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Abstract: Despite being responsible for invasive infections, fungal pathogens have been underrep-
resented in computer aided therapeutic target mining and drug design. Excess of Candida albicans
causes candidiasis, causative of thrush and vaginal infection due to off-balance. In this study, we
attempted to mine drug targets (n = 46) using a subtractive proteomic approach in this pathogenic
yeast and screen natural products with inhibition potential against fructose-bisphosphate aldolase
(FBA) of the C. albicans. The top compound selected on the basis of best docking score from traditional
Indian medicine/Ayurvedic library was (4-Hydroxybenzyl)thiocarbamic acid, from the ZINC FBA
inhibitor library was ZINC13507461 (IUPAC name: [(2R)-2-hydroxy-3-phosphonooxypropyl] (9E,12E)-
octadeca-9,12-dienoate), and from traditional Tibetan medicine/Sowa rigpa was Chelerythrine (IU-
PAC name: 1,2-Dimethoxy-12-methyl-9H-[1,3]benzodioxolo[5,6-c]phenanthridin-12-ium), compared
to the control (2E)-1-(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine. No Ames toxicity was
predicted for prioritized compounds while control depicted this toxicity. (4-Hydroxybenzyl)thiocarbamic
acid showed hepatotoxicity, while Chelerythrine depicted hERG inhibition, which can lead to QT
syndrome, so we recommend ZINC13507461 for further testing in lab. Pharmacological based phar-
macokinetic modeling revealed that it has low bioavailability and hence, absorption in healthy state.
In cirrhosis and renal impairment, absorption and plasma accumulation increased so we recommend
further investigation into this occurrence and recommend high dosage in further tests to increase
bioavailability.

Keywords: Candida albicans; fructose-bisphosphate aldolase; CADD; dynamics simulation;
pharmacokinetics; ADMET

1. Introduction

Mycobiota, like other microbiota, is an essential part of the human body and resides
in the genitourinary tract, gastrointestinal tract, respiratory tract, skin, and the mucosal
membrane covering the oral cavity [1]. Commensal mycobiota can act as pathobiont in
compromised host immunity and under certain clinical conditions [2]. Fungal infections
spread drastically over the past few decades, and annual fatalities from fungal infections
are higher than individually from TB, HIV, malaria, or breast cancer [3]. In healthcare
institutions, candidiasis is still the most frequent hospital-acquired fungal infection [4],
and almost 0.25 million people suffer from invasive candidiasis every year [5]. C. albicans
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is of significant clinical importance as it is responsible for causing superficial to invasive
candidiasis. Surgery (especially abdominal surgery), burns, long-term hospitalization in an
intensive care unit, and earlier use of broad-spectrum antibiotics and immunosuppressive
drugs have all been risk factors for invasive candidiasis. C. albicans is widespread, with an
increasing prevalence of 18–25% in the last few decades [6]. The hyphal form and biofilm
formation in C. albicans is associated with various virulence characteristics, including
as adhesion and the release of hydrolases, and plays an important part in the infection
process [7,8].

The rapid development of antifungal resistance against azole, echinocandin, polyene,
and nucleoside analogs in C. albicans support the need for more effective and less toxic
treatment strategies [9]. Resistance in Candida spp. can be acquired or natural. Since the
Candida spp. do not share resistance mechanisms, acquired resistance develops due to
antifungal selection pressure in the individual patient or, less frequently, horizontal transfer
of resistant strains across patients. In population-based studies, echinocandin resistance
has been observed in C. albicans infections. Echinocandin resistance is linked to a mutation
in two hot spot regions of FKS1 in C. albicans, both in FKS1 and FKS2 [10]. The increased
number of infections and emergence of antifungal resistance in Candida spp. emphasizes
the need to work on novel therapeutic techniques in order to combat these infections.
For this purpose, computer aided drug design (CADD) can expedite the drug design
process via virtual screening approach (structure or ligand aided) [11]. This approach has
become fundamental to pre-clinical screening of molecules. Drug targets are prioritized
and then screened against libraries of compounds. Target prioritization reduces targets to
a manageable number and aids choice of unique or conserved targets, depending on the
requirement [12]. The selected targets can then be studied in detail against the drug-like
molecules. Among the utilized libraries of compounds, the ZINC database is used in around
31.2% of studies [13], while a large proportion use natural products. In the present study,
we analyzed the reference genome of C. albicans and identified several drug targets. Natural
product libraries of potent inhibitors were screened against it and dynamics simulation was
performed to validate binding. Absorption, distribution, metabolism, excretion and toxicity
(ADMET) profiling was also carried out for the top inhibitors. Apart from parameter
inference, pharmacokinetic parameters were also simulated in the body compartments to
determine bioavailability, plasma concentration, and absorption of the drug in a population
group (n = 900 individuals), with a diseased and healthy set of people.

2. Material & Methods
2.1. Data Retrieval

The NCBI database was used for obtaining the genome sequence of reference strain
SC5314 of C. albicans. Human proteome was retrieved from the Universal Protein Resource
(UniProt) database to investigate and remove paralogs. Following the deletion of all par-
alogs, Database of Essential Genes (DEG) [14] and Cluster of Essential Genes (CEG) [15,16]
were used for extracting/identifying critical genes. To find the druggable properties and
drug targets of essential genes, the DrugBank database served the purpose.

2.2. Essentiality Analysis

The resulting core genome non-homologous sequences were analyzed and charac-
terized through further downstream processing. Essentiality analysis was performed to
identify essential genes [17] as excellent drug targets. Essential genes are necessary for the
survival of organisms even in harsh conditions [14]. The importance of selecting essential
genes as drug targets is that they restrain and hinder a pathogen’s proliferation, functional-
ity, and pathogenicity. Database of Essential Genes (DEG) was used to further analyze the
protein role of non-homologous genes. Amino acid sequences of these genes were BLASTed
against DEG [18] with an E value of 10−5 [19]. Genes depicting high homology with DEG
were analyzed through CEG (Cluster of Essential Gene database) based on alignment and
functionality [15]. This clustering data helps refine data and reduce the chances of false
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positive results during an examination. The resultant genes given by both CEG and DEG
were analyzed, and shared genes in both databases were selected for further processing.

