Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protein Sequence Retrieval
2.2. Essential Proteins Identification
2.3. Human Host and Gut Nonhomolog Proteins Identification
2.4. DrugBank Database Screening
2.5. Structure Homologs Search
2.6. Druggability Analyses
2.7. Pharmacophore-Based Virtual Screening
2.8. ADME Analysis
3. Results
3.1. Essential Proteins Identification
3.2. Human Host Nonhomologous Proteins
3.3. DrugBank Database Scanning
3.4. Druggability Analysis
3.5. Pharmacophore-Based Virtual Screening
3.6. ADME Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rostamian, M.; Niknam, H.M. Leishmania tropica: What we know from its experimental models. Adv. Parasitol. 2019, 104, 1–38. [Google Scholar] [PubMed]
- McGwire, B.S.; Satoskar, A.R. Leishmaniasis: Clinical syndromes and treatment. QJM 2014, 107, 7–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azim, M.; Khan, S.A.; Ullah, S.; Ullah, S.; Anjum, S.I. Therapeutic advances in the topical treatment of cutaneous leishmaniasis: A review. PLoS Negl. Trop. Dis. 2021, 15, e0009099. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Sajid, R.; Gul, S.; Hussain, A.; Zehri, M.T.; Naz, S.; Simsek, S.; Waseem, S.; Afzal, M.S.; Naqvi, S.K.U.H.; et al. Epidemiological and pathological characteristics of Cutaneous Leishmaniasis from Baluchistan Province of Pakistan. Parasitology 2021, 148, 591–597. [Google Scholar] [CrossRef]
- Salloum, T.; Moussa, R.; Rahy, R.; Al Deek, J.; Khalifeh, I.; El Hajj, R.; Hall, N.; Hirt, R.P.; Tokajian, S. Expanded genome-wide comparisons give novel insights into population structure and genetic heterogeneity of Leishmania tropica complex. PLoS Negl. Trop. Dis. 2020, 14, e0008684. [Google Scholar] [CrossRef]
- Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr. Trop. Med. Rep. 2021, 8, 121–132. [Google Scholar] [CrossRef]
- Sundar, S.; Thakur, B.B.; Tandon, A.K.; Agrawal, N.R.; Mishra, C.P.; Mahapatra, T.M.; Singh, V.P. Clinicoepidemiological study of drug resistance in Indian kala-azar. BMJ 1994, 308, 307. [Google Scholar] [CrossRef] [Green Version]
- de Vries, H.J.; Reedijk, S.H.; Schallig, H.D. Cutaneous Leishmaniasis: Recent Developments in Diagnosis and Management. Am. J. Clin. Dermatol. 2015, 16, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Frézard, F.; Monte-Neto, R.; Reis, P.G. Antimony transport mechanisms in resistant leishmania parasites. Biophys. Rev. 2014, 6, 119–132. [Google Scholar] [CrossRef] [Green Version]
- Perez-Franco, J.E.; Cruz-Barrera, M.L.; Robayo, M.L.; Lopez, M.C.; Daza, C.D.; Bedoya, A.; Mariño, M.L.; Saavedra, C.H.; Echeverry, M.C. Clinical and parasitological features of patients with American cutaneous leishmaniasis that did not respond to treatment with meglumine antimoniate. PLoS Negl. Trop. Dis. 2016, 10, e0004739. [Google Scholar] [CrossRef]
- Deep, D.K.; Singh, R.; Bhandari, V.; Verma, A.; Sharma, V.; Wajid, S.; Sundar, S.; Ramesh, V.; Dujardin, J.C.; Salotra, P. Increased miltefosine tolerance in clinical isolates of Leishmania donovani is associated with reduced drug accumulation, increased infectivity and resistance to oxidative stress. PLoS Negl. Trop. Dis. 2017, 11, e0005641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Li, X.; Lin, X. A Review on Applications of Computational Methods in Drug Screening and Design. Molecules 2020, 25, 1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarty, R.P.; Alam, A.S.M.R.U.; Shill, D.K.; Rahman, A. Identification and qualitative characterization of new therapeutic targets in Stenotrophomonas maltophilia through in silico proteome exploration. Microb. Pathog. 2020, 149, 104293. [Google Scholar] [CrossRef]
