis of their regulatory mechanisms is currently lacking, which hinders a comprehensive understanding of the regulatory network governing fruit sugar metabolism. This review employs bibliometric analysis to systematically examine research trends in fruit sugar metabolism. Furthermore, it synthesizes recent advances in the coordinated regulatory mechanisms from the perspectives of transcriptional regulation, epigenetic modifications, and signal transduction, aiming to provide a clearer framework for future research. At the transcriptional level, transcription factor families such as MYB, WRKY, NAC, and MADS-box achieve precise regulation of sugar metabolism-related genes by specifically binding to the promoters of their target genes. Regarding epigenetic regulation, mechanisms including histone modifications, non-coding RNAs, and DNA methylation influence the expression of sugar-metabolizing enzymes at the post-transcriptional level by modulating chromatin accessibility or mRNA stability. Signaling pathways integrate hormonal signals (e.g., ABA, ethylene), environmental signals (e.g., temperature, light), and sugar-derived signals into the regulatory network, forming complex feedback mechanisms. These regulatory mechanisms not only directly affect sugar accumulation in fruits but also participate in fruit quality formation by modulating processes such as cell turgor pressure and carbon allocation. By integrating recent findings on transcriptional regulation, epigenetics, and signaling pathways, this review provides a theoretical foundation for fruit quality improvement and targeted breeding. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

22 pages, 2367 KB  
Article
Harnessing the Potential of a Secondary Metabolite-Based Formulation for the Post-Harvest Disease Management and Shelf Life Extension of Banana
by Karma Beer, T. Damodaran, M. Muthukumar, Prasenjit Debnath, Akath Singh and Maneesh Mishra
Metabolites 2026, 16(1), 22; https://doi.org/10.3390/metabo16010022 - 25 Dec 2025
Viewed by 318
Abstract
Background: Post-harvest losses in bananas, particularly due to diseases such as anthracnose and stem-end rot, significantly limit their storage life and marketability. Developing effective and non-toxic treatments to prolong the shelf life of fruits while maintaining quality is crucial inenabling long-distance transport and [...] Read more.
Background: Post-harvest losses in bananas, particularly due to diseases such as anthracnose and stem-end rot, significantly limit their storage life and marketability. Developing effective and non-toxic treatments to prolong the shelf life of fruits while maintaining quality is crucial inenabling long-distance transport and facilitating exports. Methods: The most popular and commercial banana variety, ‘Grand Naine’, was treated with a proprietary secondary metabolite-based formulation (this refers to a solution containing natural compounds produced by living organisms, which are not directly involved in growth but can influence various biological processes, such as antimicrobial activity) and stored under cold conditions at 13 °C, using vacuum packaging (a method where air is removed from the packaging to reduce spoilage and prolong freshness). Untreated fruits were considered as controls, meaning that they were not subjected to the treatment and served as a baseline for comparison. Shelf life-related parameters such as ethylene production (a plant hormone responsible for triggering fruit ripening), ACC oxidase activity (an enzyme central to ethylene synthesis), respiration rate (the rate at which fruit consumes oxygen and produces carbon dioxide), firmness, total soluble solids (TSS; measures the sugar content in fruit), acidity, and metabolic composition were assessed, including indices of susceptibility to disease. These measurements were taken at regular intervals for both treated and control fruits. Results: Secondary metabolite-treated bananas maintained quality for 45 days, staying free from anthracnose and stem-end rot. Control fruits showed over-ripening and an 11.6% percent disease index (PDI). Treated fruits had lower ethylene production (7.80 μg/kg/s vs. 10.03 μg/kg/s in controls), reduced ACC oxidase activity, and a slower respiration rate, delaying ripening. They also had greater firmness (1.45 kg/cm2), optimal TSS (13.5 °Brix), balanced acidity (0.58%), and increased flavonoid and antioxidant levels compared to controls. Conclusions: Secondary metabolite-based treatment, combined with cold storage and vacuum packaging, extended banana shelf life to 45 days, minimized disease, and preserved fruit quality. This approach substantially reduced post-harvest losses, demonstrating export potential through extended storage. Full article
(This article belongs to the Section Food Metabolomics)
Show Figures

