Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = subtractive proteomic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3816 KiB  
Article
From Proteome to Potential Drugs: Integration of Subtractive Proteomics and Ensemble Docking for Drug Repurposing against Pseudomonas aeruginosa RND Superfamily Proteins
by Gabriela Urra, Elizabeth Valdés-Muñoz, Reynier Suardiaz, Erix W. Hernández-Rodríguez, Jonathan M. Palma, Sofía E. Ríos-Rozas, Camila A. Flores-Morales, Melissa Alegría-Arcos, Osvaldo Yáñez, Luis Morales-Quintana, Vívian D’Afonseca and Daniel Bustos
Int. J. Mol. Sci. 2024, 25(15), 8027; https://doi.org/10.3390/ijms25158027 - 23 Jul 2024
Cited by 4 | Viewed by 2308
Abstract
Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat as a nosocomial pathogen due to its robust resistance mechanisms and virulence factors. This study integrates subtractive proteomics and ensemble docking to identify and characterize essential proteins in P. aeruginosa, aiming to [...] Read more.
Pseudomonas aeruginosa (P. aeruginosa) poses a significant threat as a nosocomial pathogen due to its robust resistance mechanisms and virulence factors. This study integrates subtractive proteomics and ensemble docking to identify and characterize essential proteins in P. aeruginosa, aiming to discover therapeutic targets and repurpose commercial existing drugs. Using subtractive proteomics, we refined the dataset to discard redundant proteins and minimize potential cross-interactions with human proteins and the microbiome proteins. We identified 12 key proteins, including a histidine kinase and members of the RND efflux pump family, known for their roles in antibiotic resistance, virulence, and antigenicity. Predictive modeling of the three-dimensional structures of these RND proteins and subsequent molecular ensemble-docking simulations led to the identification of MK-3207, R-428, and Suramin as promising inhibitor candidates. These compounds demonstrated high binding affinities and effective inhibition across multiple metrics. Further refinement using non-covalent interaction index methods provided deeper insights into the electronic effects in protein–ligand interactions, with Suramin exhibiting superior binding energies, suggesting its broad-spectrum inhibitory potential. Our findings confirm the critical role of RND efflux pumps in antibiotic resistance and suggest that MK-3207, R-428, and Suramin could be effectively repurposed to target these proteins. This approach highlights the potential of drug repurposing as a viable strategy to combat P. aeruginosa infections. Full article
(This article belongs to the Special Issue Antibiotic Resistance: Appearance, Evolution, and Spread 2.0)
Show Figures

Graphical abstract

25 pages, 6967 KiB  
Article
Reverse Vaccinology Approach to Identify Novel and Immunogenic Targets against Streptococcus gordonii
by Aneeqa Abid, Badr Alzahrani, Shumaila Naz, Amina Basheer, Syeda Marriam Bakhtiar, Fahad Al-Asmari, Syed Babar Jamal and Muhammad Faheem
Biology 2024, 13(7), 510; https://doi.org/10.3390/biology13070510 - 9 Jul 2024
Viewed by 2595
Abstract
Streptococcus gordonii is a gram-positive, mutualistic bacterium found in the human body. It is found in the oral cavity, upper respiratory tract, and intestines, and presents a serious clinical problem because it can lead to opportunistic infections in individuals with weakened immune systems. [...] Read more.
Streptococcus gordonii is a gram-positive, mutualistic bacterium found in the human body. It is found in the oral cavity, upper respiratory tract, and intestines, and presents a serious clinical problem because it can lead to opportunistic infections in individuals with weakened immune systems. Streptococci are the most prevalent inhabitants of oral microbial communities, and are typical oral commensals found in the human oral cavity. These streptococci, along with many other oral microbes, produce multispecies biofilms that can attach to salivary pellicle components and other oral bacteria via adhesin proteins expressed on the cell surface. Antibiotics are effective against this bacterium, but resistance against antibodies is increasing. Therefore, a more effective treatment is needed. Vaccines offer a promising method for preventing this issue. This study generated a multi-epitope vaccine against Streptococcus gordonii by targeting the completely sequenced proteomes of five strains. The vaccine targets are identified using a pangenome and subtractive proteomic approach. In the present study, 13 complete strains out of 91 strains of S. gordonii are selected. The pangenomics results revealed that out of 2835 pan genes, 1225 are core genes. Out of these 1225 core genes, 643 identified as non-homologous proteins by subtractive proteomics. A total of 20 essential proteins are predicted from non-homologous proteins. Among these 20 essential proteins, only five are identified as surface proteins. The vaccine construct is designed based on selected B- and T-cell epitopes of the antigenic proteins with the help of linkers and adjuvants. The designed vaccine is docked against TLR2. The expression of the protein is determined using in silico gene cloning. Findings concluded that Vaccine I with adjuvant shows higher interactions with TLR2, suggesting that the vaccine has the ability to induce a humoral and cell-mediated response to treat and prevent infection; this makes it promising as a vaccine against infectious diseases caused by S. gordonii. Furthermore, validation of the vaccine construct is required by in vitro and in vivo trials to check its actual potency and safety for use to prevent infectious diseases caused by S. gordonii. Full article
Show Figures