- Sachdev, K.; Gupta, M.K. A comprehensive review of computational techniques for the prediction of drug side effects. Drug Dev. Res. 2020, 81, 650–670. [Google Scholar] [CrossRef] [PubMed]
- Warren, W.C.; Akopyants, N.S.; Dobson, D.E.; Hertz-Fowler, C.; Lye, L.F.; Myler, P.J.; Ramasamy, G.; Shanmugasundram, A.; Silva-Franco, F.; Steinbiss, S.; et al. Genome Assemblies across the Diverse Evolutionary Spectrum of Leishmania Protozoan Parasites. Microbiol. Resour. Announc. 2021, 10, e0054521. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, B.; Gao, Y.; Fu, L.; Li, W. CD-HIT Suite: A web server for clustering and comparing biological sequences. Bioinformatics 2010, 26, 680–682. [Google Scholar] [CrossRef]
- Luo, H.; Lin, Y.; Gao, F.; Zhang, C.T.; Zhang, R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res. 2014, 42, D574–D580. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Zaretskaya, I.; Raytselis, Y.; Merezhuk, Y.; McGinnis, S.; Madden, T.L. NCBI BLAST: A better web interface. Nucleic Acids Res. 2008, 36, W5–W9. [Google Scholar] [CrossRef]
- Sayers, E.W.; Agarwala, R.; Bolton, E.E.; Brister, J.R.; Canese, K.; Clark, K.; Connor, R.; Fiorini, N.; Funk, K.; Hefferon, T.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019, 47, D23–D28. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Pradhan, D.; Jain, A.K.; Rai, C.S. TiD: Standalone software for mining putative drug targets from bacterial proteome. Genomics 2017, 109, 51–57. [Google Scholar] [CrossRef]
- Wishart, D.S.; Knox, C.; Guo, A.C.; Cheng, D.; Shrivastava, S.; Tzur, D.; Gautam, B.; Hassanali, M. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008, 36, D901–D906. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res 2018, 46, W296–W303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovell, S.C.; Davis, I.W.; Arendall, W.B.; de Bakker, P.I.; Word, J.M.; Prisant, M.G.; Richardson, J.S.; Richardson, D.C. Structure validation by Calpha geometry: Phi,psi and Cbeta deviation. Proteins 2003, 50, 437–450. [Google Scholar] [CrossRef] [PubMed]
- Agüero, F.; Al-Lazikani, B.; Aslett, M.; Berriman, M.; Buckner, F.S.; Campbell, R.K.; Carmona, S.; Carruthers, I.M.; Chan, A.W.; Chen, F.; et al. Genomic-scale prioritization of drug targets: The TDR Targets database. Nat. Rev. Drug Dis. 2008, 7, 900–907. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Sahinalp, S.C.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.S.; Cheng, C.W.; Su, W.C.; Chang, K.C.; Huang, S.W.; Hwang, J.K.; Lu, C.H. CELLO2GO: A Web Server for Protein subCELlular LOcalization Prediction with Functional Gene Ontology Annotation. PLoS ONE 2014, 9, e99368. [Google Scholar] [CrossRef] [Green Version]
- Borrel, A.; Regad, L.; Xhaard, H.; Petitjean, M.; Camproux, A.C. PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties. J. Chem. Inf. Model. 2015, 55, 882–895. [Google Scholar] [CrossRef]
- Sunseri, J.; Koes, D.R. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res. 2016, 44, W442–W448. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Grimm, M.; Dai, W.T.; Hou, M.C.; Xiao, Z.X.; Cao, Y. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacol. Sin. 2020, 41, 138–144. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Paape, D.; Prendergast, C.T.; Price, H.P.; Doehl, J.S.P.; Smith, D.F. Genetic validation of Leishmania genes essential for amastigote survival in vivo using N-myristoyltransferase as a model. Parasit. Vectors 2020, 13, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, R.; Siddiqui, Q.N.; Sufian, M.; Azam, S.S.; Wadood, A. Proteome-wide subtractive approach to prioritize a hypothetical protein of XDR-Mycobacterium tuberculosis as potential drug target. Genes Genom. 2019, 41, 1281–1292. [Google Scholar] [CrossRef]