Figure 1

34 pages, 17237 KB  
Article
Integrative Analysis of the Transcriptome and Metabolome Reveals the Mechanism of Saline-Alkali Stress Tolerance in Dracocephalum moldavica L.
by Haoze Wang, Jinhua Sheng, Xiongjie Zhang and Jianxun Qi
Agronomy 2026, 16(1), 46; https://doi.org/10.3390/agronomy16010046 - 23 Dec 2025
Viewed by 316
Abstract
Salt–alkali stress is a major abiotic factor limiting plant growth. Dracocephalum moldavica L., an aromatic plant with medicinal and edible value, shows some potential for salt–alkali tolerance, but its response mechanisms remain unclear. In this study, physiological, transcriptomic, and metabolomic approaches were employed [...] Read more.
Salt–alkali stress is a major abiotic factor limiting plant growth. Dracocephalum moldavica L., an aromatic plant with medicinal and edible value, shows some potential for salt–alkali tolerance, but its response mechanisms remain unclear. In this study, physiological, transcriptomic, and metabolomic approaches were employed to compare the responses of D. moldavica seedlings to salt (NaCl/Na2SO4 = 1:1), alkali (NaHCO3/Na2CO3 = 1:1), and mixed saline–alkali stress (NaCl/Na2SO4/NaHCO3/Na2CO3 = 1:1:1:1). The results showed that all stress types increased the MDA content, with osmotic regulators and antioxidant enzymes helping mitigate damage. Alkali stress caused the most severe chlorophyll and photosynthetic damage. Transcriptomic analysis identified 12,838, 11,124, and 11,460 differentially expressed genes (DEGs) under salt, alkali, and mixed saline–alkali stress, respectively. Metabolomic analysis identified 1802, 1937, and 1794 differentially accumulated metabolites (DAMs) under each stress condition. Combined analysis revealed that all stresses activated pathways involved in galactose metabolism, the TCA cycle, pentose–glucuronic acid interconversion, and phenylpropanoid biosynthesis. Salt stress enhanced sucrose hydrolysis and lignification via INV and HCT. Alkali stress promoted the synthesis of 1-O-sinapoyl-β-D-glucose through COMT, improving antioxidant capacity and pH stability. Mixed saline–alkali stress activated genes related to sugar and energy metabolism, leading to the accumulation of xylitol and citric acid. These findings provide insights into D. moldavica’s mechanisms for tolerance, supporting its potential for saline–alkali land use. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 10030 KB  
Article
Ameliorative Effects of Vitamin E and Lutein on Hydrogen Peroxide-Triggered Oxidative Cytotoxicity via Combined Transcriptome and Metabolome Analysis
by Hongrui Lv, Yongji He and Shang Guo
Cells 2025, 14(24), 2020; https://doi.org/10.3390/cells14242020 - 18 Dec 2025
Viewed by 459
Abstract
Vitamin E and lutein both belong to food functional factors, which have cytoprotective potential and antioxidant effects. However, mechanism details at cell level remain scarce. In this study, HepG2 cells were utilized to inquire and compare the ameliorative effects of vitamin E and [...] Read more.
Vitamin E and lutein both belong to food functional factors, which have cytoprotective potential and antioxidant effects. However, mechanism details at cell level remain scarce. In this study, HepG2 cells were utilized to inquire and compare the ameliorative effects of vitamin E and lutein under H2O2-induced oxidative stress through a combined transcriptomic and metabolomic profiling, in addition to physiology and biochemistry determination. Cell cytotoxicity caused by H2O2 was ameliorated by vitamin E or lutein as evidenced by elevating cell viability and balancing the redox system. Vitamin E had greater efficacy on ameliorating oxidative cytotoxicity than lutein. Transcriptome data revealed that differentially expressed genes were mainly enriched in the transport-related, enzyme-related, and oxidative stress-related GO terms with vitamin E pretreatment. Extracellular organization-related, biological process-related, and apoptosis-related GO terms were meaningfully enriched with lutein pretreatment. Metabolome data showed that with vitamin E ameliorative effects, the disturbed metabolic pathways included thiamine metabolism, vitamin digestion and absorption, and ABC transporters. With lutein ameliorative effects, KEGG pathway analysis showed enrichment of amino sugar and nucleotide sugar metabolism, pyrimidine metabolism, and starch and sucrose metabolism. Collectively, our study provides essential insights into utilization of vitamin E and lutein as a potential supplement for effective therapy of disease associated with oxidative stress. Full article
Show Figures