2.3. Drug Target Mining

For the non-homology analysis of drug targets against the human host, the essential
coding sequences were screened against the human genome using BLASTp [20]. This
analysis is performed to prevent drug binding and decrease the chances of cross-reactivity
of a drug. Protein sequences of targeted gene sets were subtracted from the human
proteome data with a threshold value of 10−2. The standard gap penalty of 11 and the gap
extension penalty of one were selected for estimation [21]. It is also crucial to find drug
targets that are non-homologous to human gut flora. The resultant targets were screened
against gut flora by BLASTp [22], subcellular localization was determined from CELLO
server (http://cello.life.nctu.edu.tw/(accessed on 1 September, 2022)), and DrugBank
dataset was aligned to check the therapeutic matches of targets.

2.4. Virtual Screening

Selected protein fructose-bisphosphate aldolase (FBA) was obtained from the Alpha
fold server [23]. Structure preparation and screening was performed against Ayurvedic
library (n = 2103 compounds), Sowa rigpa (n = 39 compounds), and ZINC inhibitor library
of FBA (n = 1922 compounds), according to previously described protocol [24]. (2E)-
1-(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine was used as a control, as it
inhibits this enzyme completely at 0.05 mM concentration, pH = 7, temperature = 37 C,
Ki value = 0.0017 [BRENDA details at https://www.brenda-enzymes.org/literature.php?
e=4.1.2.13&r=748282] (accessed on 10 September, 2022) [25].

Dynamics simulation was carried out using GROMACS for 100 ns [26,27]. Parameters
were: Solvation using Simple Point Charge (SPC) water model; Energy minimization
algorithm: Steepest descent; NVT and NPT ensemble: 50,000 steps; Pressure = 1 atm
pressure, Temperature = 300 K.

2.5. ADMET Profiling

To determine pharmacokinetics and solubility, ADMET analysis was performed using
PkCSM server (http://biosig.unimelb.edu.au/pkcsm/(accessed on 12 September, 2022)).
This server uses graph modeling for representation of chemical entities, by intaking SMILE
format for a compound [28]. The output is classified under five categories and obtained
through a user-friendly webserver display.

Simulation of physiological pharmacokinetic parameters, leading to drug absorption
and concentration determination of compound in plasma with reference to time was per-
formed using GastroPlus (version 9.8.2, Simulation Plus, Inc., Lancaster, PA, USA). This
software determines pharmacokinetics of a drug or formulation through body compart-
ments [29,30]. We used oral administration of our prioritized compounds in 100 mg tablet
composition, with 250 mL intake of water and simulation of a compartmental absorp-
tion and transit (ACAT) model through stomach, duodenum, jejunum, ileum, and colon
for 10 h. We used the following parameters: physiology state = fasted, animal = human,
particle radius = 25 microns, particle density = 1.2 g/mL, pH = 7.2, solubility value de-
termined by method of Delane, precipitation = first order, paracellular model for jeju-
nal permeability = Zhimin, nucleation model = diffusion, dissolution model for bile salt
effect = Johnson, effective permeability calculated from permeability converter using the
formula Peff = (10−1.5383 + 0.811 * log human_permeability), clearance from the central compart-
ment (assumed as general body clearance) CL = 0.142 L/h, central compartment volume
Vc = 0.1 L/kg, first pass extraction for liver fixed at 68%, tissue vs. plasma time database
for simulation in a population of 300 healthy, 300 cirrhotic, and 300 renally impaired indi-
viduals to elucidate unevenness in drug exposure. Parameters obtained were percentage of
bioavailable drug, along with absorption in intestine and portal vein. Concentration–time

http://cello.life.nctu.edu.tw/(accessed
https://www.brenda-enzymes.org/literature.php?e=4.1.2.13&r=748282
https://www.brenda-enzymes.org/literature.php?e=4.1.2.13&r=748282
http://biosig.unimelb.edu.au/pkcsm/(accessed
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curve integral was calculated (after a single dose), as this value can also help guide dosing
for compounds with narrow therapeutic index.

3. Results
3.1. Therapeutic Candidate Mining

C. albicans SC5314 has eight chromosomes, with a genome size of 14.3 Mb. Its total
proteome comprises more than 6000 proteins (Figure 1). Proteome subtraction is a well-
defined technique for therapeutic target mining. We utilized this method for inferring
druggable proteins and obtained 46 hits (Table 1). Among these, FBA, commonly known as
aldolase (EC number: 4.1.2.13), was selected for further processing. FBA has a key role in
the glycolysis and gluconeogenesis of the C. albicans. Rodaki et al. have determined that it
is essential for the growth of this yeast and is an attractive drug target as it is present for an
essential pathway in this yeast but varies considerably from that of human aldolase [31].
FBA is present in copious amounts and has a quite stable structure. Three-dimensional
coordinates of its protein structure were obtained from Alpha fold database, depicting two
domains. It has an α/β domain, pleated into a TIM barrel, which consists of the active
site. After necessary preparation in MOE, FBA was subjected to energy minimization.
The prepared structure was subjected to structure-based docking for virtual screening
of ligands.
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Table 1. Shortlisted drug targets from the proteome of C. albicans SC5314.