- Fatoba, A.J.; Okpeku, M.; Adeleke, M.A. Subtractive Genomics Approach for Identification of Novel Therapeutic Drug Targets in Mycoplasma genitalium. Pathogens 2021, 10, 921. [Google Scholar] [CrossRef] [PubMed]
- Hadizadeh, M.; Tabatabaiepour, S.N.; Tabatabaiepour, S.Z.; Hosseini Nave, H.; Mohammadi, M.; Sohrabi, S.M. Genome-Wide Identification of Potential Drug Target in Enterobacteriaceae Family: A Homology-Based Method. Microb. Drug Resist. 2018, 24, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Wali, H.; Jan, S.; Zia, A.; Aslam, M.; Ahmad, I.; Afridi, S.G.; Shams, S.; Khan, A. Analysing the essential proteins set of Plasmodium falciparum PF3D7 for novel drug targets identification against malaria. Malar. J. 2021, 20, 335. [Google Scholar] [CrossRef] [PubMed]
- Messaoudi, A.; Belguith, H.; Ben Hamida, J. Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theor. Biol. Med. Model. 2013, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Cramer, J.T.; Führing, J.I.; Baruch, P.; Brütting, C.; Knölker, H.J.; Gerardy-Schahn, R.; Fedorov, R. Decoding Allosteric Networks in Biocatalysts: Rational Approach to Therapies and Biotechnologies. ACS Catal. 2018, 8, 2683–2692. [Google Scholar] [CrossRef]
- Hodgson, J. ADMET—Turning chemicals into drugs. Nat. Biotechnol. 2001, 19, 722–726. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Basharat, Z.; Jahanzaib, M.; Rahman, N. Therapeutic target identification via differential genome analysis of antibiotic resistant Shigella sonnei and inhibitor evaluation against a selected drug target. Infect. Genet. Evol. 2021, 94, 105004. [Google Scholar] [CrossRef]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Zoraghi, R.; Reiner, N.E. Protein interaction networks as starting points to identify novel antimicrobial drug targets. Curr. Opin. Microbiol. 2013, 16, 566–572. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Zhang, J. Why Do Hubs Tend to Be Essential in Protein Networks? PLoS Genet. 2006, 2, e88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamerz, A.C.; Haselhorst, T.; Bergfeld, A.K.; von Itzstein, M.; Gerardy-Schahn, R. Molecular cloning of the Leishmania major UDP-glucose pyrophosphorylase, functional characterization, and ligand binding analyses using NMR spectroscopy. J. Biol. Chem. 2006, 281, 16314–16322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, K.A.; Beverley, S.M. Improvements in transfection efficiency and tests of RNA interference (RNAi) approaches in the protozoan parasite Leishmania. Mol. Biochem. Parasitol. 2003, 128, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Turnock, D.C.; Ferguson, M.A. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryot. Cell 2007, 6, 1450–1463. [Google Scholar] [CrossRef] [Green Version]
- Steiner, T.; Lamerz, A.C.; Hess, P.; Breithaupt, C.; Krapp, S.; Bourenkov, G.; Huber, R.; Gerardy-Schahn, R.; Jacob, U. Open and Closed Structures of the UDP-glucose Pyrophosphorylase from Leishmania major*. J. Biol. Chem. 2007, 282, 13003–13010. [Google Scholar] [CrossRef] [Green Version]
- Naderer, T.; Vince, J.E.; McConville, M.J. Surface determinants of Leishmania parasites and their role in infectivity in the mammalian host. Curr. Mol. Med. 2004, 4, 649–665. [Google Scholar] [CrossRef]