Figure 1

17 pages, 3356 KB  
Article
Responses of Hydrangea macrophylla In Vitro Plantlets to Different Light Intensities
by Zinan Huang, Yaxin Wang, Chun Liu, Youwei Fan and Suxia Yuan
Agronomy 2025, 15(12), 2782; https://doi.org/10.3390/agronomy15122782 - 2 Dec 2025
Cited by 1 | Viewed by 507
Abstract
Light intensity strongly influences the morphological development and photoprotective responses of in vitro plantlets, yet the optimal conditions for hydrangea remain undefined. This study investigated the effects of five light intensity gradients (TrA: 80–120 lux, TrB: 380–480 lux, TrC: 1500–1800 lux, TrD: 3800–4000 [...] Read more.
Light intensity strongly influences the morphological development and photoprotective responses of in vitro plantlets, yet the optimal conditions for hydrangea remain undefined. This study investigated the effects of five light intensity gradients (TrA: 80–120 lux, TrB: 380–480 lux, TrC: 1500–1800 lux, TrD: 3800–4000 lux, TrE: 6000–6400 lux) on Hydrangea macrophylla ‘Qingtian’ plantlets. Plantlets exhibited optimal growth at TrB, showing maximal biomass, leaf expansion, chlorophyll content, and root activity, accompanied by low antioxidant enzyme activities and soluble sugar levels. Nutrient accumulation was greater under low light than under high light conditions. Transcriptome analysis of treatments (TrB and TrE) with marked phenotypic differences revealed 7119 differentially expressed genes (DEGs). Of these, 4582 genes were up-regulated and 2537 were down-regulated. The up-regulated genes were significantly enriched in pathways related to cell walls, the microtubule cytoskeleton, and developmental processes, which are involved in the plant growth and development process, such as photosynthesis, nutrient ion transport and regulation, as well as plant hormone responses and transport; whereas the down-regulated genes were significantly enriched in pathways related to carbohydrate metabolism, oxidoreductase activity, and glutathione metabolism, suggesting that high light stress impairs growth by disrupting carbon and antioxidant processes. These results demonstrated that 380–480 lux is the optimal light intensity for ‘Qingtian’ Hydrangea macrophylla in vitro plantlets. This study provides a foundation for optimizing culture conditions and offers new insights into the molecular regulation of light-responsive genes. Full article
(This article belongs to the Special Issue Application of In Vitro Culture for Horticultural Crops)
Show Figures

Figure 1

19 pages, 4481 KB  
Article
Transcriptome and Candidate Gene Analysis of the Seed Germination Rate Gene in Capsicum
by Jie Zeng, Minhui Liu, Peiru Li, Lijun Ou and Anna He
Agronomy 2025, 15(12), 2772; https://doi.org/10.3390/agronomy15122772 - 30 Nov 2025
Viewed by 423
Abstract
The germination rate of pepper (Capsicum annuum L.) seeds is a key indicator of their vitality, which is complexly regulated by genetic and environmental factors. This study aims to elucidate the physiological and molecular mechanisms underlying the differences in germination rates among [...] Read more.
The germination rate of pepper (Capsicum annuum L.) seeds is a key indicator of their vitality, which is complexly regulated by genetic and environmental factors. This study aims to elucidate the physiological and molecular mechanisms underlying the differences in germination rates among different pepper germplasm resources and identify the key genes regulating this trait. Three representative pepper materials (‘22HL6’, ‘22HL14’, ‘22HL2’) with significantly different germination rates were selected for this study. Key physiological and biochemical parameters during their germination process were systematically evaluated, including germination rate, vigor index, water absorption characteristics, amylase activity, antioxidant enzyme activity, and soluble sugar and protein content. Based on this, candidate genes related to germination rate were screened through transcriptome sequencing, and core candidate genes were preliminarily functionally validated using the Arabidopsis thaliana heterologous overexpression system. Materials with fast germination rates (‘22HL6’, ‘22HL14’) exhibited higher water absorption efficiency, amylase activity, antioxidant protection (such as lower MDA content and higher POD activity), and more active material metabolism (soluble sugar and protein) during the critical 72-h period. Transcriptome analysis successfully identified seven candidate genes closely related to germination rate. Among them, gene Capann_59V1aChr03g048850 had extremely high expression levels in fast-germinating materials but was almost not expressed in slow-germinating materials, and was identified as a core candidate gene. Heterologous overexpression of Capann_59V1aChr03g048850 in A. thaliana significantly promoted seed germination, with transgenic lines exhibiting earlier germination initiation, more developed taproot and lateral root systems, larger rosette diameter, and earlier bolting and flowering compared to wild-type plants. This study reveals the basis for the differences in germination rates of pepper seeds from the physiological and biochemical to molecular mechanism levels, and for the first time links the function of Capann_59V1aChr03g048850 gene to promoting seed germination and early seedling development. This gene provides valuable genetic resources for improving the germination uniformity and seedling vitality of pepper and even other crops through molecular breeding in the future. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

