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Abstract: Enterobacter xiangfangensis is a novel, multidrug-resistant pathogen belonging to the Enter-
obacter genus and has the ability to acquire resistance to multiple antibiotic classes. However, there
is currently no registered E. xiangfangensis drug on the market that has been shown to be effective.
Hence, there is an urgent need to identify novel therapeutic targets and effective treatments for
E. xiangfangensis. In the current study, a bacterial pan genome analysis and subtractive proteomics
approach was employed to the core proteomes of six strains of E. xiangfangensis using several bioin-
formatic tools, software, and servers. However, 2611 nonredundant proteins were predicted from
the 21,720 core proteins of core proteome. Out of 2611 nonredundant proteins, 372 were obtained
from Geptop2.0 as essential proteins. After the subtractive proteomics and subcellular localization
analysis, only 133 proteins were found in cytoplasm. All cytoplasmic proteins were examined using
BLASTp against the virulence factor database, which classifies 20 therapeutic targets as virulent.
Out of these 20, 3 cytoplasmic proteins: ferric iron uptake transcriptional regulator (FUR), UDP-
2,3diacylglucosamine diphosphatase (UDP), and lipid-A-disaccharide synthase (lpxB) were chosen as
potential drug targets. These drug targets are important for bacterial survival, virulence, and growth
and could be used as therapeutic targets. More than 2500 plant chemicals were used to molecularly
dock these proteins. Furthermore, the lowest-binding energetic docked compounds were found. The
top five hit compounds, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin demonstrated
optimum binding against all three target proteins. Furthermore, molecular dynamics simulations
and MM/GBSA analyses validated the stability of ligand–protein complexes and revealed that these
compounds could serve as potential E. xiangfangensis replication inhibitors. Consequently, this study
marks a significant step forward in the creation of new and powerful drugs against E. xiangfangensis.
Future studies should validate these targets experimentally to prove their function in E. xiangfangensis
survival and virulence.

Keywords: Enterobacter xiangfangensis; antibiotic-resistant; infection; in silico; therapeutic target;
virulent; subtractive proteomic
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1. Introduction

Enterobacter is a genus of facultatively anaerobic, rod-shaped, Gram-negative bacteria
of the Enterobacteriaceae family that is mainly associated with healthcare-related infections.
Currently, there are 22 different types of Enterobacter [1]. Many previously successful
antibiotics have become increasingly ineffective against Enterobacter. The primary mech-
anism of antibiotic resistance in Enterobacter species is the presence of beta-lactamases.
Beta-lactamases can hydrolyze the beta-lactam ring found in cephalosporins and peni-
cillin. The existence of this enzyme has contributed to an increase in resistant Enterobacter
pathogens [2]. The World Health Organization published a list of bacteria that were resis-
tant to medicines in 2017, and carbapenem-resistant enterobacteriaceae was included in the
critical priority group for the urgent need to discover new antibiotics [3].

Enterobacter xiangfangensis is a motile, Gram-negative bacterium with a size of
0.8–1 1–1.5 m. It is a common pathogen in China [4]. Many hospital-acquired infections are
caused by E. xiangfangensis, which has a high level of resistance to broad-spectrum antibi-
otics [5]. The bacteria can also obtain carbapenemase genes from other Enterobacter species,
according to reports [6]. There is no appropriate vaccination for E. xiangfangensis, which ex-
acerbates the global issue [7]. Recommendations, such as adapting antibiotic management
programs and improving diagnostic decision-making processes, and follow-up can increase
the efficacy of infectious disease therapy and slow the emergence of bacterial resistance [8].
Hence, the development of an effective treatment strategy for E. xiangfangensis, as well as
potent drugs and novel therapeutic targets, is critical.

Traditional methods for finding new drugs are costly and time-consuming, but newer
technology has overcome these drawbacks. Through the use of computational analytic
techniques, such as core genome and subtractive genomics, the modern genomic era has
made it possible to search for potential therapeutic targets at the genome level in bacteria [9].
Subtractive genomic and core genome approaches have been developed to discover the core
essential genomes that are distinct from the human genome [10–12] and further integration
with bioinformatics provided much better results [11,13,14]. These methods have been
used to combat a variety of human pathogens, including Shigella sonnei, Staphylococcus
aureus, Mycoplasma pneumonia, Streptococcus Pyogenes, Staphylococcus saprophyticus, and
Chlamydia trachomatis [15–20]. This research will use in silico methods to connect the
proteome and genomic data of the E. xiangfangensis species in order to pinpoint potential
drugs. It can be used to classify effective inhibitors, assisting in the discovery of drugs that
can limit pathogenic progression [21]. A pan genome approach was used in the current
study to compare the proteomes from the six E. xiangfangensis genomes, and only the
genes that were shared by all E. xiangfangensis strains were chosen. The core genome was
subsequently filtered based on bacterial essentiality and host nonhomology. Among these
proteins, cytoplasmic proteins were found to be good drug targets. A library of 2500 plant
compounds was used for virtual screening on these nonhost homologous and essential
protein targets. The proposed innovative lead druggable compounds that can bind to the
indicated target proteins can then be produced based on the identified putative targets.

2. Materials and Methods
2.1. Retrieval and Pan Genome Analysis of Bacterial Proteome

E. xiangfangensis proteomes were downloaded from the NCBI database and then
subjected to OrthoFinder program (University of Oxford, Oxford, UK) without altering the
default parameters [22]. OrthoFinder performs calculations based on BLAST searches. So,
internal scripts were developed for the finding of core genes in all understudied strains.
The core sequences were then taken into consideration for additional downward analysis.
Previously isolated E. xiangfangensis (isolated from ear, blood, urine, and sputum) was
kept in frozen (−9 ◦C) stocks that had been provided with 20% (v/v) glycerol. The strains
were identified using different tests, such as the Gram reaction, cell morphology, and
catalase assays. 16S rDNA sequencing analysis and the API 50 CHL test (bio-Merieux,
Marcy-l’Étoile, France) were used to identify the strains
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2.2. Redundancy Analysis and Identification of Essential Proteins

Paralogous genes, which are duplicated genes, are typically not necessary for the
development of drug. The CD-HIT web server was employed at 80% efficiency to eliminate
redundant proteins and extract non-redundant core sequences [23]. It is believed that
essential proteins are the basis of life and are required by organisms for their survival.
Essential proteins were obtained through the use of the Geptop 2.0 server [24].

2.3. Homology Analysis and Subcellular Localization

The thresholds used were bits score of less than 100 and an e-value less than 0.0001, and
the BLOSUM 62 matrix was chosen. Using BLASTp, a tool in NCBI-BLAST that identifies
nonhomologous sequences, the proteome of Homo sapiens and the essential proteins of
E. xiangfangensis were compared [25]. Predicting a protein’s precise subcellular location is
a straightforward and very inexpensive method to learn about its function. Furthermore,
because proteins can be located at various places, localization is a key part of creating
any therapeutic agent. Subcellular localization of proteins from E. xiangfangensis was
determined by Psortb [26]. Psortb is a web-based tool for pinpointing a protein’s subcellular
location, including whether it is periplasmic, cytoplasmic membrane, or cytoplasmic.

2.4. Identification of Virulent Proteins

All cytoplasmic proteins were tested for virulence using the virulence factor database
(VFDB), which determines the pathogenic virulence of the target proteins [27]. These
proteins were considered to be virulence-inducing when they met the following criteria: bit
score of more than 100 and sequence identity of more than 30%.

2.5. Druggability Analysis and Drug Target Prioritization

Druggability testing was performed on selected virulent proteins. DrugBank is a
helpful resource for tracking proteins that are affected by inhibitors and drugs employing a
BLAST analysis with an e-value of 10−5 [28]. Several factors are used to determine poten-
tial therapeutics, including transmembrane helix, molecular weight, stability, molecular
functions, and biological processes. TMHMM-2.0 was used to perform transmembrane
helix analysis [19]. Since 0 transmembrane helix proteins are easy to express and clone,
they were chosen for future research. ProtParam tool was used to calculate the molecular
weight (MW) and stability [29,30]. Proteins with stable physicochemical properties and
MW < 100 kDa are thought to be the best therapeutic targets. Molecular functions and
biological processes were predicted by InterProScan server [31].