- Sacks, D.L.; Modi, G.; Rowton, E.; Späth, G.; Epstein, L.; Turco, S.J.; Beverley, S.M. The role of phosphoglycans in Leishmania-sand fly interactions. Prol. Natl. Acad. Sci. USA 2000, 97, 406–411. [Google Scholar] [CrossRef] [Green Version]
- Damerow, S.; Hoppe, C.; Bandini, G.; Zarnovican, P.; Buettner, F.R.; Lüder, C.G.K.; Ferguson, M.A.J.; Routier, F.H. Depletion of UDP-Glucose and UDP-Galactose Using a Degron System Leads to Growth Cessation of Leishmania major. PLoS Negl. Trop. Dis. 2015, 9, e0004205. [Google Scholar] [CrossRef]
- Prakash, O.; Führing, J.; Post, J.; Shepherd, S.M.; Eadsforth, T.C.; Gray, D.; Fedorov, R.; Routier, F.H. Identification of Leishmania major UDP-Sugar Pyrophosphorylase Inhibitors Using Biosensor-Based Small Molecule Fragment Library Screening. Molecules 2019, 24, 996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelman, Z. PCNA: Structure, functions and interactions. Oncogene 1997, 14, 629–640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strzalka, W.; Ziemienowicz, A. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Ann. Bot. 2011, 107, 1127–1140. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Minocha, N.; Rajanala, K.; Saha, S. The distribution pattern of proliferating cell nuclear antigen in the nuclei of Leishmania donovani. Microbiology 2009, 155, 3748–3757. [Google Scholar] [CrossRef] [Green Version]
- Tandon, R.; Chandra, S.; Baharia, R.K.; Das, S.; Misra, P.; Kumar, A.; Siddiqi, M.I.; Sundar, S.; Dube, A. Characterization of the proliferating cell nuclear antigen of Leishmania donovani clinical isolates and its association with antimony resistance. Antimicrob. Agents Chemother. 2014, 58, 2997–3007. [Google Scholar] [CrossRef] [Green Version]
- Ashutosh, S.S.; Goyal, N. Molecular mechanisms of antimony resistance in Leishmania. J. Med. Microbiol. 2007, 56, 143–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, R.A.; Kelly, S.M.; Mottram, J.C.; Coombs, G.H. 3-Mercaptopyruvate sulfurtransferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism. J. Biol. Chem. 2003, 278, 1480–1486. [Google Scholar] [CrossRef] [Green Version]
- Miller, M.A.; McGowan, S.E.; Gantt, K.R.; Champion, M.; Novick, S.L.; Andersen, K.A.; Bacchi, C.J.; Yarlett, N.; Britigan, B.E.; Wilson, M.E. Inducible resistance to oxidant stress in the protozoan Leishmania chagasi. J. Biol. Chem. 2000, 275, 33883–33889. [Google Scholar] [CrossRef] [Green Version]
- Nandi, D.L.; Horowitz, P.M.; Westley, J. Rhodanese as a thioredoxin oxidase. Int. J. Biochem. Cell Biol. 2000, 32, 465–473. [Google Scholar] [CrossRef]
- Wilson, D.N.; Doudna Cate, J.H. The structure and function of the eukaryotic ribosome. Cold Spring Harb. Perspect. Biol. 2012, 4, a011536. [Google Scholar] [CrossRef]
- Zhang, X.; Lai, M.; Chang, W.; Yu, I.; Ding, K.; Mrazek, J.; Ng, H.L.; Yang, O.O.; Maslov, D.A.; Zhou, Z.H. Structures and stabilization of kinetoplastid-specific split rRNAs revealed by comparing leishmanial and human ribosomes. Nat. Commun. 2016, 7, 13223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Schimmel, P. Essential nontranslational functions of tRNA synthetases. Nat. Chem. Biol. 2013, 9, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Anand, S.; Madhubala, R. Twin Attributes of Tyrosyl-tRNA Synthetase of Leishmania donovani: A housekeeping protein translation enzyme and a mimic of host chemokine. J. Biol. Chem. 2016, 291, 17754–17771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gavin, J.M.; Hoar, K.; Xu, Q.; Ma, J.; Lin, Y.; Chen, J.; Chen, W.; Bruzzese, F.J.; Harrison, S.; Mallender, W.D.; et al. Mechanistic study of Uba5 enzyme and the Ufm1 conjugation pathway. J. Biol. Chem. 2014, 289, 22648–22658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, I.; Aggarwal, S.; Singh, K.; Yadav, A.; Khan, S. Ubiquitin Proteasome pathway proteins as potential drug targets in parasite Trypanosoma cruzi. Sci. Rep. 2018, 8, 8399. [Google Scholar] [CrossRef] [Green Version]
- Bijlmakers, M.J. Ubiquitination and the Proteasome as Drug Targets in Trypanosomatid Diseases. Front. Chem. 2021, 8, 630888. [Google Scholar] [CrossRef]
- Tonks, N.K. PTP1B: From the sidelines to the front lines! FEBS Lett. 2003, 546, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Forget, G.; Gregory, D.J.; Whitcombe, L.A.; Olivier, M. Role of host protein tyrosine phosphatase SHP-1 in Leishmania donovani-induced inhibition of nitric oxide production. Infect. Immun. 2006, 74, 6272–6279. [Google Scholar] [CrossRef] [Green Version]
- Leitherer, S.; Clos, J.; Liebler-Tenorio, E.M.; Schleicher, U.; Bogdan, C.; Soulat, D.; Adams John, H. Characterization of the Protein Tyrosine Phosphatase LmPRL-1 Secreted by Leishmania major via the Exosome Pathway. Infect. Immun. 2017, 85, e00084-17. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, M.; Zhang, W.W.; Ghosh, A.; Houston, D.R.; Berghuis, A.M.; Olivier, M.; Matlashewski, G. Identification and Characterization of a Protein-tyrosine Phosphatase in Leishmania. J. Biol. Chem. 2006, 281, 36257–36268. [Google Scholar] [CrossRef]
- Yahara, N.; Ueda, T.; Sato, K.; Nakano, A. Multiple roles of Arf1 GTPase in the yeast exocytic and endocytic pathways. Mol. Biol. Cell 2001, 12, 221–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, A.; Espiau, B.; Tetaud, E.; Cuvillier, A.; Lartigue, L.; Ambit, A.; Robinson, D.R.; Merlin, G. The leishmania ARL-1 and Golgi traffic. PLoS ONE 2008, 3, e1620. [Google Scholar] [CrossRef] [PubMed]
- Porter-Kelley, J.M.; Gerald, N.J.; Engel, J.C.; Ghedin, E.; Dwyer, D.M. LdARF1 in trafficking and structural maintenance of the trans-Golgi cisternal network in the protozoan pathogen Leishmania donovani. Traffic 2004, 5, 868–883. [Google Scholar] [CrossRef] [PubMed]
- Price, H.P.; Panethymitaki, C.; Goulding, D.; Smith, D.F. Functional analysis of TbARL1, an N-myristoylated Golgi protein essential for viability in bloodstream trypanosomes. J. Cell Sci. 2005, 118, 831–841. [Google Scholar] [CrossRef] [Green Version]
- Fleming, J.R.; Dawson, A.; Hunter, W.N. Crystal structure of Leishmania major ADP-ribosylation factor-like 1 and a classification of related GTPase family members in this Kinetoplastid. Mol. Biochem. Parasitol. 2010, 174, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Kunji, E.R.; Aleksandrova, A.; King, M.S.; Majd, H.; Ashton, V.L.; Cerson, E.; Springett, R.; Kibalchenko, M.; Tavoulari, S.; Crichton, P.G.; et al. The transport mechanism of the mitochondrial ADP/ATP carrier. Biochim. Biophys. Acta. 2016, 1863, 2379–2393. [Google Scholar] [CrossRef] [Green Version]
- de Macêdo, J.P.; Schumann Burkard, G.; Niemann, M.; Barrett, M.P.; Vial, H.; Mäser, P.; Roditi, I.; Schneider, A.; Bütikofer, P. An Atypical Mitochondrial Carrier That Mediates Drug Action in Trypanosoma brucei. PLoS Pathog. 2015, 11, e1004875. [Google Scholar] [CrossRef]
Tritrypdb IDs | Protein Name | PDB HomologousID’s | ERRAT Quality Factor | QMEAN > −4 | PockDrug Score > 0.5 (Residues in Pocket) | Molecular Weight (Dalton) | Ramachandran Plot |
---|---|---|---|---|---|---|---|
LTRL590_050014400 | 3-mercaptopyruvate sulfurtransferase | 1okg.1.A | 88.4615 | −0.69 | 0.85 (14) | 40,141.65 | 88.30% |
