A Subtraction Genomics-Based Approach to Identify and Characterize New Drug Targets in Bordetella pertussis: Whooping Cough
Abstract
:1. Introduction
2. Materials and Methods
2.1. Complete Bacterial Proteome Retrieve
2.2. Finding Duplicate Proteins
2.3. Detection of Non-Similar Proteins
2.4. Detection of Vital Proteins in B. pertussis
2.5. The KEGG Metabolic Pathways Investigation
2.6. Subcellular Location Foretelling
2.7. Hypothetical Proteins Family Prediction
2.8. Chosen Sequences Draggability Potential
2.9. Human Gut-Metagenomes Screening
3. Results and Discussion
3.1. Subcellular Location of Essential and Non-Hologous Proteins
3.2. Vital, Non-Homologous and Hypothetical Proteins Family Predection
3.3. KEGG Metabolic Pathways Analysis
3.4. Shortlisted Sequences Drug Ability Capacity
3.5. Human Gut-Metagenomes Screening
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NCBI | National Center for Biotechnology Information |
CD-HIT | Cluster Database at High Identity with Tolerance |
BLAST | Basic Local Alignment Search Tool |
DEG | Database of Essential Genes |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
FDA | Food and Drug Administration |
References
- Schellekens, J.; von König, C.H.; Gardner, P. Pertussis sources of infection and routes of transmission in the vaccination era. Pediatr. Infect. Dis. J. 2005, 24, S19–S24. [Google Scholar] [CrossRef] [PubMed]
- Black, R.E.; Cousens, S.; Johnson, H.L.; Lawn, J.E.; Rudan, I.; Bassani, D.G.; Jha, P.; Campbell, H.; Walker, C.F.; Cibulskis, R.; et al. Global, regional, and national causes of child mortality in 2008: A systematic analysis. Lancet 2010, 375, 1969–1987. [Google Scholar] [CrossRef]
- Mooi, F.R. Bordetella pertussis and vaccination: The persistence of a genetically monomorphic pathogen. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2010, 10, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Spokes, P.J.; Quinn, H.E.; McAnulty, J.M. Review of the 2008-2009 pertussis epidemic in NSW: Notifications and hospitalisations. New South Wales Public Health Bull. 2010, 21, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Li, Y.; Hou, T.; Liu, X.; Liu, Y.; Yu, T.; Chen, Z.; Gao, Y.; Li, H.; He, Q. Appearance of macrolide-resistant Bordetella pertussis strains in China. Antimicrob. Agents Chemother. 2013, 57, 5193–5194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, P.; Wang, C.; Tian, H.; Kang, Z.; Zeng, M. Bordetella pertussis Infection in Infants and Young Children in Shanghai, China, 2016-2017: Clinical Features, Genotype Variations of Antigenic Genes and Macrolides Resistance. Pediatr. Infect. Dis. J. 2019, 38, 370–376. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Wang, L.; Xin, T.; He, Q. High-resolution melting analysis for the detection of two erythromycin-resistant Bordetella pertussis strains carried by healthy schoolchildren in China. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2013, 19, E260–E262. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Cui, Z.; Li, Y.; Hou, T.; Liu, X.; Xi, Y.; Liu, Y.; Li, H.; He, Q. High prevalence of erythromycin-resistant Bordetella pertussis in Xi’an, China. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2014, 20, O825–O830. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yao, K.; Ma, X.; Shi, W.; Yuan, L.; Yang, Y. Variation in Bordetella pertussis Susceptibility to Erythromycin and Virulence-Related Genotype Changes in China (1970–2014). PLoS ONE 2015, 10, e0138941. [Google Scholar] [CrossRef] [Green Version]
- Pechère, J.C. Macrolide resistance mechanisms in Gram-positive cocci. Int. J. Antimicrob. Agents 2001, 18 (Suppl. S1), S25–S28. [Google Scholar] [CrossRef]
- Bartkus, J.M.; Juni, B.A.; Ehresmann, K.; Miller, C.A.; Sanden, G.N.; Cassiday, P.K.; Saubolle, M.; Lee, B.; Long, J.; Harrison, A.R., Jr.; et al. Identification of a mutation associated with erythromycin resistance in Bordetella pertussis: Implications for surveillance of antimicrobial resistance. J. Clin. Microbiol. 2003, 41, 1167–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Wang, Z.; Zhang, J.; Li, F.; Luan, Y.; Li, H.; Li, Y.; He, Q. Pertussis Outbreak in a Primary School in China: Infection and Transmission of the Macrolide-resistant Bordetella pertussis. Pediatr. Infect. Dis. J. 2018, 37, e145–e148. [Google Scholar] [CrossRef]
- Matsuoka, M.; Suzuki, Y.; Garcia, I.E.; Fafutis-Morris, M.; Vargas-González, A.; Carreño-Martinez, C.; Fukushima, Y.; Nakajima, C. Possible mode of emergence for drug-resistant leprosy is revealed by an analysis of samples from Mexico. Jpn. J. Infect. Dis. 2010, 63, 412–416. [Google Scholar] [CrossRef] [PubMed]