18 pages, 2169 KB  
Article
Overexpression of CmDUF239-1 Enhances Cold Tolerance in Melon Seedlings by Reinforcing Antioxidant Defense and Activating the ICE-CBF-COR Pathway
by Yang Li, Zhanming Tan, Yanjun Liu, Xiaoye Wu, Jin Zhu and Yuquan Peng
Agronomy 2025, 15(12), 2725; https://doi.org/10.3390/agronomy15122725 - 26 Nov 2025
Viewed by 524
Abstract
Low-temperature stress is a major factor that limits the productivity and geographical distribution of melon (Cucumis melo L.). This study elucidates that CmDUF239-1 is a positive regulator of cold stress, and its underlying mechanisms are investigated using root-specific overexpression lines. Seedlings overexpressing [...] Read more.
Low-temperature stress is a major factor that limits the productivity and geographical distribution of melon (Cucumis melo L.). This study elucidates that CmDUF239-1 is a positive regulator of cold stress, and its underlying mechanisms are investigated using root-specific overexpression lines. Seedlings overexpressing CmDUF239-1 exhibited increased biomass and reduced relative electrical conductivity under cold stress. CmDUF239-1 overexpression promoted the accumulation of soluble sugar and proline, which was accompanied by enhanced activity of the proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate synthase (P5CS) and suppressed activity of the proline-degrading enzyme proline dehydrogenase (PDH). Molecular analysis revealed that CmDUF239-1 overexpression upregulated antioxidant enzyme-related genes, sugar metabolism related genes, and proline-related genes. Furthermore, it activated key genes in the ICE-CBF-COR signaling pathway, including CmCBF1, CmCBF2, and the downstream effector gene CmCOR413-2. In conclusion, the CmDUF239-1 gene enhances melon cold tolerance by modulating antioxidant defense, enhancing osmolyte (sugar and proline) metabolism and activating a core signaling pathway. This study not only characterizes a novel function for a DUF family gene but also provides a promising candidate gene for the genetic improvement of cold resilience in melon and other related crops. Full article
Show Figures

Figure 1

17 pages, 2170 KB  
Article
Effects of Hydrogen Peroxide Soaking on the Seeds of Different Edible Bean Varieties
by Ruili Dong, Zexiang Gao, Yapeng Gao, Junchi Tang, Xuguang Shen, Xin Ding, Chao Ma and Chunxia Li
Plants 2025, 14(22), 3476; https://doi.org/10.3390/plants14223476 - 14 Nov 2025
Viewed by 1707
Abstract
To clarify the effects of hydrogen peroxide (H2O2) seed soaking on the germination and stress resistance of different edible bean seeds, seeds of mung bean (Vigna radiata L. ‘Keda Green No. 2’), cowpea (Vigna unguiculata L. ‘Keda [...] Read more.
To clarify the effects of hydrogen peroxide (H2O2) seed soaking on the germination and stress resistance of different edible bean seeds, seeds of mung bean (Vigna radiata L. ‘Keda Green No. 2’), cowpea (Vigna unguiculata L. ‘Keda Cowpea No. 1’), and red bean (Vigna umbellata Thunb. ‘Jihong 352’) were soaked in a 50 mmol/L H2O2 solution. The study examined the germination and growth-related physiological indices of seeds after soaking. The results showed that hydrogen-peroxide-primed seeds of mung bean (GBH), cowpea (CBH), and red bean (RBH) exhibited significant improvements in germination performance and physiological activity compared with their respective controls (GBCK, CBCK, and RBCK). The results indicated that H2O2 soaking significantly improved the germination ability of the seeds, with the germination rate of mung beans, cowpeas, and red beans increasing by 48.89%, 21.11%, and 18.89%, respectively, and the germination percentage increasing by 31.11%, 24.45%, and 17.77%. Additionally, H2O2 soaking enhanced the activity of α-amylase, protease, and the antioxidant enzymes peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT); increased the soluble sugar and soluble protein content in the seeds; and reduced the malondialdehyde (MDA) content. The experiment demonstrated that H2O2 promotes the germination of mung bean, cowpea, and red bean seeds by influencing antioxidant enzyme activity, the breakdown of storage substances, and the regulation of germination-related substances, thereby improving seedling adaptation to environmental stress. This study aims to improve the germination rate of legume seeds using H2O2 treatment, providing a theoretical basis for techniques to enhance seed vigor, especially for seeds that perform poorly in germination under normal conditions. Full article
Show Figures