LTRL590_070011300 | 60S ribosomal protein L7a, putative | 5t2a.40.A | 93.9394 | −1.19 | 0.99 (15) | 29,763.01 | 90.50% |
LTRL590_140021400 | Tyrosyl-tRNA synthetase, putative | 3p0h.1.A | 96.5997 | −0.85 | 0.91 (27.0) | 74,978.22 | 92.50% |
LTRL590_150018200 | E2-like ubiquitin conjugation enzyme, putative | 3kpa.2.A | 98.6301 | −0.08 | 0.88 (15.0) | 19,364.13 | 95.50% |
LTRL590_150020700 | Proliferative cell nuclear antigen (PCNA), putative | 6joj.2.A | 92.956 | −2.80 | 0.59 (25.0) | 32,412.73 | 85.40% |
LTRL590_160007700 | Protein tyrosine phosphatase-like protein | 3s4o.2.A | 96.4029 | −0.82 | 0.86 (18.0) | 19,513.53 | 95.40% |
LTRL590_170005800 | ADP-ribosylation factor-like protein 1 | 2x77.1.A | 96.319 | −0.62 | 0.87 (10.0) | 20,820.83 | 92.60% |
LTRL590_180015300 | UDP-glucose pyrophosphorylase | 5nzm.1.A | 92.4612 | −0.67 | 0.97 (17.0) | 54,481.27 | 93.70% |
LTRL590_190006600 | ADP, ATP carrier protein 1, mitochondrial precursor, putative | 6gci.1.A | 97.5 | −2.14 | 0.65 (29.0) | 35,097.85 | 96.80% |
Serial No. | Compounds (MolPort IDs) | Molecular Weight (g/mol) | RMSD (Å) | Molecular Formula | CB-Dock (Vina Score) |
---|---|---|---|---|---|
C1 | MolPort-002-619-190 | 456.71 | 0.322 | C25H36N4S2 | −6.7 |
C2 | MolPort-000-451-699 | 444.531 | 0.324 | C27H28N2O4 | −7.2 |
C3 | MolPort-000-730-162 | 432.59 | 0.331 | C25H28N4OS | −8.6 |
C4 | MolPort-000-451-697 | 446.503 | 0.334 | C26H26N2O5 | −7.1 |
C5 | MolPort-000-451-711 | 476.548 | 0.335 | C28H29FN2O4 | −7.2 |
C6 | MolPort-000-451-749 | 397.427 | 0.337 | C22H23NO6 | −7.9 |
C7 | MolPort-002-611-137 | 339.395 | 0.338 | C19H21N3O3 | −8 |
C8 | MolPort-002-619-190 | 456.71 | 0.350 | C25H36N4S2 | −6.9 |
C9 | MolPort-002-608-446 | 442.68 | 0.351 | C24H34N4S2 | −6.7 |
C10 | MolPort-000-451-699 | 444.531 | 0.377 | C27H28N2O4 | −6.9 |
Serial No. | Compounds (MolPort IDs) | Molecular Weight (g/mol) | RMSD (Å) | Pharmit Score | Molecular Formula | CB-Dock (Vina Score) |
---|---|---|---|---|---|---|
C1 | MolPort-001-741-093 | 424.402 | 1.826 | −6.01 | C20H24O10 | −7.2 |
C2 | MolPort-000-700-443 | 385.85 | 1.529 | −5.92 | C20H20ClN3O3 | −6.7 |
C3 | MolPort-047-116-128 | 342.264 | 1.750 | −5.84 | C12H14N4O8 | −6.7 |
C4 | MolPort-039-345-350 | 374.345 | 1.812 | −5.84 | C19H18O8 | −7.5 |
C5 | MolPort-002-525-976 | 342.297 | 1.990 | −5.83 | C12H22O11 | −6.8 |
C6 | MolPort-046-836-802 | 414.36 | 1.964 | −5.79 | C15H26O13 | −6.4 |
C7 | MolPort-020-232-354 | 362.433 | 1.537 | −5.74 | C21H22N4O2 | −7.1 |
C8 | MolPort-020-232-872 | 313.361 | 1.442 | −5.73 | C16H19N5O2 | −7.2 |
C9 | MolPort-004-860-220 | 434.467 | 1.269 | −6.72 | C25H23FN2O4 | −7.2 |
C10 | MolPort-044-727-363 | 432.381 | 1.986 | −6.75 | C21H20O10 | −7.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiman, S.; Alzahrani, A.K.; Ali, F.; Abida; Imran, M.; Kamal, M.; Usman, M.; Thabet, H.K.; Li, C.; Khan, A. Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica. Microorganisms 2023, 11, 228. https://doi.org/10.3390/microorganisms11010228
Aiman S, Alzahrani AK, Ali F, Abida, Imran M, Kamal M, Usman M, Thabet HK, Li C, Khan A. Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica. Microorganisms. 2023; 11(1):228. https://doi.org/10.3390/microorganisms11010228
Chicago/Turabian StyleAiman, Sara, A. Khuzaim Alzahrani, Fawad Ali, Abida, Mohd. Imran, Mehnaz Kamal, Muhammad Usman, Hamdy Khamees Thabet, Chunhua Li, and Asifullah Khan. 2023. "Comparative Proteomics and Genome-Wide Druggability Analyses Prioritized Promising Therapeutic Targets against Drug-Resistant Leishmania tropica" Microorganisms 11, no. 1: 228. https://doi.org/10.3390/microorganisms11010228