S. No.
Protein

Accession
Number

Protein Name Protein
Length

DrugBank
Alignment

Length
E-Value Subcellular

Localization

1 XP_019330652.1 lumazine synthase 206 157 1.33396 × 10−29 Cytoplasmic

2 XP_019330750.1 3-deoxy−7-phosphoheptulonate
synthase 371 356 5.95566 × 10−127 Cytoplasmic

3 XP_019330821.1
trehalose 6-phosphate

synthase/phosphatase complex
subunit

1007 383 1.09471 × 10−38 Nuclear/Plasma
membrane

4 XP_019331058.1 anthranilate synthase 522 410 3.47489 × 10−58 Cytoplasmic

5 XP_019331115.1 Bgl22p 924 358 1.55548 × 10−12 Cytoplasmic

6 XP_710092.2 4-amino-4-deoxychorismate
synthase 822 461 1.1003 × 10−36 Nuclear

7 XP_710211.2
bifunctional chorismate

synthase/riboflavin reductase
[NAD(P)H]

413 376 1.39864 × 10−52 Mitochondrial/Nuclear

8 XP_710312.1 tryptophan synthase 702 394 1.85163 × 10−144 Cytoplasmic

9 XP_710700.2 pantoate–beta-alanine ligase 316 305 1.03048 × 10−68 Nuclear

10 XP_710729.1 3-deoxy−7-phosphoheptulonate
synthase 370 353 3.03778 × 10−117 Cytoplasmic/Nuclear

11 XP_711703.1 hypothetical protein
CAALFM_CR05750WA 342 129 5.37008 × 10−0.8 Cytoplasmic

12 XP_711706.1 alpha, alpha-trehalose-phosphate
synthase (UDP-forming) TPS1 478 472 3.18455 × 10−92 Cytoplasmic

13 XP_712232.1 isocitrate lyase 1 550 250 2.64563 × 10−44 Peroxisomal

14 XP_713033.1 sulfonate dioxygenase 386 289 1.79648 × 10−24 Nuclear/Cytoplasmic

15 XP_713320.2

trifunctional histidinol
dehydrogenase/phosphoribosyl-

AMP
cyclohydrolase/phosphoribosyl-

ATP
diphosphatase

838 424 9.87896 × 10−114 Cytoplasmic

16 XP_713806.1 hypothetical protein
CAALFM_C111290WA 369 261 4.84039 × 10−35 Cytoplasmic

17 XP_714207.2

trifunctional dihydropteroate syn-
thetase/dihydrohydroxymethylpterin

pyrophosphoki-
nase/dihydroneopterin

aldolase

829 788 3.71427 × 10−161 Nuclear/Cytoplasmic

18 XP_714543.2 hypothetical protein
CAALFM_C209810CA 434 400 1.30711 × 10−42 Cytoplasmic

19 XP_714705.1 hypothetical protein
CAALFM_C305640WA 425 308 2.28143 × 10−35 Cytoplasmic

20 XP_714872.2 Dqd1p 146 124 4.79446 × 10−33 Cytoplasmic

21 XP_715352.2 uroporphyrinogen-III
C-methyltransferase 561 418 2.52115 × 10−42 Nuclear/Cytoplasmic

22 XP_715357.1 Ebp7p 392 385 3.40361 × 10−70 Cytoplasmic

23 XP_715408.1 anthranilate
phosphoribosyltransferase 369 313 2.82806 × 10−41 Cytoplasmic

24 XP_715440.2 Oye32p 432 379 4.31391 × 10−35 Cytoplasmic

25 XP_715739.1 dihydroorotase 358 356 4.16856 × 10−54 Cytoplasmic

26 XP_716238.1 hypothetical protein
CAALFM_CR08310CA 385 286 2.24051 × 10−36 Nuclear

27 XP_716751.1 Hypothetical protein
CAALFM_C601400WA 676 419 5.7776 × 10−14 Plasma membrane
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Table 1. Cont.