Figure 1

23 pages, 5184 KB  
Article
Integrated Metabolomics and Transcriptomics Analyses Reveal the Critical Role of Caffeic Acid in Potato (Solanum tuberosum L.) Cold Tolerance
by Xiang Li, Guonan Fang, Yongzhen Ma, Wang Su, Shenglong Yang, Yun Zhou, Yanping Zhang and Jian Wang
Plants 2025, 14(22), 3447; https://doi.org/10.3390/plants14223447 - 11 Nov 2025
Viewed by 508
Abstract
Owing to the high altitude and short frost-free period of the Tibetan Plateau, potato plants are frequently exposed to cold stress (CS), which severely restricts their growth and productivity. Thus, understanding the mechanisms underlying cold tolerance in potato varieties is crucial for breeding [...] Read more.
Owing to the high altitude and short frost-free period of the Tibetan Plateau, potato plants are frequently exposed to cold stress (CS), which severely restricts their growth and productivity. Thus, understanding the mechanisms underlying cold tolerance in potato varieties is crucial for breeding improvement. This study aims to investigate the role of caffeic acid in potato cold tolerance and to elucidate the molecular mechanisms underlying the CS response. To achieve this, we conducted comprehensive metabolomic and transcriptomic analyses of KY130 (cold-tolerant) and KY140 (cold-sensitive) potato cultivars under CS at the seedling stage. ELISA results showed that caffeic acid levels were higher in KY130 than in KY140, while CS-KY130 exhibited higher levels than those of CS-KY140. Across all treatments, KY130 showed significantly higher activities of antioxidant enzymes (CAT and SOD) and higher contents of osmolytes (proline, soluble protein, and soluble sugar) than those of KY140. Caffeic acid and naringenin* were identified as candidate metabolites potentially involved in the direct and indirect cold resistance of potatoes. StPAL(Soltu.Atl.03_2G004060, Soltu.Atl.03_2G004070, Soltu.Atl.03_2G008130) and StCSE(Soltu.Atl.04_1G006370 and Soltu.Atl.04_3G005440), identified as upstream regulators of caffeic acid, were associated with the direct and indirect cold resistance of potatoes. KEGG pathway analysis of differentially accumulated metabolites and differentially expressed genes revealed several key metabolic pathways, including “flavonoid-related metabolism,” “lipid metabolism,” and “amino acid metabolism.” This research enhances our understanding of caffeic acid and the molecular mechanisms involved in the response of potatoes to CS, and supports future efforts in potato screening and breeding programs. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

14 pages, 5243 KB  
Article
Exogenous Melatonin Effects on Drought-Stressed Longan Plants: Physiology and Transcriptome Insights
by Beibei Qi, Rongshao Huang, Xianquan Qin, Ning Xu, Liangbo Li, Kexin Cao, Hongye Qiu and Jianhua Chen
Agronomy 2025, 15(11), 2530; https://doi.org/10.3390/agronomy15112530 - 30 Oct 2025
Viewed by 584
Abstract
Drought stress severely constrains yield and quality stability in longan (Dimocarpus longan Lour.), an important medicine and food homology fruit in China. Melatonin (MT) shows potential for alleviating abiotic stress, but its mechanisms in drought-stressed longan remain unclear. Here, we investigated two [...] Read more.
Drought stress severely constrains yield and quality stability in longan (Dimocarpus longan Lour.), an important medicine and food homology fruit in China. Melatonin (MT) shows potential for alleviating abiotic stress, but its mechanisms in drought-stressed longan remain unclear. Here, we investigated two cultivars (Shixia and Chuliang) under drought and exogenous MT treatments (CW, well-watered control; CM, exogenous MT application under well-watered control; DW, drought stress; DM, exogenous MT application under drought stress), revealing the following findings: (i) Drought treatment significantly reduced endogenous MT levels in both studied cultivars, and the reduction was reversed by exogenous foliar MT application. Specifically, under drought conditions, exogenous MT treatment increased endogenous MT content by 272.7% in Shixia and 53.6% in Chuliang, respectively. (ii) Drought and exogenous MT treatments modulated the activities of plant defense enzymes (superoxide dismutase, SOD; peroxidase, POD; phenylalanine ammonia lyase, PAL; and catalase, CAT) and the levels of related metabolites (malondialdehyde, MDA; proline, Pro). Across both cultivars, drought stress increased the activities of SOD, POD, and PAL, as well as the Pro content. Exogenous MT treatment, however, reduced the activities of SOD, POD, and PAL while increasing CAT activity and MDA content to some extent in both cultivars. Notably, the Pro content was significantly reduced in Shixia but significantly increased in Chuliang following exogenous MT application under drought stress. (iii) Drought and exogenous MT treatments regulated gene expression in longan cultivars. Relative to CW, 848, 3356, and 2447 differentially expressed genes (DEGs) were detected in CM, DW, and DM in Shixia, respectively. Relative to CW, 1349, 5260, and 5116 DEGs were identified in CM, DW, and DM in Chuliang. A gene ontology analysis indicated significant enrichment for abiotic stress defense and hormone-responsive processes. The KEGG pathway analysis showed significant enrichment in protein processing in the endoplasmic reticulum (ko04141), amino sugar and nucleotide sugar metabolism (ko00520), ascorbate and aldarate metabolism (ko00053), plant–pathogen interaction (ko04626), and starch and sucrose metabolism (ko00500). These findings provide physiological and transcriptomic insights into MT-regulated drought responses in longan, highlighting its potential for improving productivity in drought-prone regions. Full article
Show Figures

Figure 1

33 pages, 6024 KB  
Article
Metabolic Responses to the Zinc Stress in the Roots and Leaves of Amaranthus caudatus: The Proteomics View
by Anastasia Gurina, Tatiana Bilova, Daria Gorbach, Alena Soboleva, Nataliia Stepanova, Olga Babich, Christian Ihling, Anastasia Kamionskaya, Natalia Osmolovskaya and Andrej Frolov
Plants 2025, 14(21), 3315; https://doi.org/10.3390/plants14213315 - 30 Oct 2025
Cited by 1 | Viewed by 737
Abstract
Zinc excess (Zn stress) could lead to deleterious effects in plants such as enhanced ROS production, inhibition of photosynthetic machinery, and impairment of nutrient uptake. Hence, we aimed to investigate the complexity of metabolic responses to Zn stress in Amaranthus caudatus young and [...] Read more.
Zinc excess (Zn stress) could lead to deleterious effects in plants such as enhanced ROS production, inhibition of photosynthetic machinery, and impairment of nutrient uptake. Hence, we aimed to investigate the complexity of metabolic responses to Zn stress in Amaranthus caudatus young and mature leaves, as well as in roots by means of proteomics. Our previous metabolomics research has indicated potential involvement of gluconate and salicylate in Zn tolerance mechanisms. However, proteomics study of metabolic adjustments underlying Zn stress tolerance can give additional insight to the issue, as a lot of enzymes are known to be affected by the excess of transitional metals. The results obtained through bottom-up proteomics were complementary to our earlier metabolomics data and, furthermore, enlightened other important details in the metabolic response of A. caudatus plants to the applied Zn stress. In particular, the significant involvement of redox-related enzymes was shown, especially for the roots, and their possible interactions with salicylate and jasmonate signaling could be proposed. Furthermore, Zn2+-induced changes in roots and young leaves strongly affected sugar metabolism, enhanced protein quality control system, while mature leaves were characterized by remarkable decrease in subunits of photosynthetic electron transport complexes. Thus, this work emphasizes massive metabolic reprogramming aimed to reinforce root defense responses while supporting young leaves with sugar metabolites. Mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD069557. Full article
Show Figures

Figure 1

25 pages, 5442 KB  
Article
Physiological, Biochemical and Gene Expression Analyses of Halimodendron halodendron Responding to Drought Stress
by Huanqiong Hu, Panpan Zhang, Ling Wang, Hailian Liang, Jiye Liang and Ruiheng Lyu
Genes 2025, 16(11), 1274; https://doi.org/10.3390/genes16111274 - 28 Oct 2025
Viewed by 469
Abstract
Background: As a typical xerophyte, H. halodendron can not only grow in desert sandy areas but also serves as an excellent nectar source and ornamental plant. However, research on its molecular and physiological mechanisms underlying drought tolerance remains limited. Methods: This study [...] Read more.
Background: As a typical xerophyte, H. halodendron can not only grow in desert sandy areas but also serves as an excellent nectar source and ornamental plant. However, research on its molecular and physiological mechanisms underlying drought tolerance remains limited. Methods: This study systematically investigated its drought resistance characteristics by integrating physiological parameters and Illumina transcriptome sequencing, and further validated key genes involved in the drought resistance mechanisms. Results: A total of 46,305 functional genes were identified, among which 6561 were differentially expressed genes (DEGs). These DEGs were significantly enriched in chloroplast function, photosynthesis, proline biosynthesis, and peroxidase activity. Under drought stress, the net photosynthetic rate, stomatal conductance, chlorophyll content, and transpiration rate decreased. Under severe drought conditions, only 5 out of 80 photosynthesis-related DEGs were up-regulated, while the rest were down-regulated, indicating that reduced chlorophyll content impaired light absorption, carbon reactions, and photosynthetic efficiency. Additionally, the contents of proline, soluble sugars, and soluble proteins, as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), increased. The identification of 35 osmotic regulation-related and 39 antioxidant enzyme-related DEGs suggests that H. halodendron enhances osmotic adjustment substance synthesis and reactive oxygen species (ROS) scavenging capacity to counteract osmotic stress. Conclusions: Physiological, biochemical and gene expression analyses under drought stress provide a basis for the study of the drought tolerance characteristics of H. halodendron, which is of great significance for ecological environment governance using H. halodendron. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

18 pages, 1749 KB  
Article
Effect of Nitric Oxide on Adventitious Root Development from Cuttings of Sweetpotato and Associated Biochemical Changes
by Meng Wang, Jianghui Li, Yuhao Wu, Hongxing Zhang, Hui Wang and Lingyun Wang
Plants 2025, 14(20), 3183; https://doi.org/10.3390/plants14203183 - 16 Oct 2025
Viewed by 712
Abstract
Adventitious rooting is a key step for the clonal propagation of many economically important horticultural and woody species. Accumulating evidence suggests that nitric oxide (NO) serves as a key signaling molecule with key roles in root organogenesis. However, the role of NO in [...] Read more.
Adventitious rooting is a key step for the clonal propagation of many economically important horticultural and woody species. Accumulating evidence suggests that nitric oxide (NO) serves as a key signaling molecule with key roles in root organogenesis. However, the role of NO in adventitious root development and its underlying mechanism in sweetpotato cuttings remain to be clarified. In this study, a pot experiment was conducted using hydroponically cultured sweetpotato cuttings (Ipomoea batatas cv. ‘Jin Ganshu No. 9’) treated with different concentrations of sodium nitroprusside (SNP, an NO donor) solution (0, 10, 50, 100, 200, and 500 μmol·L−1). Three treatments were established: Control, SNP (the optimal concentration of SNP), and SNP + 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, an NO scavenger). The results showed that NO promoted adventitious rooting in a dose-dependent manner, with the maximal biological response observed at 100 μM SNP. At this concentration, the root number and length of adventitious roots increased by 1.22 and 2.36 times, respectively, compared to the control. SNP treatment increased fresh root weight, dry root weight, the content of soluble sugar, soluble protein, chlorophyll a (Chl a), chlorophyll b (Chl b), and total chlorophyll (a + b) [Chl(a + b)], as well as the activities of peroxidase (POD), polyphenol oxidase (PPO), and indole acetic acid oxidase (IAAO). It also enhanced the levels of maximum fluorescence (Fm), maximum photochemical efficiency of photosystem II (Fv/Fm), absorbed light energy (ABS/RC), trapped energy flux (TRo/RC), and electron transport flux (ETo/RC), while decreasing starch content and initial fluorescence (Fo). On the 7th day, the SNP treatment significantly enhanced several biochemical parameters compared to the control. We observed an increase in many of the parameters: POD activity by 1.35 times, PPO activity by 0.55 times, chlorophyll content (Chl a by 0.66 times, Chl b by 0.22 times, and Chl a + b by 0.57 times), and photosynthesis parameters by 28–98%. Meanwhile, starch content and Fo in the SNP treatment decreased by 10.77% and 23.86%, respectively, compared to the control. Furthermore, the positive effects of NO on adventitious root development and associated biochemical parameters were reversed by the NO scavenger cPTIO. Additionally, significant and positive correlations were observed between morphological characteristics and most physiological indicators. Collectively, these results demonstrate that NO promotes adventitious root formation, which may be by enhancing rooting-related enzyme activities, improving photosynthetic performance in leaves, and accelerating the metabolism of soluble sugar, soluble protein, and starch. Full article
Show Figures

Figure 1

27 pages, 5449 KB  
Article
High-Blue/Low-Red Mixed Light Modulates Photoperiodic Flowering in Chrysanthemum via Photoreceptor and Sugar Pathways
by Jingli Yang, Zhengyang Cheng, Jinnan Song and Byoung Ryong Jeong
Plants 2025, 14(20), 3151; https://doi.org/10.3390/plants14203151 - 13 Oct 2025
Viewed by 1314
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.), a typical short-day plant (SDP), relies on photoperiod and light quality signals to regulate flowering and growth. Red light interruptions inhibit its flowering, whereas supplemental blue light can counteract this inhibitory effect. To investigate how “high-blue/low-red” mixed light [...] Read more.
Chrysanthemum (Chrysanthemum morifolium Ramat.), a typical short-day plant (SDP), relies on photoperiod and light quality signals to regulate flowering and growth. Red light interruptions inhibit its flowering, whereas supplemental blue light can counteract this inhibitory effect. To investigate how “high-blue/low-red” mixed light (RBL) regulates chrysanthemum flowering and growth, we treated ‘Gaya Glory’ plants with 4 h of supplemental or night-interruptional RBL (S-RBL4 or NI-RBL4, 0 or 30 ± 3 μmol m−2 s−1 PPFD) under 10 h short-day and 13 h long-day conditions (SD10 and LD13; white light, WL; 300 ± 5 μmol m−2 s−1 PPFD), recorded as SD10, SD10 + S-RBL4, SD10 + NI-RBL4, LD13, LD13 + S-RBL4, and LD13 + NI-RBL4, respectively. Under SD10 conditions, S-RBL4 promoted flowering and enhanced nutritional quality, whereas NI-RBL4 suppressed flowering. Under LD13 conditions, both treatments alleviated flowering inhibition, with S-RBL4 exhibiting a more pronounced inductive effect. Chrysanthemums displayed superior vegetative growth and physiological metabolism under LD13 compared to SD10, as evidenced by higher photosynthetic efficiency, greater carbohydrate accumulation, and more robust stem development. Furthermore, S-RBL4 exerted a stronger regulatory influence than NI-RBL4 on photosynthetic traits, the activities of sugar metabolism-related enzymes, and gene expression. The photoperiodic flowering of chrysanthemum was coordinately regulated by the photoreceptor-mediated and sugar-induced pathways: CmCRY1 modulated the expression of florigenic genes (CmFTLs) and anti-florigenic gene (CmAFT) to transmit light signals, while S-RBL4 activated sucrose-responsive flowering genes CmFTL1/2 through enhanced photosynthesis and carbohydrate accumulation, thereby jointly regulating floral initiation. The anti-florigenic gene CmTFL1 exhibited dual functionality—its high expression inhibited flowering and promoted lateral branch and leaf growth, but only under sufficient sugar availability, indicating that carbohydrate status modulates its functional activity. Full article
(This article belongs to the Special Issue Advances in Plant Cultivation and Physiology of Horticultural Crops)
Show Figures

Figure 1

Back to TopTop