Figure 1

24 pages, 7165 KiB  
Article
Subtractive Proteomics and Reverse-Vaccinology Approaches for Novel Drug Target Identification and Chimeric Vaccine Development against Bartonella henselae Strain Houston-1
by Sudais Rahman, Chien-Chun Chiou, Shabir Ahmad, Zia Ul Islam, Tetsuya Tanaka, Abdulaziz Alouffi, Chien-Chin Chen, Mashal M. Almutairi and Abid Ali
Bioengineering 2024, 11(5), 505; https://doi.org/10.3390/bioengineering11050505 - 17 May 2024
Cited by 9 | Viewed by 4774
Abstract
Bartonella henselae is a Gram-negative bacterium causing a variety of clinical symptoms, ranging from cat-scratch disease to severe systemic infections, and it is primarily transmitted by infected fleas. Its status as an emerging zoonotic pathogen and its capacity to persist within host erythrocytes [...] Read more.
Bartonella henselae is a Gram-negative bacterium causing a variety of clinical symptoms, ranging from cat-scratch disease to severe systemic infections, and it is primarily transmitted by infected fleas. Its status as an emerging zoonotic pathogen and its capacity to persist within host erythrocytes and endothelial cells emphasize its clinical significance. Despite progress in understanding its pathogenesis, limited knowledge exists about the virulence factors and regulatory mechanisms specific to the B. henselae strain Houston-1. Exploring these aspects is crucial for targeted therapeutic strategies against this versatile pathogen. Using reverse-vaccinology-based subtractive proteomics, this research aimed to identify the most antigenic proteins for formulating a multi-epitope vaccine against the B. henselae strain Houston-1. One crucial virulent and antigenic protein, the PAS domain-containing sensor histidine kinase protein, was identified. Subsequently, the identification of B-cell and T-cell epitopes for the specified protein was carried out and the evaluated epitopes were checked for their antigenicity, allergenicity, solubility, MHC binding capability, and toxicity. The filtered epitopes were merged using linkers and an adjuvant to create a multi-epitope vaccine construct. The structure was then refined, with 92.3% of amino acids falling within the allowed regions. Docking of the human receptor (TLR4) with the vaccine construct was performed and demonstrated a binding energy of −1047.2 Kcal/mol with more interactions. Molecular dynamic simulations confirmed the stability of this docked complex, emphasizing the conformation and interactions between the molecules. Further experimental validation is necessary to evaluate its effectiveness against B. henselae. Full article
Show Figures

Figure 1

19 pages, 2136 KiB  
Article
Predominantly Orphan Secretome in the Lung Pathogen Mycobacterium abscessus Revealed by a Multipronged Growth-Phase-Driven Strategy
by Harish Chandra, Manish K. Gupta, Ying-Wai Lam and Jagjit S. Yadav
Microorganisms 2024, 12(2), 378; https://doi.org/10.3390/microorganisms12020378 - 12 Feb 2024
Viewed by 1921
Abstract
The emerging lung pathogen Mycobacterium abscessus is understudied for its virulence determinants and molecular targets for diagnosis and therapeutics. Here, we report a comprehensive secretome (600 proteins) of this species, which was identified using a multipronged strategy based on genetic/genomic, proteomic, and bioinformatic [...] Read more.
The emerging lung pathogen Mycobacterium abscessus is understudied for its virulence determinants and molecular targets for diagnosis and therapeutics. Here, we report a comprehensive secretome (600 proteins) of this species, which was identified using a multipronged strategy based on genetic/genomic, proteomic, and bioinformatic approaches. In-solution digested bottom-up proteomics from various growth phases identified a total of 517 proteins, while 2D-GE proteomics identified 33 proteins. A reporter-gene-fusion-based genomic library that was custom-generated in this study enabled the detection of 23 secretory proteins. A genome-wide survey for N-terminal signal sequences using bioinformatic tools (Psortb 2.0 and SignalP 3.0) combined with a strategy of the subtraction of lipoproteins and proteins containing multiple transmembrane domains yielded 116 secretory proteins. A homology search against the M. tuberculosis database identified nine additional secretory protein homologs that lacked a secretory signal sequence. Considering the little overlap (80 proteins) among the different approaches used, this study emphasized the importance of using a multipronged strategy for a comprehensive understanding of the secretome. Notably, the majority of the secreted proteins identified (over 50%) turned out to be “orphans” (those with no known functional homologs). The revelation of these species-specific orphan proteins offers a hitherto unexplored repertoire of potential targets for diagnostic, therapeutic, and vaccine research in this emerging lung pathogen. Full article
Show Figures

Figure 1

20 pages, 23805 KiB  
Article
Identification of Drug Targets and Their Inhibitors in Yersinia pestis Strain 91001 through Subtractive Genomics, Machine Learning, and MD Simulation Approaches
by Hamid Ali, Abdus Samad, Amar Ajmal, Amjad Ali, Ijaz Ali, Muhammad Danial, Masroor Kamal, Midrar Ullah, Riaz Ullah and Muhammad Kalim
Pharmaceuticals 2023, 16(8), 1124; https://doi.org/10.3390/ph16081124 - 9 Aug 2023
Cited by 7 | Viewed by 2653
Abstract
Yersinia pestis, the causative agent of plague, is a Gram-negative bacterium. If the plague is not properly treated it can cause rapid death of the host. Bubonic, pneumonic, and septicemic are the three types of plague described. Bubonic plague can progress to [...] Read more.
Yersinia pestis, the causative agent of plague, is a Gram-negative bacterium. If the plague is not properly treated it can cause rapid death of the host. Bubonic, pneumonic, and septicemic are the three types of plague described. Bubonic plague can progress to septicemic plague, if not diagnosed and treated on time. The mortality rate of pneumonic and septicemic plague is quite high. The symptom-defining disease is the bubo, which is a painful lymph node swelling. Almost 50% of bubonic plague leads to sepsis and death if not treated immediately with antibiotics. The host immune response is slow as compared to other bacterial infections. Clinical isolates of Yersinia pestis revealed resistance to many antibiotics such as tetracycline, spectinomycin, kanamycin, streptomycin, minocycline, chloramphenicol, and sulfonamides. Drug discovery is a time-consuming process. It always takes ten to fifteen years to bring a single drug to the market. In this regard, in silico subtractive proteomics is an accurate, rapid, and cost-effective approach for the discovery of drug targets. An ideal drug target must be essential to the pathogen’s survival and must be absent in the host. Machine learning approaches are more accurate as compared to traditional virtual screening. In this study, k-nearest neighbor (kNN) and support vector machine (SVM) were used to predict the active hits against the beta-ketoacyl-ACP synthase III drug target predicted by the subtractive genomics approach. Among the 1012 compounds of the South African Natural Products database, 11 hits were predicted as active. Further, the active hits were docked against the active site of beta-ketoacyl-ACP synthase III. Out of the total 11 active hits, the 3 lowest docking score hits that showed strong interaction with the drug target were shortlisted along with the standard drug and were simulated for 100 ns. The MD simulation revealed that all the shortlisted compounds display stable behavior and the compounds formed stable complexes with the drug target. These compounds may have the potential to inhibit the beta-ketoacyl-ACP synthase III drug target and can help to combat Yersinia pestis-related infections. The dataset and the source codes are freely available on GitHub. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

25 pages, 8900 KiB  
Article
In Silico Subtractive Proteomics and Molecular Docking Approaches for the Identification of Novel Inhibitors against Streptococcus pneumoniae Strain D39
by Ashwag Shami, Nada K. Alharbi, Fatimah A. Al-Saeed, Aiman A. Alsaegh, Khalid M. Al Syaad, Ibrahim H. A. Abd El-Rahim, Yasser Sabry Mostafa and Ahmed Ezzat Ahmed
Life 2023, 13(5), 1128; https://doi.org/10.3390/life13051128 - 4 May 2023
Cited by 7 | Viewed by 3901
Abstract
Streptococcus pneumoniae is a notorious Gram-positive pathogen present asymptomatically in the nasophayrnx of humans. According to the World Health Organization (W.H.O), pneumococcus causes approximately one million deaths yearly. Antibiotic resistance in S. pneumoniae is raising considerable concern around the world. There is an [...] Read more.
Streptococcus pneumoniae is a notorious Gram-positive pathogen present asymptomatically in the nasophayrnx of humans. According to the World Health Organization (W.H.O), pneumococcus causes approximately one million deaths yearly. Antibiotic resistance in S. pneumoniae is raising considerable concern around the world. There is an immediate need to address the major issues that have arisen as a result of persistent infections caused by S. pneumoniae. In the present study, subtractive proteomics was used in which the entire proteome of the pathogen consisting of 1947 proteins is effectively decreased to a finite number of possible targets. Various kinds of bioinformatics tools and software were applied for the discovery of novel inhibitors. The CD-HIT analysis revealed 1887 non-redundant sequences from the entire proteome. These non-redundant proteins were submitted to the BLASTp against the human proteome and 1423 proteins were screened as non-homologous. Further, databases of essential genes (DEGG) and J browser identified almost 171 essential proteins. Moreover, non-homologous, essential proteins were subjected in KEGG Pathway Database which shortlisted six unique proteins. In addition, the subcellular localization of these unique proteins was checked and cytoplasmic proteins were chosen for the druggability analysis, which resulted in three proteins, namely DNA binding response regulator (SPD_1085), UDP-N-acetylmuramate—L-alanine Ligase (SPD_1349) and RNA polymerase sigma factor (SPD_0958), which can act as a promising potent drug candidate to limit the toxicity caused by S. pneumoniae. The 3D structures of these proteins were predicted by Swiss Model, utilizing the homology modeling approach. Later, molecular docking by PyRx software 0.8 version was used to screen a library of phytochemicals retrieved from PubChem and ZINC databases and already approved drugs from DrugBank database against novel druggable targets to check their binding affinity with receptor proteins. The top two molecules from each receptor protein were selected based on the binding affinity, RMSD value, and the highest conformation. Finally, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses were carried out by utilizing the SWISS ADME and Protox tools. This research supported the discovery of cost-effective drugs against S. pneumoniae. However, more in vivo/in vitro research should be conducted on these targets to investigate their pharmacological efficacy and their function as efficient inhibitors. Full article
(This article belongs to the Special Issue Microbiome, Microorganisms and Skin)
Show Figures

Figure 1

24 pages, 3892 KiB  
Article
Proteome-Wide Screening of Potential Vaccine Targets against Brucella melitensis
by Mahnoor Malik, Saifullah Khan, Asad Ullah, Muhammad Hassan, Mahboob ul Haq, Sajjad Ahmad, Alhanouf I. Al-Harbi, Samira Sanami, Syed Ainul Abideen, Muhammad Irfan and Muhammad Khurram
Vaccines 2023, 11(2), 263; https://doi.org/10.3390/vaccines11020263 - 25 Jan 2023
Cited by 37 | Viewed by 3651
Abstract
The ongoing antibiotic-resistance crisis is becoming a global problem affecting public health. Urgent efforts are required to design novel therapeutics against pathogenic bacterial species. Brucella melitensis is an etiological agent of brucellosis, which mostly affects sheep and goats but several cases have also [...] Read more.
The ongoing antibiotic-resistance crisis is becoming a global problem affecting public health. Urgent efforts are required to design novel therapeutics against pathogenic bacterial species. Brucella melitensis is an etiological agent of brucellosis, which mostly affects sheep and goats but several cases have also been reported in cattle, water buffalo, yaks and dogs. Infected animals also represent the major source of infection for humans. Development of safer and effective vaccines for brucellosis remains a priority to support disease control and eradication in animals and to prevent infection to humans. In this research study, we designed an in-silico multi-epitopes vaccine for B. melitensis using computational approaches. The pathogen core proteome was screened for good vaccine candidates using subtractive proteomics, reverse vaccinology and immunoinformatic tools. In total, 10 proteins: catalase; siderophore ABC transporter substrate-binding protein; pyridoxamine 5′-phosphate oxidase; superoxide dismutase; peptidylprolyl isomerase; superoxide dismutase family protein; septation protein A; hypothetical protein; binding-protein-dependent transport systems inner membrane component; and 4-hydroxy-2-oxoheptanedioate aldolase were selected for epitopes prediction. To induce cellular and antibody base immune responses, the vaccine must comprise both B and T-cells epitopes. The epitopes were next screened for antigenicity, allergic nature and water solubility and the probable antigenic, non-allergic, water-soluble and non-toxic nine epitopes were shortlisted for multi-epitopes vaccine construction. The designed vaccine construct comprises 274 amino acid long sequences having a molecular weight of 28.14 kDa and instability index of 27.62. The vaccine construct was further assessed for binding efficacy with immune cell receptors. Docking results revealed that the designed vaccine had good binding potency with selected immune cell receptors. Furthermore, vaccine-MHC-I, vaccine-MHC-II and vaccine-TLR-4 complexes were opted based on a least-binding energy score of −5.48 kcal/mol, 0.64 kcal/mol and −2.69 kcal/mol. Those selected were then energy refined and subjected to simulation studies to understand dynamic movements of the docked complexes. The docking results were further validated through MMPBSA and MMGBSA analyses. The MMPBSA calculated −235.18 kcal/mol, −206.79 kcal/mol, and −215.73 kcal/mol net binding free energy, while MMGBSA estimated −259.48 kcal/mol, −206.79 kcal/mol and −215.73 kcal/mol for TLR-4, MHC-I and MHC-II complexes, respectively. These findings were validated by water-swap and entropy calculations. Overall, the designed vaccine construct can evoke proper immune responses and the construct could be helpful for experimental researchers in formulation of a protective vaccine against the targeted pathogen for both animal and human use. Full article
(This article belongs to the Special Issue Vaccines Against Antibiotic Resistant Bacteria: From Bench to Bedside)
Show Figures

Figure 1

14 pages, 2280 KiB  
Article
Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica
by Sara Aiman, A. Khuzaim Alzahrani, Fawad Ali, Abida, Mohd. Imran, Mehnaz Kamal, Muhammad Usman, Hamdy Khamees Thabet, Chunhua Li and Asifullah Khan
Microorganisms 2023, 11(1), 228; https://doi.org/10.3390/microorganisms11010228 - 16 Jan 2023
Cited by 5 | Viewed by 4633
Abstract
Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic [...] Read more.
Leishmania tropica is a tropical parasite causing cutaneous leishmaniasis (CL) in humans. Leishmaniasis is a serious public health threat, affecting an estimated 350 million people in 98 countries. The global rise in antileishmanial drug resistance has triggered the need to explore novel therapeutic strategies against this parasite. In the present study, we utilized the recently available multidrug resistant L. tropica strain proteome data repository to identify alternative therapeutic drug targets based on comparative subtractive proteomic and druggability analyses. Additionally, small drug-like compounds were scanned against novel targets based on virtual screening and ADME profiling. The analysis unveiled 496 essential cellular proteins of L. tropica that were nonhomologous to the human proteome set. The druggability analyses prioritized nine parasite-specific druggable proteins essential for the parasite’s basic cellular survival, growth, and virulence. These prioritized proteins were identified to have appropriate binding pockets to anchor small drug-like compounds. Among these, UDPase and PCNA were prioritized as the top-ranked druggable proteins. The pharmacophore-based virtual screening and ADME profiling predicted MolPort-000-730-162 and MolPort-020-232-354 as the top hit drug-like compounds from the Pharmit resource to inhibit L. tropica UDPase and PCNA, respectively. The alternative drug targets and drug-like molecules predicted in the current study lay the groundwork for developing novel antileishmanial therapies. Full article
(This article belongs to the Special Issue Leishmaniasis: Interventions Used to Control Infection)
Show Figures

Figure 1

31 pages, 11916 KiB  
Article
Identification of a Potential Vaccine against Treponema pallidum Using Subtractive Proteomics and Reverse-Vaccinology Approaches
by Siyab Khan, Muhammad Rizwan, Adnan Zeb, Muhammad Alaa Eldeen, Said Hassan, Ashfaq Ur Rehman, Refaat A. Eid, Mohamed Samir A. Zaki, Ghadeer M. Albadrani, Ahmed E. Altyar, Nehal Ahmed Talaat Nouh, Mohamed M. Abdel-Daim and Amin Ullah
Vaccines 2023, 11(1), 72; https://doi.org/10.3390/vaccines11010072 - 28 Dec 2022
Cited by 13 | Viewed by 3833
Abstract
Syphilis, a sexually transmitted infection, is a deadly disease caused by Treponema pallidum. It is a Gram-negative spirochete that can infect nearly every organ of the human body. It can be transmitted both sexually and perinatally. Since syphilis is the second most [...] Read more.
Syphilis, a sexually transmitted infection, is a deadly disease caused by Treponema pallidum. It is a Gram-negative spirochete that can infect nearly every organ of the human body. It can be transmitted both sexually and perinatally. Since syphilis is the second most fatal sexually transmitted disease after AIDS, an efficient vaccine candidate is needed to establish long-term protection against infections by T. pallidum. This study used reverse-vaccinology-based immunoinformatic pathway subtractive proteomics to find the best antigenic proteins for multi-epitope vaccine production. Six essential virulent and antigenic proteins were identified, including the membrane lipoprotein TpN32 (UniProt ID: O07950), DNA translocase FtsK (UniProt ID: O83964), Protein Soj homolog (UniProt ID: O83296), site-determining protein (UniProt ID: F7IVD2), ABC transporter, ATP-binding protein (UniProt ID: O83930), and Sugar ABC superfamily ATP-binding cassette transporter, ABC protein (UniProt ID: O83782). We found that the multiepitope subunit vaccine consisting of 4 CTL, 4 HTL, and 11 B-cell epitopes mixed with the adjuvant TLR-2 agonist ESAT6 has potent antigenic characteristics and does not induce an allergic response. Before being docked at Toll-like receptors 2 and 4, the developed vaccine was modeled, improved, and validated. Docking studies revealed significant binding interactions, whereas molecular dynamics simulations demonstrated its stability. Furthermore, the immune system simulation indicated significant and long-lasting immunological responses. The vaccine was then reverse-transcribed into a DNA sequence and cloned into the pET28a (+) vector to validate translational activity as well as the microbial production process. The vaccine developed in this study requires further scientific consensus before it can be used against T. pallidum to confirm its safety and efficacy. Full article
(This article belongs to the Special Issue Advances in Epitope-Based Vaccine Design)
Show Figures

Figure 1

10 pages, 1618 KiB  
Article
A Subtraction Genomics-Based Approach to Identify and Characterize New Drug Targets in Bordetella pertussis: Whooping Cough
by Alam Jamal, Sadaf Jahan, Hani Choudhry, Irfan A. Rather and Mohammad Imran Khan
Vaccines 2022, 10(11), 1915; https://doi.org/10.3390/vaccines10111915 - 12 Nov 2022
Cited by 8 | Viewed by 2522
Abstract
Bordetella pertussis is a Gram-negative bacterium known to cause pertussis or whooping cough. The disease affects the respiratory system and is contagious. Pertussis causes high mortality among infants aged less than one-year-old, although it can affect anyone of any age. Globally, 16 million [...] Read more.
Bordetella pertussis is a Gram-negative bacterium known to cause pertussis or whooping cough. The disease affects the respiratory system and is contagious. Pertussis causes high mortality among infants aged less than one-year-old, although it can affect anyone of any age. Globally, 16 million cases of pertussis were reported in 2008, 95% of which were in developing nations, and approximately 195,000 children died from the disease. Under a computational subtractive genomics approach, the total proteome of a pathogen is gently trimmed down to a few potential drug targets. First, from NCBI, we obtained the pathogen proteins followed by CD hit for removal of duplicate proteins. The BLAST step was applied to find non-similar proteins, and then, we applied BLAST to these non-similar bacterial proteins with DEG to find essential bacterial proteins. After this, to find the location, these vital proteins were screened via PSORTb; the majority of proteins were in cytoplasm. The KASS server was used to determine the involvement of these proteins in the metabolic pathways of bacteria, and KEGG was applied to find the unique metabolic pathways of the pathogen. Finally, we applied BLAST to these vital, unique, and non-similar proteins with FDA-approved drug targets, and four proteins of the B. pertussis strain B1917 were identified that might be powerful drug targets. A variety of therapeutic molecules could be designed to target these proteins in order to treat infections caused by bacteria. Full article
Show Figures

Figure 1

17 pages, 3728 KiB  
Article
Integrated Pangenome Analysis and Pharmacophore Modeling Revealed Potential Novel Inhibitors against Enterobacter xiangfangensis
by Mohammed S. Almuhayawi, Soad K. Al Jaouni, Samy Selim, Dalal Hussien M. Alkhalifah, Romina Alina Marc, Sidra Aslam and Peter Poczai
Int. J. Environ. Res. Public Health 2022, 19(22), 14812; https://doi.org/10.3390/ijerph192214812 - 10 Nov 2022
Cited by 4 | Viewed by 2476
Abstract
Enterobacter xiangfangensis is a novel, multidrug-resistant pathogen belonging to the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. However, there is currently no registered E. xiangfangensis drug on the market that has been shown to be effective. Hence, [...] Read more.
Enterobacter xiangfangensis is a novel, multidrug-resistant pathogen belonging to the Enterobacter genus and has the ability to acquire resistance to multiple antibiotic classes. However, there is currently no registered E. xiangfangensis drug on the market that has been shown to be effective. Hence, there is an urgent need to identify novel therapeutic targets and effective treatments for E. xiangfangensis. In the current study, a bacterial pan genome analysis and subtractive proteomics approach was employed to the core proteomes of six strains of E. xiangfangensis using several bioinformatic tools, software, and servers. However, 2611 nonredundant proteins were predicted from the 21,720 core proteins of core proteome. Out of 2611 nonredundant proteins, 372 were obtained from Geptop2.0 as essential proteins. After the subtractive proteomics and subcellular localization analysis, only 133 proteins were found in cytoplasm. All cytoplasmic proteins were examined using BLASTp against the virulence factor database, which classifies 20 therapeutic targets as virulent. Out of these 20, 3 cytoplasmic proteins: ferric iron uptake transcriptional regulator (FUR), UDP-2,3diacylglucosamine diphosphatase (UDP), and lipid-A-disaccharide synthase (lpxB) were chosen as potential drug targets. These drug targets are important for bacterial survival, virulence, and growth and could be used as therapeutic targets. More than 2500 plant chemicals were used to molecularly dock these proteins. Furthermore, the lowest-binding energetic docked compounds were found. The top five hit compounds, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin demonstrated optimum binding against all three target proteins. Furthermore, molecular dynamics simulations and MM/GBSA analyses validated the stability of ligand–protein complexes and revealed that these compounds could serve as potential E. xiangfangensis replication inhibitors. Consequently, this study marks a significant step forward in the creation of new and powerful drugs against E. xiangfangensis. Future studies should validate these targets experimentally to prove their function in E. xiangfangensis survival and virulence. Full article
(This article belongs to the Special Issue Clinical Microbiology and Infectious Diseases)
Show Figures

Figure 1

20 pages, 5731 KiB  
Article
Computational Design of a Chimeric Vaccine against Plesiomonas shigelloides Using Pan-Genome and Reverse Vaccinology
by Mahnoor Mushtaq, Saifullah Khan, Muhammad Hassan, Alhanouf I. Al-Harbi, Alaa R. Hameed, Khadeeja Khan, Saba Ismail, Muhammad Irfan and Sajjad Ahmad
Vaccines 2022, 10(11), 1886; https://doi.org/10.3390/vaccines10111886 - 8 Nov 2022
Cited by 12 | Viewed by 2609
Abstract
The swift emergence of antibiotic resistance (AR) in bacterial pathogens to make themselves adaptable to changing environments has become an alarming health issue. To prevent AR infection, many ways can be accomplished such as by decreasing the misuse of antibiotics in human and [...] Read more.
The swift emergence of antibiotic resistance (AR) in bacterial pathogens to make themselves adaptable to changing environments has become an alarming health issue. To prevent AR infection, many ways can be accomplished such as by decreasing the misuse of antibiotics in human and animal medicine. Among these AR bacterial species, Plesiomonas shigelloides is one of the etiological agents of intestinal infection in humans. It is a gram-negative rod-shaped bacterium that is highly resistant to several classes of antibiotics, and no licensed vaccine against the aforementioned pathogen is available. Hence, substantial efforts are required to screen protective antigens from the pathogen whole genome that can be subjected easily to experimental evaluations. Here, we employed a reverse vaccinology (RV) approach to design a multi-antigenic epitopes based vaccine against P. shigelloides. The complete genomes of P. shigelloides were retrieved from the National Center for Biotechnological Information (NCBI) that on average consist of 5226 proteins. The complete proteomes were subjected to different subtractive proteomics filters, and in the results of that analysis, out of total proteins, 2399 were revealed as non-redundant and 2827 as redundant proteins. The non-redundant proteins were further checked for subcellular localization analysis, in which three were localized in the extracellular matrix, eight were outer membrane, and 13 were found in the periplasmic membrane. All surface localized proteins were found to be virulent. Out of a total of 24 virulent proteins, three proteins (flagellar hook protein (FlgE), hypothetical protein, and TonB-dependent hemoglobin/transferrin/lactoferrin family receptor protein) were considered as potential vaccine targets and subjected to epitopes prediction. The predicted epitopes were further examined for antigenicity, toxicity, and solubility. A total of 10 epitopes were selected (GFKESRAEF, VQVPTEAGQ, KINENGVVV, ENKALSQET, QGYASANDE, RLNPTDSRW, TLDYRLNPT, RVTKKQSDK, GEREGKNRP, RDKKTNQPL). The selected epitopes were linked with each other via specific GPGPG linkers in order to design a multi-epitopes vaccine construct, and linked with cholera toxin B subunit adjuvant to make the designed vaccine construct more efficient in terms of antigenicity. The 3D structure of the vaccine construct was modeled ab initio as no appropriate template was available. Furthermore, molecular docking was carried out to check the interaction affinity of the designed vaccine with major histocompatibility complex (MHC-)I (PDB ID: 1L1Y), MHC-II (1KG0), and toll-like receptor 4 ((TLR-4) (PDB: 4G8A). Molecular dynamic simulation was applied to evaluate the dynamic behavior of vaccine-receptor complexes. Lastly, the binding free energies of the vaccine with receptors were estimated by using MMPB/GBSA methods. All of the aforementioned analyses concluded that the designed vaccine molecule as a good candidate to be used in experimental studies to disclose its immune protective efficacy in animal models. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Figure 1

23 pages, 7680 KiB  
Article
Integrated Bioinformatics-Based Subtractive Genomics Approach to Decipher the Therapeutic Drug Target and Its Possible Intervention against Brucellosis
by Kanwal Khan, Munirah Sulaiman Othman Alhar, Muhammad Naseer Abbas, Syed Qamar Abbas, Mohsin Kazi, Saeed Ahmad Khan, Abdul Sadiq, Syed Shams ul Hassan, Simona Bungau and Khurshid Jalal
Bioengineering 2022, 9(11), 633; https://doi.org/10.3390/bioengineering9110633 - 1 Nov 2022
Cited by 17 | Viewed by 3331
Abstract
Brucella suis, one of the causative agents of brucellosis, is Gram-negative intracellular bacteria that may be found all over the globe and it is a significant facultative zoonotic pathogen found in livestock. It may adapt to a phagocytic environment, reproduce, and develop [...] Read more.
Brucella suis, one of the causative agents of brucellosis, is Gram-negative intracellular bacteria that may be found all over the globe and it is a significant facultative zoonotic pathogen found in livestock. It may adapt to a phagocytic environment, reproduce, and develop resistance to harmful environments inside host cells, which is a crucial part of the Brucella life cycle making it a worldwide menace. The molecular underpinnings of Brucella pathogenicity have been substantially elucidated due to comprehensive methods such as proteomics. Therefore, we aim to explore the complete Brucella suis proteome to prioritize the novel proteins as drug targets via subtractive proteo-genomics analysis, an effort to conjecture the existence of distinct pathways in the development of brucellosis. Consequently, 38 unique metabolic pathways having 503 proteins were observed while among these 503 proteins, the non-homologs (n = 421), essential (n = 350), drug-like (n = 114), virulence (n = 45), resistance (n = 42), and unique to pathogen proteins were retrieved from Brucella suis. The applied subsequent hierarchical shortlisting resulted in a protein, i.e., isocitrate lyase, that may act as potential drug target, which was finalized after the extensive literature survey. The interacting partners for these shortlisted drug targets were identified through the STRING database. Moreover, structure-based studies were also performed on isocitrate lyase to further analyze its function. For that purpose, ~18,000 ZINC compounds were screened to identify new potent drug candidates against isocitrate lyase for brucellosis. It resulted in the shortlisting of six compounds, i.e., ZINC95543764, ZINC02688148, ZINC20115475, ZINC04232055, ZINC04231816, and ZINC04259566 that potentially inhibit isocitrate lyase. However, the ADMET profiling showed that all compounds fulfill ADMET properties except for ZINC20115475 showing positive Ames activity; whereas, ZINC02688148, ZINC04259566, ZINC04232055, and ZINC04231816 showed hepatoxicity while all compounds were observed to have no skin sensitization. In light of these parameters, we recommend ZINC95543764 compound for further experimental studies. According to the present research, which uses subtractive genomics, proteins that might serve as therapeutic targets and potential lead options for eradicating brucellosis have been narrowed down. Full article
Show Figures

Figure 1

15 pages, 2445 KiB  
Article
Inferring Therapeutic Targets in Candida albicans and Possible Inhibition through Natural Products: A Binding and Physiological Based Pharmacokinetics Snapshot
by Zarrin Basharat, Kanwal Khan, Khurshid Jalal, Sulaiman Mohammed Alnasser, Sania Majeed and Marium Zehra
Life 2022, 12(11), 1743; https://doi.org/10.3390/life12111743 - 30 Oct 2022
Cited by 3 | Viewed by 2469
Abstract
Despite being responsible for invasive infections, fungal pathogens have been underrepresented in computer aided therapeutic target mining and drug design. Excess of Candida albicans causes candidiasis, causative of thrush and vaginal infection due to off-balance. In this study, we attempted to mine drug [...] Read more.
Despite being responsible for invasive infections, fungal pathogens have been underrepresented in computer aided therapeutic target mining and drug design. Excess of Candida albicans causes candidiasis, causative of thrush and vaginal infection due to off-balance. In this study, we attempted to mine drug targets (n = 46) using a subtractive proteomic approach in this pathogenic yeast and screen natural products with inhibition potential against fructose-bisphosphate aldolase (FBA) of the C. albicans. The top compound selected on the basis of best docking score from traditional Indian medicine/Ayurvedic library was (4-Hydroxybenzyl)thiocarbamic acid, from the ZINC FBA inhibitor library was ZINC13507461 (IUPAC name: [(2R)-2-hydroxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate), and from traditional Tibetan medicine/Sowa rigpa was Chelerythrine (IUPAC name: 1,2-Dimethoxy-12-methyl-9H-[1,3]benzodioxolo[5,6-c]phenanthridin-12-ium), compared to the control (2E)-1-(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine. No Ames toxicity was predicted for prioritized compounds while control depicted this toxicity. (4-Hydroxybenzyl)thiocarbamic acid showed hepatotoxicity, while Chelerythrine depicted hERG inhibition, which can lead to QT syndrome, so we recommend ZINC13507461 for further testing in lab. Pharmacological based pharmacokinetic modeling revealed that it has low bioavailability and hence, absorption in healthy state. In cirrhosis and renal impairment, absorption and plasma accumulation increased so we recommend further investigation into this occurrence and recommend high dosage in further tests to increase bioavailability. Full article
(This article belongs to the Section Biochemistry, Biophysics and Computational Biology)
Show Figures

Figure 1

24 pages, 3867 KiB  
Article
Genome-Based Multi-Antigenic Epitopes Vaccine Construct Designing against Staphylococcus hominis Using Reverse Vaccinology and Biophysical Approaches
by Mahreen Nawaz, Asad Ullah, Alhanouf I. Al-Harbi, Mahboob Ul Haq, Alaa R. Hameed, Sajjad Ahmad, Aamir Aziz, Khadija Raziq, Saifullah Khan, Muhammad Irfan and Riaz Muhammad
Vaccines 2022, 10(10), 1729; https://doi.org/10.3390/vaccines10101729 - 16 Oct 2022
Cited by 10 | Viewed by 3875
Abstract
Staphylococcus hominis is a Gram-positive bacterium from the staphylococcus genus; it is also a member of coagulase-negative staphylococci because of its opportunistic nature and ability to cause life-threatening bloodstream infections in immunocompromised patients. Gram-positive and opportunistic bacteria have become a major concern for [...] Read more.
Staphylococcus hominis is a Gram-positive bacterium from the staphylococcus genus; it is also a member of coagulase-negative staphylococci because of its opportunistic nature and ability to cause life-threatening bloodstream infections in immunocompromised patients. Gram-positive and opportunistic bacteria have become a major concern for the medical community. It has also drawn the attention of scientists due to the evaluation of immune evasion tactics and the development of multidrug-resistant strains. This prompted the need to explore novel therapeutic approaches as an alternative to antibiotics. The current study aimed to develop a broad-spectrum, multi-epitope vaccine to control bacterial infections and reduce the burden on healthcare systems. A computational framework was designed to filter the immunogenic potent vaccine candidate. This framework consists of pan-genomics, subtractive proteomics, and immunoinformatics approaches to prioritize vaccine candidates. A total of 12,285 core proteins were obtained using a pan-genome analysis of all strains. The screening of the core proteins resulted in the selection of only two proteins for the next epitope prediction phase. Eleven B-cell derived T-cell epitopes were selected that met the criteria of different immunoinformatics approaches such as allergenicity, antigenicity, immunogenicity, and toxicity. A vaccine construct was formulated using EAAAK and GPGPG linkers and a cholera toxin B subunit. This formulated vaccine construct was further used for downward analysis. The vaccine was loop refined and improved for structure stability through disulfide engineering. For an efficient expression, the codons were optimized as per the usage pattern of the E coli (K12) expression system. The top three refined docked complexes of the vaccine that docked with the MHC-I, MHC-II, and TLR-4 receptors were selected, which proved the best binding potential of the vaccine with immune receptors; this was followed by molecular dynamic simulations. The results indicate the best intermolecular bonding between immune receptors and vaccine epitopes and that they are exposed to the host’s immune system. Finally, the binding energies were calculated to confirm the binding stability of the docked complexes. This work aimed to provide a manageable list of immunogenic and antigenic epitopes that could be used as potent vaccine candidates for experimental in vivo and in vitro studies. Full article
(This article belongs to the Special Issue Advances in Epitope-Based Vaccine Design)
Show Figures

Figure 1

Back to TopTop