S. No.
Protein

Accession
Number

Protein Name Protein
Length

DrugBank
Alignment

Length
E-Value Subcellular

Localization

28 XP_717003.2 Nik1p 1081 227 7.42174 × 10−20 Nuclear/Cytoplasmic

29 XP_718052.2 Ymx6p 622 304 4.11558 × 10−0.6 Plasma membrane

30 XP_718069.2 phenylacrylic acid decarboxylase 229 185 7.40789 × 10−68 Plasma membrane

31 XP_718219.1

5-
methyltetrahydropteroyltriglutamate-

homocysteine
S-methyltransferase

775 767 0 Cytoplasmic

32 XP_718255.2 dethiobiotin synthase 212 205 7.64158 × 10−16 Chloroplast/cytoplasmic

33 XP_718258.2 biotin synthase 374 323 1.05435 × 10−100 Mitochondrial

34 XP_719019.1 3-methyl-2-oxobutanoate
hydroxymethyltransferase 309 262 1.03531 × 10−55 Mitochondrial

35 XP_719048.1 2-isopropylmalate synthase 579 603 5.36732 × 10−170 Cytoplasmic

36 XP_719116.2 L-methionine (R)-S-oxide
reductase 175 134 2.56642 × 10−30 Cytoplasmic

37 XP_721010.2

trifunctional
hydroxymethylpyrimidine ki-

nase/phosphomethylpyrimidine
kinase/thiaminase

548 273 2.42294 × 10−26 Cytoplasmic

38 XP_721446.1 pyridoxine biosynthesis protein 292 285 9.51495 × 10−106 Cytoplasmic

39 XP_721536.1 trehalose-phosphatase 888 385 1.08126 × 10−54 Cytoplasmic

40 XP_721716.2 hypothetical protein
CAALFM_C302070CA 388 287 5.53839 × 10−34 Cytoplasmic

41 XP_721934.1 ATP phosphoribosyltransferase 298 298 3.46987 × 10−33 Cytoplasmic

42 XP_721932.2 riboflavin synthase 237 219 5.41917 × 10−35 Cytoplasmic

43 XP_722690.1 fructose-bisphosphate aldolase 359 343 2.15136 × 10−129 Cytoplasmic

44 XP_722769.2 Aro1p 1551 430 2.38324 × 10−70 Cytoplasmic

45 XP_723161.2 trifunctional fatty acid synthase
sub-unit 1884 763 2.04704 × 10−107 Cytoplasmic

46 XP_723517.1 Mts1p 513 290 3.95336 × 10−26 Plasma membrane

3.2. Virtual Screening

Two natural product libraries were used for screening against FBA, comprising
Ayurvedic and Sowa rigpa compounds. Apart from these, the inhibitor with best potency
was obtained from BRENDA database and used as a control alongside the ZINC database
compound classified as FBA inhibitors. Two-dimensional structures of the prioritized com-
pounds are given in Figure 2. Among these, FBA made 14 interactions with control ((2E)-1-
(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine), including one acidic and one ba-
sic interacting residue (Figure 3). ZINC13507461 made 16, (4-Hydroxybenzyl)thiocarbamic
acid made 21, and Chelerythrine made 11 interactions with four, five, and one acidic residue
of FBA, respectively. Thr290 and Ser268 were conserved in making interactions in the con-
trol, ZINC13507461 and (4-Hydroxybenzyl)thiocarbamic acid, while Tyr229 was conserved
in Chelerythrine and control. Apart from hydrogen bonding, other interactions were seen
among complexes (Table 2). Ionic and covalent bonds are stronger than hydrogen bonds
and the FBA-control complex depicted an ionic interaction, compared to hydrogen and
pi-bonding between FBA-(4-Hydroxybenzyl)thiocarbamic acid and FBA-Chelerythrine,
respectively. MM/PBSA values were lowest for FBA-control complex but for the individual
ligand, it was least for the ZINC13507461.
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Life 2022, 12, 1743 8 of 15

Table 2. Bonding interactions at atomic scale for the studied complexes. MM/PBSA value of the FBA
protein was −25.79.

Molecular
Formula

Ligand
Atom and

Its Position

Receptor
Atom/Residue

Interaction
Type

Distance
(Å)

Energy
(Kcal/mol)

MM/PBSA
Value of
Complex

MM/PBSA
Value of
Ligand

Control C13H10N4O N29 OD1/ASP291 ionic 2.92 −5.0 −25.68 0.24

ZINC13507461 C21H39O7P

O57 OD2/ASP289 H-donor 3.25 −1.7

−25.50 −0.26
O65 OE2/GLU182 H-donor 2.99 −5.3

O67 OE1/GLU182 H-donor 2.87 −7.1

O64 N/THR290 H-acceptor 3.61 −0.7

(4-Hydroxybenzyl)-
thiocarbamic acid

C8H9NO2S

O14 O ASN287 H-donor 2.88 −0.7

−25.57 −0.03

O12 N/SER268 H-acceptor 2.97 −2.2

O12 OG/SER268 H-acceptor 3.11 −0.6

O14 N/GLY266 H-acceptor 2.97 −0.9

6-ring CA/GLU182 pi-H 3.92 −0.7

6-ring N/ASP183 pi-H 4.61 −0.9

Chelerythrine C21H18NO4
+ C8 O/ASN233 H-donor 3.38 −0.6 −25.64 0.11

MD simulation analysis revealed that the RMSD of the studied compounds did not
exceed 0.5 nm/5 Å on the average (Figure 4). This shows that binding is fine. RMSF was
0.3 nm/6 Å on the average but there was very large deviation around atomic positions 700,
1800, 2200, 2400, 2600, and 3000–3200. Compared to the control, the radius of gyration of
natural products was lower, showing a more compact/tight packing of the complexes. The
highest number of hydrogen bonds was observed for thiocrabamic complex, depicting elec-
trostatic interaction among complex atoms, followed by the control. However, the largest
retention of hydrogen bonds of the ZINC13507461 complex was observed throughout the
simulation time, while this was lowest for (4-Hydroxybenzyl)thiocarbamic acid.
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3.3. ADMET Profiling

None of the prioritized compounds or control were substrates of CYP2D6, CYP2C9, or
CYP3A4, predicted to cross blood-brain barrier, or hERG I inhibitors. Binding cytochrome
enzymes leads to detoxification and excretion of the drug from the body. All of them
bound to at least one cytochrome enzyme, except (4-Hydroxybenzyl)thiocarbamic acid.
Only Chelerythrine was predicted to be a renal OCT2 substrate and hERG II inhibitor, with
highest total clearance (Table 3). OCT binding can lead to renal clearance but inhibition
of hERG leads to QT syndrome development so such a compound is not recommended.
Control, but none of the screened compounds, showed AMES toxicity. Skin was non-
sensitive to control and all three prioritized compounds. Hepatotoxicity was only shown
by (4-Hydroxybenzyl)thiocarbamic acid. In light of these parameters, ZINC13507461 is
recommended for further testing.

Table 3. ADMET parameters of the studied compounds using pkCSM server, which uses graph-based
prediction for toxicity and pharmacokinetic parameter estimation.

Property Model Name Unit
Predicted
Value for
Control

Predicted Value for
ZINC13507461

Predicted Value for
(4-Hydroxybenzyl)-

thiocarbamic
Acid

Predicted Value for
Chelerythrine

Absorption

Water solubility Numeric
(log mol/L) −3.655 −4.445 −2.833 −3.123

Caco2
permeability

Numeric (log
Papp in

10−6 cm/s)
0.222 0.521 0.41 1.429

Intestinal
absorption
(human)

Numeric (%
absorbed) 86.122 59.414 57.252 96.43

Skin permeability Numeric (log Kp) −2.766 −2.702 −3.041 −2.946

P-glycoprotein
substrate

Categorical
(Yes/No) Yes Yes Yes No

P-glycoprotein I
inhibitor

Categorical
(Yes/No) No Yes No Yes

P-glycoprotein II
inhibitor

Categorical
(Yes/No) No Yes No Yes

Distribution

VDss (human) Numeric
(log L/kg) 0.531 −0.866 −0.716 0.53

Fraction unbound
(human) Numeric (Fu) 0.188 0.151 0.3 0.311

BBB permeability Numeric (log BB) −0.513 −1.571 −1.302 0.025

CNS permeability Numeric (log PS) −2.332 −3.099 −4.217 −2.16

Metabolism

CYP3A4 substrate Categorical
(Yes/No) No Yes No Yes

CYP1A2 inhibitor Categorical
(Yes/No) Yes No No No

CYP2C19
inhibitor

Categorical
(Yes/No) Yes No No Yes

CYP2D6 inhibitor Categorical
(Yes/No) No No No Yes

Excretion Total clearance Numeric (log
ml/min/kg) 0.354 0.453 0.154 0.879

Toxicity

Max. tolerated
dose (human)

Numeric (log
mg/kg/day) 0.071 0.079 0.848 0.095

Oral rat acute
toxicity (LD50)

Numeric
(mol/kg) 2.513 2.985 3.023 3.411

Oral rat chronic
toxicity (LOAEL)

Numeric (log
mg/kg_bw/day) 2.178 2.733 2.966 1.692

T. Pyriformis
toxicity

Numeric
(log ug/L) 0.598 0.292 0.271 0.333

Minnow toxicity Numeric
(log mM) 1.733 −1.682 3.117 0.78
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ADME was also simulated in the human body using a multiple compartment model
in a group of 900 individuals. All compounds showed high intestinal and portal vein
absorption, except ZINC13507461 (Table 4). Although it fulfilled many parameters, its
bioavailability was relatively small at a concentration of 100 mg and it affected all parame-
ters, such as plasma concentration and area under the curve (AUC). It is recommended that
a higher dose be administered in test models to find its maximum potency range. However,
its bioavailability and subsequently, plasma concentration, was higher in diseased state
compared to non-cirrhotic and non-impairment of renal system. This tallies with the idea
that elimination is not occurring effectively and drug is accumulating in plasma.

Table 4. Pharmacokinetic parameters of the studied compounds presented as their mean values.
Cmax is the maximum plasma concentration in central compartment at end point of simulation,
Tmax is the time when Cmax is attained, AUC(0-inf) is area under the central compartment plasma
concentration–time curve which can be extrapolated to infinity, AUC(0-t) is area under the central
compartment plasma concentration–time curve for the time of simulation (i.e., 10 h).

Condition Compounds

Intestinal
Absorption of
Compound Fa

(%)

Portal Vein
Absorption of

Compound
FDp (%)

Bioavailable
Drug F (%)

Cmax
(µg/mL) Tmax (h) AUC(0-inf)

(ng-h/mL)
AUC(0-t)

(ng-h/mL)

Healthy

Control 81.626 80.078 25.145 3.3904 9.7593 1,034,000 27,820

ZINC13507461 11.461 10.906 3.6584 0.4671 10 2622.2 2622.2

Chelerythrine 99.582 99.42 31.551 4.3333 2.5876 226,700 38,260

(4-Hydroxybenzyl)-
thiocarbamic

acid
79.27 77.024 24.757 2.9855 8.8793 431,900 23,550

Cirrhosis

Control 82.783 80.784 80.784 5.6819 9.8013 4,499,000 47,250

ZINC13507461 11.565 11.025 11.025 1.0741 10 5728 5728

Chelerythrine 99.903 99.866 99.866 0.8644 0.865 26,090,000 5852.2

(4-Hydroxybenzyl)-
thiocarbamic

acid
78.662 76.185 76.185 2.2192 9.9329 16,710 16,710

Renal im-
pairment

Control 82.792 80.896 80.896 4.9496 9.916 1,215,000 40,110

ZINC13507461 11.694 11.148 11.148 1.0993 10 5819.1 5819.1

Chelerythrine 99.645 99.487 31.45 4.2081 2.6187 225,600 37,180

(4-Hydroxybenzyl)-
thiocarbamic

acid
79.022 76.616 25.489 3.1081 8.8371 839,000 24,430

4. Discussion

Fungi are present in all environmental niches and several of their species are responsi-
ble for impacting human health [32]. Globally, fungal infections have a significant effect on
human health. Over a quarter of the global population may have a fungal infection of the
skin; 75% of women may have vulvovaginal candidiasis, and over a million individuals
lose their lives annually due to invasive fungal infections [32,33]. Those with systemic
fungal infections have an unacceptably high mortality rate, sometimes exceeding 50%.
This is due to the fact that fungal infections are notoriously hard to identify and cure [34].
More precise diagnostics, safer and more effective antifungal medicines, and host-directed
therapy are desperately needed in healthcare.

It has been observed that in immunocompromised and hospitalized patients, the death
rate from bloodstream infections caused by Candida species is as high as 40–60% [35,36],
where C. albicans continues to be the leading cause of life-threatening systemic candidi-
asis. It has the ability to switch back and forth between its yeast, pseudo hyphal, and
hyphal development phases, making it a polymorphic organism [37]. Due to widespread
usage of antifungals, C. albicans is developing drug resistance, which threatens antifungal
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treatment. This is why effective antifungal medicines with new pharmacological targets
are required [38]. Humans share metabolic pathways and key cellular machinery, mak-
ing fungal-selective targeting inadequate [7], but the whole-genome sequencing of the
pathogens and advent of bioinformatics has opened up new paths, such as comparative
subtractive genomics, to screen novel treatment and drug candidates [39]. In the current
study a subtractive proteomic approach was applied to identify potential therapeutic
targets in C. albicans. The approach has previously been successfully employed in pri-
oritizing and designing drug targets against Candida auris [40]. Out of >6000 proteins,
46 potential drug targets were prioritized, and fructose-bisphosphate aldolase (FBA) was
selected for further analysis. FBA is responsible for maintaining the glycolysis process by
catalyzing fructose-1,6-bisphosphate (FBP) into dihydroxyacetone phosphate (DHAP) and
D-glyceraldehyde-3-phosphate (G3P) [41]. Since FBA is not present in humans and crucial
for its survival, it is an attractive target for the discovery of novel therapeutic candidates
that selectively inhibit FBA. Amorim et al. also emphasized on the selectivity of FBA as
a potential target against C. albicans [41]. It has been explored as a potential candidate
for vaccine designing against Candida glabrata [42] and drug target against various fungal
infections [43,44].

Antifungal medicines are confined to three primary classes: polyenes, which bind fun-
gal cell membrane ergosterol; azoles, which impede ergosterol production; and echinocan-
dins, which inhibit fungal (1,3)-β-D-glucan cell wall development. Echinocandins are
harmless, however itraconazole, voriconazole, and amphotericin B are toxic [45]. The use
of natural products as a source of active compounds in drug development has also received
considerable attention. Roughly a hundred experimental natural products, many of them
intended to combat cancer or bacteria, are now under human trials. Even before the advent
of high throughput screening in the postgenomic era, natural products accounted for over
80% of all medications [46].

Insights into therapeutic repertoires for specific disease classes, medicine compound-
ing principles, and chemical and pharmacological transformations used can be gained by
comparing and contrasting the materia medica of various traditions, such as Indian and
Thai Ayurveda, traditional Chinese medicine, Unani, and other Greco-Arabic traditions [47].
We utilized compound libraries of traditional Indian and Tibetan origin in this study, along-
side the synthetic compounds reported as inhibitors of FBA. With time, compounds from
traditional medicine are gaining ground and headed to the mainstream market. India has
ample plant and herbs with medicinal properties (>3000 types) and coupled with tradi-
tional medicinal information, these are being actively pursued for complementary medicine
or drug development resources [48]. Tibetan medicine is also an untapped resource and
has been utilized since long ago, for the prevention and cure of numerous diseases [49].
Recently, randomized controlled clinical trials of medicines from these natural resources
have been explored [50–53]. In the case of bacterial or fungal infections, plant-based extracts
or oils have been used as antimicrobials and antifungals [54,55]. Combination of plant
oil with antifungals for synergistic impact has also yielded very good results [56]. The
bioactive compounds in these oils must have had good inhibition potential against the
pathogens. This warrants further exploration using in silico and biophysics approaches.

In order to explore a drug’s action using CADD, one of the most crucial methods is
structure-based drug discovery. Through the application of physics-based equations to
determine the binding affinities of the compounds under test, various software examines
the interaction between the compounds and the binding site [57]. These days, molecular
docking and molecular dynamics are only two examples of the potential computational
drug design methodologies being used to find novel drug ideas [58]. We utilized the com-
pound structure information for these resources against the selected fungus and analyzed
the binding computationally. New inhibitors were screened against the FBA target from
natural product libraries using the biophysics approach. Consequently, three compounds
(one from each library) were shortlisted, i.e., (4-Hydroxybenzyl)thiocarbamic acid (tradi-
tional Indian medicine/Ayurvedic library), ZINC13507461 (ZINC FBA inhibitor library),
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and Chelerythrine (traditional Tibetan medicine/Sowa rigpa) compared to the control
(2E)-1-(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine. As we previously pre-
dicted, (4-Hydroxybenzyl)thiocarbamic acid has anti-cancer potential targeting DNA repair
pathway [59]. Chelerythrine is a potent and specific inhibitor of protein kinase C, with phar-
macological actions including anticancer, antibiosis, and anti-inflammatory impact [60,61].
The results of MD simulation study showed that the average RMSD of the investigated
compounds was 0.5 nm/5 Å. Thiocrabamic complex, which represents the electrostatic
interaction between complex atoms, had the highest number of hydrogen bonds visible,
followed by the control. While this was lowest for (4-Hydroxybenzyl)thiocarbamic acid,
the ZINC13507461 complex showed the greatest retention of hydrogen bonds throughout
the simulation.

Additionally, the ADMET profiling of these shortlisted compounds showed that all
compounds possess no Ames test toxicity, none were substrates of CYP2D6, CYP2C9,
or CYP3A4, predicted to cross blood-brain barrier, or hERG I inhibitors. Moreover, the
systemic pharmacokinetics, ADME profiling and simulation in the human body using a
central compartment model was performed. Since 4-(Hydroxybenzyl)thiocarbamic acid
showed hepatotoxicity, while Chelerythrine depicted hERG inhibition, which can lead to
QT syndrome, we recommend ZINC13507461 for further laboratory testing.

Physiologically based pharmacokinetic models (PBPK) describe the entire body phys-
iology using connected equations and model parameters such as blood flow rates and
tissue volumes. Since most drugs are administered orally, GI absorption PBPK models are
crucial. These models can scale in vitro drug absorption, distribution, metabolism, and
excretion data to in vivo scale. PBPK models are more accurate than allometry [62–64].
Jones et al. also validated the predicted plasma profiles in fed and fasted individuals
for six different compounds included biorelevant solubility data into the GastroPlusTM

absorption model [65]. More subsequent investigations have proven the significance of this
method [66], therefore, we recommend its usage in subsequent drug design and screening
studies against pathogens. Our findings indicate that except for ZINC13507461, all of the
compounds had very good absorption via the intestinal and portal veins. Therefore, high
amounts of drug should be administered to test models to determine its optimal dosage.
We recommend further tweaking of parameters, model training on more clinical data, and
then altering conditions of age, enzyme kinetics, etc. to gain further insights into PBPK of
the compounds.

5. Conclusions

C. albicans is the most common type of fungus found in the human microbiome, and it
colonizes the body without causing any symptoms having impact on people’s health contin-
ues to be a worrying public health issue. The comparative investigations have demonstrated
that C. albicans genomic structure enables response to a variety of environmental conditions
and increases challenges for treatment. C. albicans’ pathogenicity factors and processes span
a broad spectrum, including dimorphism, biofilm development, thigmotropism, adhesion
protein expression, and extracellular hydrolytic enzyme production. It is important that
we find natural product mediated inhibitors against this pathogen. This work is a step
towards this aim and drug target mapping as well as inhibition of FBA shows the potential
of informatics assay for designing novel anti-fungal compounds against C. albicans. Pre-
viously, most studies have been limited to bacterial or viral pathogens due to their small
genome size and ease of handling by computer. Here, a swift approach for examining
natural products against the target through pharmacoinformatics exploration of medicinal
compounds is undertaken, which can be replicated in other fungal pathogens. Safety
of the compounds was endorsed by ADMET and physiological based pharmacokinetic
simulation in the body shed light on dosing and relevant parameters. PBPK simulation is a
comprehensive strategy for dosing and risk assessment as it renders anatomical account
of the drug in body compartments, through mathematical modeling of complex ADME
process. Our pipeline for CADD in C. albicans, is therefore a comprehensive computational
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strategy for finding bioactive natural drug-like compounds against the fungus. However,
we suggest that experimental study is conducted on the compounds in mouse or other
humanized models and cell lines, before proceeding for trials, to increase the effectiveness
of anticipated target and our computational methodology.

Author Contributions: S.M.A. and Z.B. conceived and designed the study. Z.B., K.K. and K.J.
performed experiments and analyzed the data. S.M. and M.Z. curated data. S.M., M.Z., Z.B., K.K.
and K.J. wrote the manuscript. S.M.A. and Z.B. revised and edited the final draft. S.M.A. supervised
the project. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is derived from a source in the public domain (Genbank accession
no: CP000792.2) and is incorporated into the article.

Acknowledgments: The authors would like to acknowledge the support of ICCBS, University of
Karachi for conducting this study. Atta ur Rahman (FRS) is the founding father of ‘Jamil-ur-Rahman
Center for Genome Research, PCMD, ICCBS, University of Karachi, Pakistan. This paper is dedicated
to him at the occasion of celebration of his 80th birthday, as a token of thanks for his services to
science, and particularly higher education in Pakistan.

Conflicts of Interest: The authors declare that there is no conflict of interest.

References
1. Achkar, J.M.; Fries, B.C. Candida infections of the genitourinary tract. Clin. Microbiol. Rev. 2010, 23, 253–273. [CrossRef]
2. Pellon, A.; Begum, N.; Sadeghi Nasab, S.D.; Harzandi, A.; Shoaie, S.; Moyes, D.L. Role of Cellular Metabolism during Candida-

Host Interactions. Pathogens 2022, 11, 184. [CrossRef] [PubMed]
3. Naglik, J.R.; Gaffen, S.L.; Hube, B. Candidalysin: Discovery and function in Candida albicans infections. Curr. Opin. Microbiol.

2019, 52, 100–109. [CrossRef] [PubMed]
4. Verma, N.; Roy, A.; Singh, S.; Pradhan, P.; Garg, P.; Singh, N. Factors determining the mortality in cirrhosis patients with invasive

candidiasis: A systematic review and meta-analysis. Med. Mycol. 2021, 60, myab069. [CrossRef] [PubMed]
5. Arendrup, M.C.; Patterson, T.F. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect.

Dis. 2017, 216 (Suppl. 3), S445–S451. [CrossRef]
6. Healey, K.R.; Perlin, D.S. Fungal resistance to echinocandins and the MDR phenomenon in Candida glabrata. J. Fungi 2018, 4, 105.

[CrossRef]
7. Zhang, Y.; Muend, S.; Rao, R. Dysregulation of ion homeostasis by antifungal agents. Front. Microbiol. 2012, 3, 133. [CrossRef]
8. Silva, S.; Rodrigues, C.F.; Araújo, D.; Rodrigues, M.E.; Henriques, M. Candida species biofilms’ antifungal resistance. J. Fungi

2017, 3, 8. [CrossRef]
9. Spampinato, C.; Leonardi, D. Candida Infections, Causes, Targets, and Resistance Mechanisms: Traditional and Alternative

Antifungal Agents. BioMed Res. Int. 2013, 2013, 204237. [CrossRef]
10. Spettel, K.; Barousch, W.; Makristathis, A.; Zeller, I.; Nehr, M.; Selitsch, B.; Lackner, M.; Rath, P.; Steinmann, J.; Willinger, B.

Analysis of antifungal resistance genes in Candida albicans and Candida glabrata using next generation sequencing. PLoS ONE
2019, 14, e0210397. [CrossRef]

11. Yu, W.; MacKerell, A.D., Jr. Computer-Aided Drug Design Methods. Methods Mol. Biol. 2017, 1520, 85–106. [CrossRef] [PubMed]
12. Spaltmann, F.; Blunck, M.; Ziegelbauer, K. Computer-aided target selection—Prioritizing targets for antifungal drug discovery.

Drug Discov. Today 1999, 4, 17–26. [CrossRef]
13. Sabe, V.T.; Ntombela, T.; Jhamba, L.A.; Maguire, G.E.M.; Govender, T.; Naicker, T.; Kruger, H.G. Current trends in computer aided

drug design and a highlight of drugs discovered via computational techniques: A review. Eur. J. Med. Chem. 2021, 224, 113705.
[CrossRef]

14. Luo, H.; Lin, Y.; Liu, T.; Lai, F.; Zhang, C.; Gao, F.; Zhang, R. DEG 15, an update of the Database of Essential Genes that includes
built-in analysis tools. Nucleic Acids Res. 2021, 49, D677–D686. [CrossRef] [PubMed]

15. Ye, Y.N.; Hua, Z.G.; Huang, J.; Rao, N.; Guo, F.B. CEG: A database of essential gene clusters. BMC Genom. 2013, 14, 769. [CrossRef]
16. Liu, S.; Wang, S.-X.; Liu, W.; Wang, C.; Zhang, F.; Ye, Y.; Wu, C.; Zheng, W.; Rao, N.; Guo, F. CEG 2.0: An updated database of

clusters of essential genes including eukaryotic organisms. Database 2020, 2020, baaa112. [CrossRef]
17. Glass, J.I.; Assad-Garcia, N.; Alperovich, N.; Yooseph, S.; Lewis, M.R.; Maruf, M.; Hutchison, C.A.; Smith, H.O.; Venter, J.C.

Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. USA 2006, 103, 425–430. [CrossRef]

http://doi.org/10.1128/CMR.00076-09
http://doi.org/10.3390/pathogens11020184
http://www.ncbi.nlm.nih.gov/pubmed/35215128
http://doi.org/10.1016/j.mib.2019.06.002
http://www.ncbi.nlm.nih.gov/pubmed/31288097
http://doi.org/10.1093/mmy/myab069
http://www.ncbi.nlm.nih.gov/pubmed/34734272
http://doi.org/10.1093/infdis/jix131
http://doi.org/10.3390/jof4030105
http://doi.org/10.3389/fmicb.2012.00133
http://doi.org/10.3390/jof3010008
http://doi.org/10.1155/2013/204237
http://doi.org/10.1371/journal.pone.0210397
http://doi.org/10.1007/978-1-4939-6634-9_5
http://www.ncbi.nlm.nih.gov/pubmed/27873247
http://doi.org/10.1016/S1359-6446(98)01278-1
http://doi.org/10.1016/j.ejmech.2021.113705
http://doi.org/10.1093/nar/gkaa917
http://www.ncbi.nlm.nih.gov/pubmed/33095861
http://doi.org/10.1186/1471-2164-14-769
http://doi.org/10.1093/database/baaa112
http://doi.org/10.1073/pnas.0510013103


Life 2022, 12, 1743 14 of 15

18. Basharat, Z.; Jahanzaib, M.; Rahman, N. Therapeutic target identification via differential genome analysis of antibiotic resistant
Shigella sonnei and inhibitor evaluation against a selected drug target. Infect. Genet. Evol. 2021, 94, 105004. [CrossRef]

19. Basharat, Z.; Jahanzaib, M.; Yasmin, A.; Khan, I.A. Pan-genomics, drug candidate mining and ADMET profiling of natural
product inhibitors screened against Yersinia pseudotuberculosis. Genomics 2021, 113, 238–244. [CrossRef]

20. Nasim, F.; Dey, A.; Qureshi, I.A. Comparative genome analysis of Corynebacterium species: The underestimated pathogens with
high virulence potential. Infect. Genet. Evol. 2021, 93, 104928. [CrossRef]

21. Basharat, Z.; Akhtar, U.; Khan, K.; Alotaibi, G.; Jalal, K.; Abbas, M.N.; Hayat, A.; Ahmad, D.; Hassan, S.S. Differential analysis of
Orientia tsutsugamushi genomes for therapeutic target identification and possible intervention through natural product inhibitor
screening. Comput. Biol. Med. 2022, 141, 105165. [CrossRef] [PubMed]

22. Chakkyarath, V.; Shanmugam, A.; Natarajan, J. Prioritization of potential drug targets and antigenic vaccine candidates against
Klebsiella aerogenes using the computational subtractive proteome-driven approach. J. Proteins Proteom. 2021, 12, 201–211.
[CrossRef] [PubMed]

23. Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.
Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [CrossRef] [PubMed]

24. Khan, K.; Basharat, Z.; Jalal, K.; Mashraqi, M.M.; Alzamami, A.; Alshamrani, S.; Uddin, R. Identification of Therapeutic Targets
in an Emerging Gastrointestinal Pathogen Campylobacter ureolyticus and Possible Intervention through Natural Products.
Antibiotics 2022, 11, 680. [CrossRef] [PubMed]

25. Han, X.; Zhu, X.; Hong, Z.; Wei, L.; Ren, Y.; Wan, F.; Zhu, S.; Peng, H.; Guo, L.; Rao, L.; et al. Structure-Based Rational Design of
Novel Inhibitors Against Fructose-1,6-Bisphosphate Aldolase from Candida albicans. J. Chem. Inf. Model. 2017, 57, 1426–1438.
[CrossRef] [PubMed]

26. Jalal, K.; Abu-Izneid, T.; Khan, K.; Abbas, M.; Hayat, A.; Bawazeer, S.; Uddin, R. Identification of vaccine and drug targets in
Shigella dysenteriae sd197 using reverse vaccinology approach. Sci. Rep. 2022, 12, 251. [CrossRef]

27. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput.
Chem. 2005, 26, 1701–1718. [CrossRef]

28. Pires, D.E.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using
Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [CrossRef]

29. Hussain, A.; Altamimi, M.A.; Afzal, O.; Altamimi, A.S.A.; Ali, A.; Martinez, F.; Siddique, M.U.M.; Acree, W.E., Jr.; Jouyban, A.
Preferential Solvation Study of the Synthesized Aldose Reductase Inhibitor (SE415) in the {PEG 400 (1) + Water (2)} Cosolvent
Mixture and GastroPlus-Based Prediction. ACS Omega 2022, 7, 1197–1210. [CrossRef]

30. Talapphetsakun, T.; Viyoch, J.; Waranuch, N.; Sermsappasuk, P. The Development of a Physiologically Based Pharmacokinetic
(PBPK) Model of Andrographolide in Mice and Scaling It up to Rats, Dogs and Humans. Curr. Drug Metab. 2022, 23, 15. [CrossRef]

31. Rodaki, A.; Young, T.; Brown, A.J. Effects of depleting the essential central metabolic enzyme fructose-1,6-bisphosphate aldolase
on the growth and viability of Candida albicans: Implications for antifungal drug target discovery. Eukaryot. Cell 2006, 5,
1371–1377. [CrossRef] [PubMed]

32. Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Nitia, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci.
Transl. Med. 2012, 4, 165rv13. [CrossRef] [PubMed]

33. d’Enfert, C.; Kaune, A.-K.; Alaban, L.-R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Frois-Martins, R.;
Morelli, M.; et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: Current knowledge and
new perspectives. FEMS Microbiol. Rev. 2021, 45, fuaa060. [CrossRef] [PubMed]

34. Köhler, J.R.; Casadevall, A.; Perfect, J. The spectrum of fungi that infects humans. Cold Spring Harb. Perspect. Med. 2015, 5, a019273.
[CrossRef] [PubMed]

35. Sun, L.; Liao, K.; Wang, D. Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by
Candida albicans. PLoS ONE 2015, 10, e0117695. [CrossRef]

36. Li, Y.; Sun, L.; Lu, C.; Gong, Y.; Li, M.; Sun, S. Promising antifungal targets against Candida albicans based on ion homeostasis.
Front. Cell. Infect. Microbiol. 2018, 8, 286. [CrossRef]

37. Vila, T.; Romo, J.A.; Pierce, C.G.; McHardy, S.F.; Saville, S.P.; Lopez-Ribot, J.L. Targeting Candida albicans filamentation for
antifungal drug development. Virulence 2017, 8, 150–158. [CrossRef]

38. Guo, X.L.; Leng, P.; Yang, