Physiological, Biochemical and Gene Expression Analyses of Halimodendron halodendron Responding to Drought Stress
Abstract
1. Introduction
2. Materials and Methods
2.1. Cultivation and Treatment of Plant Materials
2.2. Determination of Growth Parameters
2.3. Photosynthetic Parameter Measurement
2.4. Chlorophyll Content Determination
2.5. Determination of Relative Moisture Content and Electrical Conductivity
2.6. Determination of Antioxidant Enzyme Activity and Superoxide Anion (O2−) Production Rate
2.7. Determination of Soluble Substance
2.8. Microstructure
2.9. Ultrastructure
2.10. Extraction and Identification of Total RNA
2.11. Illumina Library Preparation and Sequencing
2.12. Stitching and Assembly of Illumina Sequencing Data
2.13. Gene Annotation
2.14. Quantification of the Gene Expression Levels, Identification, and Function Analysis of DEGs
2.15. Data Processing
3. Result
3.1. Effects of Drought Stress on Growth of H. halodendron
3.2. Effects of Drought Stress on Photosynthetic and Physiological Characteristics of H. halodendron
3.3. Effects of Drought Stress on Chlorophyll Content of H. halodendron
3.4. Effects of Drought Stress on Drought-Resistant Physiological Characteristics of H. halodendron
3.5. Effects of Drought Stress on Antioxidant Properties of H. halodendron
3.6. Effects of Drought Stress on Leaf Structure of H. halodendron
3.7. Identification of Transcripts
3.8. Gene Annotation
3.9. Differential Gene Analysis
3.10. Identification of DEGs in Response to Photosynthesis
3.11. Identification of DEGs Related to Osmotic Regulation
3.12. Identification of DEGs Associated with Antioxidant Capacity
4. Discussion
4.1. Effects of Drought Stress on Growth Characteristics of H. halodendron
4.2. Effects of Drought Stress on Photosynthetic Characteristics of H. halodendron
4.3. The Regulation of Osmosis Related to H. halodendron Gene Expression
4.4. Expression of Antioxidation Genes in H. halodendron
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| abbreviations | Full name |
| DEGs | differentially expressed genes |
| SOD | superoxide dismutase |
| O2− | superoxide anion |
| CAT | catalase |
| POD | peroxidase |
| Pn | net photosynthetic rate |
| Tr | transpiration rate |
| Gs | stomatal conductance |
| WUE | water use efficiency |
| Chl a | Chlorophyll a |
| Chl b | chlorophyll b |
| PSI | Photosystem I |
| PSII | Photosystem II |
| RWC | relative water content |
| REC | conductivity |
| OFR | Oxygen free radical |
| Pro | proline |
| SS | soluble sugar |
| SP | soluble protein |
| Lhcas | chlorophyll a-b binding proteins |
| PSAs | reaction center complexes |
| FNRs | ferredoxin-oxidoredutases |
| Lhcbs | chlorophyll a-b binding proteins |
| PSB | reaction center complex |
| PET | cytochrome b6-f complex |
| Rubisco | ribulose-1, 5-bisphosphate carboxylase/oxygenase |
| RuBP | ribulose-1,5-bisphosphate |
| LEA | embryonic leukemia antigen-related protein |
| HSPs | heat shock proteins |
| OSMs | osmotic stress-responsive transporter proteins |
| DHNs | dehydration-responsive element-binding proteins |
| AQPs | aquaporins |
| APXs | ascorbate peroxidase |
| GSTs | glutathione-S-transferases |
| GPX | glutathione peroxidase |
| ANN | attached protein |
| PC | plastocyanin |
| ALA | 5-aminolevulinic acid |
| Proto IX | protoporphyrin IX |
| ATP | adenosine triphosphate |
| ADP | adenosine diphosphate |
| Pi | inorganic phosphate |
| Glycerate-3P | glycerate-3-phosphate |
| Glyceraldehyde-3P | glyceraldehyde-3-phosphate |
References
- Ozturk, M.; Turkyilmaz, U.B.; García-Caparrós, P.; Khursheed, A.; Gul, A.; Hasanuzzaman, M. Osmoregulation and its actions during the drought stress in plants. Physiol. Plant. 2021, 172, 1321–1335. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, J.P.; Yuan, F.; Yang, Z.; Wang, B.S.; Chen, M. Transcriptome profiling of genes involved in photosynthesis in Elaeagnus angustifolia L. under salt stress. Photosynthetica 2018, 56, 998–1009. [Google Scholar] [CrossRef]
- Choudhary, A.; Senthil-Kumar, M. Drought: A context-dependent damper and aggravator of plant diseases. Plant Cell Environ. 2024, 47, 2109–2126. [Google Scholar] [CrossRef]
- Hura, T.; Hura, K.; Ostrowska, A. Drought-Stress Induced Physiological and Molecular Changes in Plants. Int. J. Mol. Sci. 2022, 23, 4698. [Google Scholar] [CrossRef]
- Qi, R.L.; Sha, R.T.Y.; Li, G.T.; Wang, M.Z.; He, L.; Yang, W.B. Characteristics of seed germination of H. halodendron under salt drought stress. North. Horticult. 2021, 2021, 81–88. [Google Scholar]
- Wang, H.M.; Li, Z.K.; Yang, J.J. Effects of Leaf Hydrophilicity and Stomatal Regulation on Foliar Water Uptake Capacity of Desert Plants. Forests 2023, 14, 551. [Google Scholar] [CrossRef]
- Huang, H.Y.; Zhao, H.; Wang, J.; Jin, X.Y.; Lv, P. Determination and Evaluation on Nutritional Composition from Halimodendron halodendron flower. Food Res. Dev. 2017, 38, 115–118. [Google Scholar]
- Shi, H.B.; Li, L.; Lu, H.Y.; Sun, G.L.; Wang, G.H. The Prediction of Suitable Areas of Four Species Including Populuseuphratica in Xinjiang. Forest Resour. Manag. 2020, 38–46+61. [Google Scholar] [CrossRef]
- Saha, S.; Johnson, N.G. Divergent effects of successive drought and flooding on photosynthesis in wheat and barley. Front. Plant Sci. 2025, 16, 1603355. [Google Scholar] [CrossRef]
- Chen, H.; Han, C.; Cui, L.; Liu, Z.; Yu, F. Transcriptome analysis of antioxidant system response in Styrax tonkinensis seedlings under flood-drought abrupt alternation. BMC Plant Biol. 2024, 24, 413. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zheng, W.; Lv, H.; Liang, B.; Jin, S.; Li, J.; Zhou, W. Animal-derived plant biostimulant alleviates drought stress by regulating photosynthesis, osmotic adjustment, and antioxidant systems in tomato plants. Sci. Hortic. 2022, 305, 111365. [Google Scholar] [CrossRef]
- Yao, Y.; Nan, L.; Wang, K.; Xia, J.; Ma, B.; Cheng, J. Integrative leaf anatomy structure, physiology, and metabolome analyses revealed the response to drought stress in sainfoin at the seedling stage. Phytochem. Anal. 2024, 35, 1174–1185. [Google Scholar] [CrossRef]
- Rahma, G.; Arafet, M.; Walid, D.; Simone, C.; Chedly, A.; Roberto, B. Comparative analysis of salt stress, duration and intensity, on the chloroplast ultrastructure and photosynthetic apparatus in Thellungiella salsuginea. Photochem. Photobiol. B Biol. 2018, 183, 275–287. [Google Scholar]
- Saleem, M.H.; Ali, S.; Rehman, M.; Hasanuzzaman, M.; Rizwan, M.; Irshad, S.; Shafiq, F.; Iqbal, M.; Alharbi, B.M.; Alnusaire, T.S.; et al. Jute: A Potential Candidate for Phytoremediation of Metals—A Review. Plants 2020, 9, 258. [Google Scholar] [CrossRef]
- Wang, X.J.; Li, N.; Yao, W.Q.; Yang, L.Z.; Wang, W.Q. Advances in Drought Resistance Physiological Characteristics and Transcriptome Regulation of Trees. J. Inn. Mong. Agric. Univ. (Nat. Sci. Ed.) 2023, 44, 81–88. [Google Scholar]
- Taghizadeh, M.H.; Farzam, M.; Nabati, J. Rhizobacteria facilitate physiological and biochemical drought tolerance of Halimodendron halodendron (pall.) voss. J. Arid Land 2023, 15, 205–217. [Google Scholar] [CrossRef]
- Razi, K.; Muneer, S. Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops. Crit. Rev. Biotechnol. 2021, 41, 669–691. [Google Scholar] [CrossRef] [PubMed]
- Munekage, Y.N.; Inoue, S.; Yoneda, Y.; Yokota, A. Distinct palisade tissue development processes promoted by leaf autonomous signalling and long-distance signalling in Arabidopsis thaliana. Plant Cell Environ. 2015, 38, 1116–1126. [Google Scholar] [CrossRef]
- Alshammari, W.B.; Alshammery, K.; Lotfi, S.; Altamimi, H.; Alshammari, A.; Al-Harbi, N.A.; Jakovljević, D.; Alharbi, M.H.; Moustapha, M.E.; Abd El-Moneim, D.; et al. Improvement of morphophysiological and anatomical attributes of plants under abiotic stress conditions using plant growth-promoting bacteria and safety treatments. PeerJ 2024, 12, e17286. [Google Scholar] [CrossRef]
- Liu, F.; Ali, T.; Liu, Z. Physiological, biochemical and transcriptomic analysis of the aerial parts (leaf-blade and petiole) of Asarum sieboldii responding to drought stress. Int. J. Mol. Sci. 2021, 22, 13402. [Google Scholar] [CrossRef]
- Muhammad, I.; Shalmani, A.; Ali, M.; Yang, Q.H.; Li, F.B. Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Front. Plant Sci. 2021, 11, 615942. [Google Scholar] [CrossRef]
- Alexandrina, S.; Lazár, D.; Guo, Y.; Govindjee, G. Photosynthesis: Basics, history and modelling. Ann. Bot. 2020, 126, 511–537. [Google Scholar] [CrossRef] [PubMed]
- Nelson, N.; Junge, W. Structure and energy transfer in photosystems of oxygenic photosynthesis. Annu. Rev. Biochem. 2015, 84, 659–683. [Google Scholar] [CrossRef] [PubMed]
- Chen, M. Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annu. Rev. Biochem. 2014, 83, 317–340. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Niu, D.; Liu, X. Effects of abiotic stress on chlorophyll metabolism. Plant Sci. 2024, 342, 112030. [Google Scholar] [CrossRef]
- Tikhonov, A.N. The cytochrome b6f complex: Plastoquinol oxidation and regulation of electron transport in chloroplasts. Photosynth. Res. 2024, 159, 203–227. [Google Scholar] [CrossRef]
- Neupane, P.; Bhuju, S.; Thapa, N.; Bhattarai, H.K. ATP Synthase: Structure, Function and Inhibition. Biomol. Concepts 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Nagano, T.; Nakashima, A.; Onishi, K.; Kawai, K.; Awai, Y.; Kinugasa, M.; Iwasaki, T.; Kikkawa, U.; Kamada, S. Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J. Cell Sci. 2017, 130, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Priya, M.; Dhanker, O.P.; Siddique, K.H.M.; HanumanthaRao, B.; Nair, R.M.; Pandey, S.; Singh, S.; Varshney, R.K.; Prasad, P.V.V.; Nayyar, H. Drought and heat stress-related proteins: An update about their functional relevance in imparting stress tolerance in agricultural crops. Theor. Appl. Genet. 2019, 132, 1607–1638. [Google Scholar] [CrossRef]
- Ling, H.; Zeng, X.; Guo, S. Functional insights into the late embryogenesis abundant (LEA) protein family from Dendrobium officinale (Orchidaceae) using an Escherichia coli system. Sci. Rep. 2016, 6, 39693. [Google Scholar] [CrossRef]
- Le, T.T.T.; Williams, B.; Mundree, S.G. An osmotin from the resurrection plant Tripogon loliiformis (TLOsm) confers tolerance to multiple abiotic stresses in transgenic rice. Physiol. Plant. 2017, 162, 13–34. [Google Scholar] [CrossRef]
- Feng, X.H.; Zhang, H.X.; Ali, M.; Gai, W.X.; Gong, Z.H. A small heat shock protein CaHsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum L.). Plant Physiol. Biochem. 2019, 142, 151–162. [Google Scholar] [CrossRef]
- Hu, X.; Liu, R.; Li, Y.; Wang, W.; Tai, F.; Xue, R.; Li, C. Heat shock protein 70 regulates the abscisic acid-induced antioxidant response of maize to combined drought and heat stress. Plant Growth Regul. 2010, 60, 225–235. [Google Scholar] [CrossRef]
- Jianhua, X.; Xinbo, C.; Wei, H.; Yanci, X.; Mingli, Y.; Jieming, W. Overexpressing heat-shock protein OsHSP50.2 improves drought tolerance in rice. Plant Cell Rep. 2018, 37, 1585–1595. [Google Scholar]
- Raja, V.; Qadir, S.U.; Alyemeni, M.N.; Ahmad, P. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech 2020, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Riyazuddin, R.; Nisha, N.; Singh, K.; Verma, R.; Gupta, R. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. Plant Cell Rep. 2022, 41, 519–533. [Google Scholar] [CrossRef]
- Siefritz, F. PIP1 plasma membrane aquaporins in tobacco: From cellular effects to function in plants. Plant Cell 2002, 14, 869–876. [Google Scholar] [CrossRef] [PubMed]
- Aharon, R. Overexpression of a Plasma Membrane Aquaporin in Transgenic Tobacco Improves Plant Vigor under Favorable Growth Conditions but Not under Drought or Salt Stress. Plant Cell Online 2003, 15, 439–447. [Google Scholar] [CrossRef]
- Moshelion, M.; Halperin, O.; Wallach, R.; Oren, R.; Way, D.A. Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: Crop water-use efficiency, growth and yield. Plant Cell Environ. 2015, 38, 1785–1793. [Google Scholar] [CrossRef]
- Shekoofa, A.; Sinclair, T.R. Aquaporin Activity to Improve Crop Drought Tolerance. Cells 2018, 7, 123. [Google Scholar] [CrossRef]
- Nadarajah, K.K. ROS Homeostasis in Abiotic Stress Tolerance in Plants. Int. J. Mol. Sci. 2020, 21, 5208. [Google Scholar] [CrossRef] [PubMed]
- Mukarram, M.; Choudhary, S.; Kurjak, D.; Petek, A.; Khan, M.M.A. Drought: Sensing, signalling, effects and tolerance in higher plants. Physiol. Plant. 2021, 172, 1291–1300. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jin, J.; Zhao, H.; Li, K. Drought stress tolerance analysis of Populus ussuriensis clones with different ploidies. J. For. Res. 2019, 30, 9. [Google Scholar] [CrossRef]











| Water Treatment | Field Capacity/% | Soil Mass Water Content/% |
|---|---|---|
| CK (control treatment) | 80~90 | 16.25~18.28 |
| W1 (Mild drought) | 60~70 | 12.19~14.22 |
| W2 (Moderate drought) | 40~50 | 8.12~10.16 |
| W3 (Severe drought) | 20~30 | 4.06~6.09 |
| Stress Time | Stress Gradient | Increment of Plant Height/cm | Increment of Ground Diameter/mm | The Number of New Shoots Increases/Branch | Increment of New Branch Length/cm |
|---|---|---|---|---|---|
| 30d | CK | 9.87 ± 2.29 a | 2.08 ± 0.56 a | 3.00 ± 1.00 a | 7.6 ± 1.04 a |
| W1 | 6.17 ± 1.56 b | 2.09 ± 0.82 a | 3.00 ± 1.73 a | 6.13 ± 0.50 b | |
| W2 | 4.10 ± 1.06 bc | 1.20 ± 0.38 ab | 2.00 ± 0.00 a | 5.1 ± 0.72 b | |
| W3 | 2.47 ± 1.27 c | 0.49 ± 0.35 b | 1.33 ± 0.58 a | 2.27 ± 0.49 c |
| Stress Time | Stress Gradient | Dry Weight of Root/g | Dry Weight of Root Stem/g | Dry Weight of Leaf/g | Dry Weight of Whole Plant/g | Root-Shoot Ratio |
|---|---|---|---|---|---|---|
| 30d | CK | 1.57 ± 0.36 a | 1.71 ± 0.27 ab | 2.12 ± 0.44 a | 5.39 ± 0.98 a | 0.41 ± 0.08 a |
| W1 | 1.25 ± 0.21 ab | 2.05 ± 0.06 a | 2.27 ± 0.58 a | 5.58 ± 0.81 a | 0.29 ± 0.03 a | |
| W2 | 1.14 ± 0.24 ab | 1.34 ± 0.27 bc | 1.88 ± 0.33 a | 4.36 ± 0.65 ab | 0.36 ± 0.09 a | |
| W3 | 0.96 ± 0.36 b | 0.98 ± 0.09 c | 1.08 ± 0.29 b | 3.01 ± 0.57 b | 0.46 ± 0.13 a |
| Stress Time | Stress Time | Blade Thickness/μm | Palisade Tissue Thickness/μm | Spongy Tissue Thickness/μm | Main Vascular Bundle Thickness/μm |
|---|---|---|---|---|---|
| 30d | CK | 747.57 ± 84.47 a | 337.54 ± 14.39 a | 302.09 ± 27.93 a | 335.27 ± 40.00 b |
| W1 | 804.26 ± 37.27 a | 352.70 ± 14.29 a | 230.65 ± 14.05 b | 481.14 ± 114.55 a | |
| W2 | 488.18 ± 7.60 b | 211.96 ± 8.66 b | 146.06 ± 15.82 c | 302.94 ± 19.55 b | |
| W3 | 411.74 ± 59.81 b | 162.87 ± 43.40 c | 99.29 ± 7.02 d | 292.18 ± 33.13 b |
| Transcript | Unigenes | |
|---|---|---|
| Min Length | 179 bp | 201 bp |
| Max Length | 15,719 bp | 15,719 bp |
| Median Length | 1017 bp | 505 bp |
| N50 | 1888 bp | 1632 bp |
| GC% | 40.29 | 41.23 |
| Q30 | 91% | 91% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Zhang, P.; Wang, L.; Liang, H.; Liang, J.; Lyu, R. Physiological, Biochemical and Gene Expression Analyses of Halimodendron halodendron Responding to Drought Stress. Genes 2025, 16, 1274. https://doi.org/10.3390/genes16111274
Hu H, Zhang P, Wang L, Liang H, Liang J, Lyu R. Physiological, Biochemical and Gene Expression Analyses of Halimodendron halodendron Responding to Drought Stress. Genes. 2025; 16(11):1274. https://doi.org/10.3390/genes16111274
Chicago/Turabian StyleHu, Huanqiong, Panpan Zhang, Ling Wang, Hailian Liang, Jiye Liang, and Ruiheng Lyu. 2025. "Physiological, Biochemical and Gene Expression Analyses of Halimodendron halodendron Responding to Drought Stress" Genes 16, no. 11: 1274. https://doi.org/10.3390/genes16111274
APA StyleHu, H., Zhang, P., Wang, L., Liang, H., Liang, J., & Lyu, R. (2025). Physiological, Biochemical and Gene Expression Analyses of Halimodendron halodendron Responding to Drought Stress. Genes, 16(11), 1274. https://doi.org/10.3390/genes16111274