2.6. Structure Prediction and Preparation

The 3D structure of all target proteins was predicted through I-TASSER server [32].
To evaluate how accurately the model predicts, I-TASSER offers confidence scores. The
ProsAweb [33], Verify 3D [34], RAMPAGE [13], and ERRAT [35] tools were further used to
validate the quality of all 3D structures. RAMPAGE, which conducts Ramachandran plot
analysis, provides a 3D structural validity score for the target proteins. A score of ≥80 was
regarded as satisfactory. For further confirmation, ERRAT, an online program that offers
details about the protein structure with problematic areas, was used. The quality factor
≥37% was regarded as good.

Predicted 3D structures were prepared for docking using the Molecular Operating
Environment (MOE) [36]. Along with the careful algorithm, this tool is quite durable. It
also predicts the root mean square deviation (RMSD) and computed energies of docked
molecules in addition to the top-ranking positions. These three-dimensional structures
underwent 3D protonation and energy minimization, after which they served as templates
for molecular docking.
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2.7. Ligands Retrieval

A total of 2500 plant compounds were retrieved from Pubchem, Zinc database, MAPS,
and MPD3 database [37,38]. The partial charges of these compounds were then computed
and their energies were minimized via an algorithm for energy minimization with default
parameters. The .mdb file was used to store all minimized structures. These ready-made
ligands were then utilized as input data for molecular docking.

2.8. Molecular Docking and MD Simulation

The molecular docking in the MOE tool was then performed on the minimized struc-
tures of the ligands and targeted proteins [37]. After docking, we looked at the best poses
for hydrogen bonding/interactions and calculated RMSD in MOE. Chimera was used to
investigate the best dock molecules’ orientation [38]. MD simulation is critical for determin-
ing how docked complexes keep their structural stability and dynamics. MD simulations
of antibacterial drugs bound to target proteins were performed using the AMBER18 soft-
ware [39]. To create a neutral system, H2O molecules were first used to dissolve the top
docked complexes, and then counter ions were added. The complexes were then enclosed
in a water box that was generated using the TIP3P solvent model and had a thickness
of 12 Å [40]. Periodic boundary conditions were used to model the docked complexes.
Furthermore, a boundary value of 8 Å was assigned for nonbounded interactions. After
500 cycles of minimizing water molecules, the complete system was reduced to 1000 cycles.
Then, each system’s temperature was slowly raised to 300 K. Using the NPT ensemble,
the systems were balanced for 100 ps. During the equilibration of counter ions and water
molecules, solutes in the first phase were restrained for 50 ps, and protein side chains were
then permitted to relax. An MD simulation lasting 100 ns at 300 K and 1 atm was carried
out using the NPT ensemble. The SHAKE algorithm was used to manage the covalent
and hydrogen bonds [41], and Langevin dynamics were used to control the system’s tem-
perature [42]. AMBER’s CPPTRAJ was used to generate an RMSD plot to confirm that
the MD simulation was converging. The initial structure was used as a baseline [43–45].
The ligand RMSD method was used to determine the structural flexibility of ligands [46].
The complex’s three-dimensional packing and compactness were investigated in RoG. The
average root mean square distance between the average geometric position of an atom and
the average position of that atom in a given dynamic is measured by the RMSF [47].

2.9. Binding Free Energy Calculation

The MM-GBSA method in AMBER 18 was used to calculate the binding free energies
(∆Gtol) of E. xiangfangensis proteins complexed with the most promising hit compounds.
In short, 10,000 snapshots were made from the last 20 ns of stable paths for each sys-
tem, with a 2 ps gap between each one. The sum of the molecular mechanics binding
energy (EMM) and the solvation free energy (Gsol) equals the total binding free energy, as
illustrated below.

∆Egas = ∆Eele + ∆Eint + ∆Evdw

∆Gsol = ∆Gp + ∆GNp

∆Gtol = ∆EMM + ∆Gsol

where EMM is subdivided further into electrostatic energy (∆Eele), van der Waals energy
(∆Evdw), and internal energy (∆Eint). The sum of the polar (∆Gp) and nonpolar (∆GNp)
components determines the total solvation free energy (∆Gsol). The MM-GBSA method
has been proven to be accurate in the assessment of binding-free antibacterial inhibitors.

2.10. Physiochemical Profiling

Drug-likeness and molecular descriptors of phytochemicals with the highest docking
scores were examined through the Molinspiration server, which makes predictions based on
the “rule of five” [48,49]. Criteria include having a molecular mass less than 500 Daltons, an
analogue P value less than 5, 5 hydrogen bond donors, and up to 10 acceptors of hydrogen
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bonds. AdmetSAR can be used to analyze the pharmacokinetic characteristics of substances,
including their distribution, metabolism, adsorption, toxicity, and excretion [50].

3. Results
3.1. E. xiangfangensis Proteome Retrieval and Identification of Essential Nonhomologous Proteins

In this study, six complete proteomes of E. xiangfangensis were obtained from the NCBI
database: (i) GCA_003999755.1, (ii) GCA_000814225.1, (iii) GCA_001729785.1,
(iv) GCA_003964795.2, (v) GCA_014931695.1, and (vi) GCA_000807405.4). Several fil-
ters were used in the retrieval step, including complete proteomes, humans as hosts, and
incomplete proteomes. Core proteome of E. xiangfangensis was extracted from the six
complete proteomes using the OrthoFinder program. The pathogen has 21,720 core pro-
teins, according to the OrthoFinder results, while the CD-HIT analysis found that there are
19,109 redundant proteins and 2611 nonredundant proteins in the pathogen core proteins.
The essential E. xiangfangensis proteins were predicted using Geptop2.0 (Chengdu, China).
Out of 2611 nonredundant proteins, 372 were obtained from Geptop2.0 as essential proteins.
Nonhomologous analysis was used to find protein targets that are absent from the host
(Homo sapiens) in the 372 essential proteins. E. xiangfangensis proteins and the proteome of
Homo sapiens were compared. Only 195 proteins were discovered to be similar to human
proteins as a result of this analysis, with the remaining 177 proteins being classified as
nonhomologous due to their lack of significant resemblance.

3.2. Subcellular Localization

Proteins can be identified as vaccine or drug targets based on their localization.
The 177 proteins chosen for this study were also examined for subcellular localization.
According to the findings, 133 of the 177 proteins were located in the cytoplasm. The
133 cytoplasmic proteins were added for further examination because they can be used as
drug targets.

3.3. Identification of Virulent Proteins and Druggability Analysis

All cytoplasmic proteins were examined using BLASTp against the virulence factor
database, which classifies 20 therapeutic targets as virulent. Another crucial characteristic
for possible therapeutic targets is druggability. Druggable targets are proteins that have
already been targeted by drugs, while novel targets are proteins that have yet to be targeted.
According to the findings, seven proteins did not match any of the DrugBank drug targets,
while the remaining thirteen proteins did. These seven proteins were, therefore, viewed as
novel targets and became the topic of additional research.

3.4. Drug Target Prioritization

Several factors were taken into consideration to identify the potential therapeutic
targets. Transmembrane helices of novel drug targets were predicted by TMHMM server.
Proteins having 0 transmembrane helices are considered as good drug targets. Out of
seven novel targets, six proteins were observed to have 0 transmembrane helices. Molecular
weight and stability of these six proteins were checked by Protaparam server. Out of six,
four proteins were found to be stable and have MW < 100 kDa. Drug discovery depends
on understanding the biological process, molecular function, and structural information of
proteins. According to functional prediction results of InterProScan, three proteins were
screened as drug targets. Details of these three drug targets are listed in Table 1.
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Table 1. Details of selected drug targets.

Proteins Subcellular
Localization

Transmembrane
Helices

Molecular
Weight Stability Molecular Function Biological Processes

Ferric iron uptake
transcriptional
regulator (FUR)

Cytoplasm 0 16,765.81 Stable
DNA-binding
transcription
factor activity

regulation of
transcription,

DNA-templated

UDP-
2,3diacylglucosamine

diphosphatase
(UDP)

Cytoplasm 0 26,832.02 Stable pyrophosphatase activity
hydrolase activity

lipid A biosynthetic
process

lipid-A-disaccharide
synthase

(lpxB)
Cytoplasm 0 42,472.56 Stable lipid-A-disaccharide

synthase activity
lipid A biosynthetic

process

3.5. Structure Prediction

3D structures of three target proteins were predicted by I-Tasser (Figure 1). ProsAweb,
Verify 3D, RAMPAGE, and ERRAT were used to validate the quality factor of 3D structures
of target proteins. As shown in Table 2, the quality factors/compatibility score predicted
by tools were ≥80. These scores indicate that our proteins’ 3D structures are suitable
for docking.
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Table 2. Structural validation of target proteins.

Scores FUR Protein UDP Protein lpxB Protein

C-score −6.02 −4.98 −7.87

Estimated TM-score 0.91 ± 0.05 0.85 ± 0.09 0.74 ± 0.08

ProSA

Z Score −7.65 −8.35 −6.98

Verify 3D

Compatibility Score 81.71 83.89 80.03

Errat

Quality Factor 91.76 87.56 90.67

Ramachandran plot (%)

Core 90.2% 83.7% 88.7%

Allowed 6.6% 12.8% 7.9%

General 2.0% 1.4% 2.9%

Disallowed 1.9% 1.5% 1.8%
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3.6. Molecular Docking

Docking against three drug targets with 2500 plant compounds was carried out using
the MOE tool. After redocking the top 100 compounds into target protein binding pockets,
the top five molecules were selected. The interaction residues (Table 3) of all three target
proteins were found to bind with great affinity to adenine, Mollugin, Xanthohumol C,
Sakuranetin, and Toosendanin (Figure 2).
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Adenine bound to FUR protein with a binding score of −18.7 kcal/mol by creating
hydrogen bonds with the side chains of Asn A72,Phe A73,Gly A75,Glu A74, whereas
Mollugin is bound with a binding value of −16.2 kcal/mol by making hydrogen bonds
with Glu A74,Arg B70,Gly A76,Asn A72,Gly A75. Adenine and Mollugin bind strongly to
FUR active residues, followed by Xanthohumol C, Sakuranetin, and Toosendanin, which
have binding scores of −14.5 kcal/mol, −13.6 kcal/mol, and −13.1 kcal/mol, respectively
(Table 3). All ligands, excluding Sakuranetin, created strong hydrogen bonds with the
conserved Gly A75 (Figure 3).
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Figure 3. Interaction mechanisms and binding modes of novel FUR protein inhibitors. A 3D close
view into the binding mode of (A) Adenine, (C) Mollugin, (E) Xanthohumol C, (G) Sakuranetin,
and (I) Toosendanin. 2D interaction analysis of (B) Adenine, (D) Mollugin, (F) Xanthohumol C,
(H) Sakuranetin, and (J) Toosendanin.
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Table 3. Docking statistics of target proteins against plant compounds.

Compounds
Name and ID

FUR Protein UDP Protein lpxB Protein

Binding
Affinity

Inhibition
Constant RMSD Interacting

Residues
Binding
Affinity

Inhibition
Constant RMSD Interacting

Residues
Binding
Affinity

Inhibition
Constant RMSD Interacting

Residues

Adenine (190) −18.7 67.1 µM 0.9 Asn A72,Phe A73,
Gly A75,Glu A74 −11.6 58.7 µM 2.5

Cys A119,His
A195,Tyr A125,Lys

A167,Asp
A122,Met A172

−15.3 69.9 µM 1.8 Phe A153,Trp
B301,Lys B304

Mollugin
(124219) −16.2 72.2 µM 1.2

Glu A74,Arg B70,
Gly A76,Asn
A72,Gly A75

−19.8 75.2 µM 0.7
Tyr A125,Cys

A119,Met A172,His
A197

−18.8 89.6 µM 1.1 Trp B301,Phe
A153,Lys B 304

xanthohumol C
(10338075) −14.5 85.2 µM 1.8 Tyr B128,Asn

B72,Gly A75, −15.3 80.1 µM 1.5 Ala A153,Ala
A45,Met A156 −16.2 72.7 µM 0.8

Leu A147,Leu
B314,Phe A153,Trp

B301

Sakuranetin
(73571) −13.6 76.4 µM 0.8 Tyr B128,Asn

A72,Asp B63 −14.9 90.3 µM 2.1
Ser A160,Asn

A79,Phe A 128,Ala
A163,Asn A164

−19.3 80.2 µM 2.3
Phe A153,Lys

B304,Leu B317,Lys
B308

Toosendanin
(115060) −13.1 93.1 µM 2.0

His A132,Thr B69,
Gly A75,GluA74,

Asp B63
−17.6 63.9 µM 0.9

Asn A164,Arg
A80,Asn A79,His

A10
−14.3 70.4 µM 2.9

Lys B308,Arg
A156,Ser A124,Trp

B301
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Similarly, Adenine, Mollugin, Xanthohumol C, Sakuranetin, and Toosendanin have
been found to bind through significant hydrogen bonds in UDP protein, with binding
scores of −11.6 kcal/mol, −19.8 kcal/mol, −15.3 kcal/mol, −14.9 kcal/mol, and −17.6
kcal/mol, respectively. As illustrated in Table 3 and Figure 4, all of the active site’s critical
residues function as electron donors in the development of a H-bond network.
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Similarly, the top five inhibitors (Adenine, Mollugin, Xanthohumol C, Sakuranetin,
and Toosendanin) found to inhibit FUR and UDP proteins were also found to inhibit
lpxB protein. The binding energies of the five active compounds ranged from −14.3 to
−19.3 kcal/mol. Most compounds formed hydrogen bonds with Lys B304, Trp B301,
and Phe A153, indicating that these compounds may play a role in disease management.
Hydrogen interactions between the lpxB protein residues’ side chains and backbone atoms
stabilized the inhibitors spatially within the pocket (Figure 5).

All of the top five inhibitors formed strong bonds with functionally and structurally
important interacting sites of the E. xiangfangensis proteins. The compounds identified in
this study may have additive or synergistic anti-E. xiangfangensis effects.
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view into the binding mode of (A) Adenine, (C) Mollugin, (E) Xanthohumol C, (G) Sakuranetin,
and (I) Toosendanin. 2D interaction analysis of (B) Adenine, (D) Mollugin, (F) Xanthohumol C,
(H) Sakuranetin, and (J) Toosendanin.

3.7. MD Simulation

To obtain a deeper comprehension of the dynamics of targets in the presence of
screened hits, a 100-ns molecular dynamic simulation was performed. Statistical indicators,
such as RMSD, RMSF, and radius of gyration were used to confirm the structural stability
of docked complexes. The root mean square deviations (RMSD) of carbon alpha atoms
were examined first.

3.8. Root Mean Square Deviations (RMSD)

The RMSD value deviates from the intermolecular conformation of the initially docked
complex, indicating structural modifications [49]. A uniform RMSD plot reveals increased
intermolecular strength and system structural equilibrium as simulation time progresses
(Figure 6). During the first 50 ns of simulation time, the Adenine/FUR complex exhibited
stability. Following this, the complex exhibited a slight deviation of 0.5 Ao for the next
85 ns, after which it remained stable (Figure 6). The second complex (Mollugin/UDP)
showed minor deviations on its first jump and achieved stability, as illustrated in green
color in Figure 6. The third complex (Sakuranetin/IPXB) exhibited a modest deviation
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of 0.3 Ao between 55 and 70 ns but otherwise remained stable, as shown by the red line
(Figure 6).
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3.9. Root Mean Square Fluctuations (RMSF)

After that, the root mean square fluctuations (RMSF) of the simulated complexes were
computed. RMSF analysis facilitates the identification of flexible residues in particular
proteins and the comprehension of how these differences affect the stability of complexes
(Figure 7). Graphs of the Adenine/FUR complex indicate minor fluctuations and showed
overall stability up to residue number 450, while second Mollugin/UDP complex and third
Sakuranetin/IPXB complex showed a deviation between the residue numbers 325 to 425,
as indicated in red and green color, respectively, in Figure 7.
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3.10. Radius of Gyration (RoG)

During the simulation, Rg analysis was used to measure structural equilibrium and
protein density. The best Rg value for globular proteins should be low, but the best Rg value
for protein forms with more turns and loops could be much higher, as shown in Figure 8.
Rog values of the complexes are follows: Adenine/FUR complex (maximum, 95.45 Å;
mean, 95.12 Å), Mollugin/UDP (maximum, 99.82 Å; mean, 95.12 Å), and Sakuranetin/IPXB
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(maximum, 96.03 Å; mean, 94.25 Å). During the simulation period, no notable reduction in
compactness was detected in any of the complexes.
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3.11. Binding Free Energy Calculations

MMGBSA/MMPBSA methods were used to estimate binding free energies to learn
more about how well the complexes bind to E. xiangfangensis proteins. Stable complexes
are made because all the binding interactions are energetically good. In all complexes,
gas-phase energy predominates the system energy, with van der Waals playing a significant
part and electrostatic energy playing a minor role. The polar solvation energy is shown to
be unfavorable in binding, but the nonpolar energy appears to be advantageous in complex
equilibration. Table 4 lists the complexes’ binding energies in detail.

Table 4. Binding energies of best docked compounds.

Energy Component Adenine Mollugin Xanthohumol C Sakuranetin Toosendanin

Van der Waals −45.61 −34.06 −39.19 −42.12 −44.71

Electrostatic −41.95 −26.23 −37.69 −34.69 −33.96

Polar solvation 59.79 45.10 52.45 55.02 65.08

Nonpolar solvation −4.40 −6.90 −5.32 −4.49 −7.70

Net gas phase −78.23 −70.79 −61.12 −45.05 −59.45

Net solvation 60.28 55.17 46.41 61.77 45.31

Net complex energy −35.52 −50.18 −45.41 −42.21 −50.45

3.12. Drug Scan/ADMET

Based on Lipinski’s Rules of Five, Molinspiration predicted the drug-likeness of five
compounds. The selected candidates did not violate the “rule of five” and displayed drug-
like qualities in Table 5. The admetSAR server was used to examine the pharmacokinetic
properties of all of the candidate compounds, and the findings are shown in Table 6.

Table 5. Drug-likeness properties of potential compounds.

Ligands Molecular Weight Molecular Formula Hydrogen Bond Donor Hydrogen Bond Acceptor XLogP3 Heavy Atom Count

Adenine 135.13 C5H5N5 2 4 −0.1 10

Mollugin 284.31 C17H16O4 1 4 4.1 21

xanthohumol C 352.4 C21H20O5 2 5 4.4 26

Sakuranetin 286.28 C16H14O5 2 5 2.7 21

Toosendanin 574.6 C30H38O11 3 10 0.7 41
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Table 6. ADMET properties of the finest docked compounds.

Compounds Adenine Mollugin Xanthohumol C Sakuranetin Toosendanin

Absorption/Distribution

Blood–Brain Barrier No No No No No

Log S −410 −3.70 −4.12 −4.76 −4.94

GI Absorption High Low High High Low

Caco-2 permeability −5.18 −8.98 −6.71 −6.54 −7.72

Bioavailability Score 0.55 0.55 0.55 0.55 0.17

Metabolism

P-gp substrate No No Yes No No

CYP1A2 inhibitor No Yes No Yes Yes

CYP2C19 inhibitor No No Yes Yes Yes

CYP2C9 inhibitor No Yes No No Yes

CYP2D6 inhibitor No Yes Yes No No

CYP3A4 inhibitor No Yes Yes Yes Yes

Toxicity

AMES Toxicity Nill Nill Nill Nill Nill

Carcinogenicity None None None None None

Immunogenicity NT NT NT NT NT

Acute Oral Toxicity NT NT NT NT NT

NT: Nontoxic.

4. Discussion

Enterobacter xiangfangensis is a new bacterial pathogen from the Enterobacter genus
that can become resistant to many antibiotics. To deal with this potentially fatal situation,
it is urgent that drugs to treat E. xiangfangensis should be developed. The identification
of therapeutic targets is a vital step in computer-aided drug design methods [51]. Recent
advances in computational biology and bioinformatics have produced a variety of methods
for in silico analysis and drug design, which has reduced the time and cost of trial and
error in the drug development process [7].

The democratization of sequencing has made it simpler to generate genomic sequence
data, so multiple or pan genome analyses are being used to identify key therapeutic pro-
teins in the bacterial species, making the therapeutic candidates universal. This replaces the
practice of using a single genome as a reference [52]. To obtain accurate gene information
and take into consideration genetic variation within species, a pan-genomics-mediated
technique was used in this study. The current study screened for potential novel putative
therapeutic targets in E. xiangfangensis using a pan genome and subtractive genomics strat-
egy. The potential therapeutic targets of several bacteria, including Stenotrophomonas mal-
tophilia [53], Mycobacterium tuberculosis [54], and Streptococcus gallolyticus [55] have also been
predicted using these methods. Although, some additional analyses have been performed
in our study that make it innovative from other studies, such as prediction of molecular
function and biological processes, transmembrane helices, and druggability analysis.

In this study, six fully sequenced proteomes of E. xiangfangensis were downloaded
from NCBI and their pan genome analysis was performed. The core proteome, which
contains 21,720 proteins, was evaluated with CD-HIT to identify any duplication, resulting
in a total of 2611 nonredundant proteins. The analysis of essential proteins is critical for
the development of antipathogen drugs. Essential proteins are required for the pathogen’s
growth, survival, adaptability, and replication. The same function is carried out by these
proteins in several organisms, and they have evolutionary relationships with other proteins.
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Pathogens may die if essential proteins are targeted. Hence, 372 essential proteins were
identified among nonredundant proteins. Shahid et al. discovered 394 essential proteins in
Shigella sonnei, Mehmood et al. discovered 208 essential proteins in Mycoplasma pneumoniae,
and Rehman et al. discovered 302 essential proteins in Streptococcus Pyogenes using this
method [7,56,57]. These genes could be related to humans. Thus, targeting such genes
can disrupt human metabolism and be fatal. Cross-reactivity and adverse events can
be avoided by selecting nonhomologous proteins that are not present in homo sapiens.
So, 177 nonhomologous proteins were screened to prevent such unfavorable conditions
and toxicity. Virulent factors aid bacteria in evading host defenses and contribute to
pathogenicity, making them suitable therapeutic targets. A total of 20 virulent proteins
were identified from 177 nonhomologous proteins. Protein localization is closely related
to biological function, making it crucial to predict where proteins will be found within
cells. Proteins can typically be found in five major locations: the outer membrane, the
plasma membrane, the extracellular membrane, the periplasm, and the cytoplasm. Protein
localization can be used to assess whether a protein is a drug or vaccine target; cytoplasmic
proteins are therapeutic targets. Hence, three cytoplasmic proteins: ferric iron uptake
transcriptional regulator (FUR), UDP-2,3diacylglucosamine diphosphatase (UDP), and
lipid-A-disaccharide synthase (lpxB) were identified as drug targets on the basis of several
factors, including druggability, transmembrane helices, molecular weight, stability, and
molecular and biological function. Tertiary structures of target proteins were predicted,
assessed, and verified.

Molecular docking has become a lightning rod for validating the stability between
compounds and targets [58–60]. Molecular docking approach was employed to identify the
compounds with the best residue interactions with the target proteins. Out of 5000 docked
molecules, 5 molecules that interact with all three proteins were chosen: Adenine, Mollugin,
Xanthohumol C, Sakuranetin, and Toosendanin, based on a low score and a high number
of interacting residues. Drug probability and the molecular profile of these five compounds
were evaluated using “Lipinski’s Rule of Five”. They all followed “Lipinski’s Rule of Five”.

Afterwards, the compounds were tested for human intestine absorption (HIA), BBB
penetration, and AMES monitoring. By analyzing the ADMET features, it is possible to
anticipate the toxicity level, behavior, and outcome of a drug candidate in the human
body [61]. A candidate’s likelihood of passing across the blood–brain barrier, metabolism,
subcellular localization, intestinal absorption, and—most notably—degree of harm it can
inflict on the body are all provided by this test [62]. These compounds have no deleterious
absorption effects., according to their ADMET profiles. Additionally, when compared to
the AMES test, none of the compounds displayed any toxicity or mutagenic effects.

Hence, the novel drug targets identified in this study may be highly valuable in the
drug therapeutic field for designing new formulations of drug molecules and discovering
inhibitors to control E. xiangfangensis function, although further experimental research is
still required to validate these drug targets.

5. Conclusions

The novel bacteria Enterobacter xiangfangensis is susceptible to developing drug re-
sistance. Therefore, it is critical that drugs should be developed to treat E. xiangfangensis.
The current study used pan genome analysis to discover 21,720 key proteins from six E.
xiangfangensis strains using an in-silico technique. Twenty targets were ultimately chosen
after subtractive genomics and the identification of essential genes. Utilizing 3D structural
information and drug prioritization, three possible therapeutic targets were prioritized
among these proteins. Additionally, active molecules were found using molecular docking
analysis, and the top five active molecules were picked based on the number of interac-
tions, binding free energy, and drug score. The discovered novel drug targets might have
advanced to the early phases of the drug design phase for the potential screening of new
therapeutic candidates and are, consequently, suggested as an antibacterial therapy. Drug
target experimental evaluation and subsequent drug molecule design against any target is
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a time-demanding and expensive job. Hence, the findings of our study will substantially
aid the therapeutic development process against E. xiangfangensis. However, computa-
tional analyses have limits; hence, more in vitro and in vivo investigations to evaluate the
inhibitory ability of chosen promising candidates against E. xiangfangensis are necessary.
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