- Barh, D.; Tiwari, S.; Jain, N.; Ali, A.; Santos, A.R.; Misra, A.N.; Azevedo, V.; Kumar, A. In silico subtractive genomics for target identification in human bacterial pathogens. Drug Dev. Res. 2011, 72, 162–177. [Google Scholar] [CrossRef]
- Uddin, R.; Saeed, K.; Khan, W.; Azam, S.S.; Wadood, A. Metabolic pathway analysis approach: Identification of novel therapeutic target against methicillin resistant Staphylococcus aureus. Gene 2015, 556, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Wadood, A.; Jamal, A.; Riaz, M.; Khan, A.; Uddin, R.; Jelani, M.; Azam, S.S. Subtractive genome analysis for in silico identification and characterization of novel drug targets in Streptococcus pneumonia strain JJA. Microb. Pathog. 2018, 115, 194–198. [Google Scholar] [CrossRef]
- Tatusova, T.A.; Karsch-Mizrachi, I.; Ostell, J.A. Complete genomes in WWW Entrez: Data representation and analysis. Bioinformatics 1999, 15, 536–543. [Google Scholar] [CrossRef] [Green Version]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [Green Version]
- Haag, N.L.; Velk, K.K.; Wu, C. In silico identification of drug targets in methicillin/multidrug-resistant Staphylococcusaureus. Int. J. Adv. Life Sci 2012, 4, 21–32. [Google Scholar]
- Zhang, R.; Ou, H.Y.; Zhang, C.T. DEG: A database of essential genes. Nucleic Acids Res. 2004, 32, D271–D272. [Google Scholar] [CrossRef] [PubMed]
- Moriya, Y.; Itoh, M.; Okuda, S.; Yoshizawa, A.C.; Kanehisa, M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007, 35, W182–W185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef] [Green Version]
- Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; et al. DrugBank 3.0: A comprehensive resource for ’omics’ research on drugs. Nucleic Acids Res. 2011, 39, D1035–D1041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, G.D.; Lewis, J.D. Analysis of the human gut microbiome and association with disease. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2013, 11, 774–777. [Google Scholar] [CrossRef] [Green Version]
- Silhavy, T.J.; Kahne, D.; Walker, S. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol. 2010, 2, a000414. [Google Scholar] [CrossRef] [PubMed]
- Maiti, B.; Dubey, S.; Munang’andu, H.M.; Karunasagar, I.; Karunasagar, I.; Evensen, Ø. Application of Outer Membrane Protein-Based Vaccines Against Major Bacterial Fish Pathogens in India. Front. Immunol. 2020, 11, 1362. [Google Scholar] [CrossRef] [PubMed]
S. No. | Steps | B. pertussis |
---|---|---|
1 | Complete set of proteins | 3550 |
2 | Extracted paralogous (>80% identity) in CD-HIT | 3085 |
3 | No. of proteins non-similar to host using BLASTp (E-value 10−3) | 2025 |
4 | Vital protein sequences in DEG (E-value 10−5) | 708 |
5 | No. of vital membrane proteins (PSORT) | 221 |
6 | No. hypothetical protein as vital proteins (InterProScan) | 19 |
7 | Vital proteins involved in metabolic pathways (KEGG) | 354 |
8 | Essential drug target proteins (DBD) | 08 |
Protein ID | Protein Name | Drug Bank ID | Drug Bank Organism |
---|---|---|---|
P00525 | src-p60 phosphoprotein | DB08901 DB01268 | Rous sarcoma virus |
A0A385 | Neuraminidase | DB00558 DB06614 | Influenza A virus |
P00526 | src-p60 phosphoprotein | DB00171 DB00619 DB06616 DB04868 | Rous sarcoma virus |
P01827 | Ig heavy chain V-A2 region | DB00098 | Oryctolagus cuniculus |
P01920 | MHCHLA-DC3-beta | DB00254 | Homo sapiens |
Q31259 | MHC H2-IA-alpha | DB00071 | Mus musculus |
P01920 | MHC HLA-DC3-beta | DB00071 | Homo sapiens |
P25020 | src-p60 phosphoprotein | DB05294 | Rous sarcoma virus |
S. No. | Non-Homologue Essential and Non-Gut Flora Proteins | Virulence |
---|---|---|
1 | Neuraminidase | Yes |
2 | Ig heavy chain V-A2 region BS-1 | Yes |
3 | MHC HLA-DC3-beta | Yes |
4 | MHC H2-IA-alpha | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jamal, A.; Jahan, S.; Choudhry, H.; Rather, I.A.; Khan, M.I. A Subtraction Genomics-Based Approach to Identify and Characterize New Drug Targets in Bordetella pertussis: Whooping Cough. Vaccines 2022, 10, 1915. https://doi.org/10.3390/vaccines10111915
Jamal A, Jahan S, Choudhry H, Rather IA, Khan MI. A Subtraction Genomics-Based Approach to Identify and Characterize New Drug Targets in Bordetella pertussis: Whooping Cough. Vaccines. 2022; 10(11):1915. https://doi.org/10.3390/vaccines10111915
Chicago/Turabian StyleJamal, Alam, Sadaf Jahan, Hani Choudhry, Irfan A. Rather, and Mohammad Imran Khan. 2022. "A Subtraction Genomics-Based Approach to Identify and Characterize New Drug Targets in Bordetella pertussis: Whooping Cough" Vaccines 10, no. 11: 1915. https://doi.org/10.3390/vaccines10111915
APA StyleJamal, A., Jahan, S., Choudhry, H., Rather, I. A., & Khan, M. I. (2022). A Subtraction Genomics-Based Approach to Identify and Characterize New Drug Targets in Bordetella pertussis: Whooping Cough. Vaccines, 10(11), 1915. https://doi.org/10.3390/vaccines10111915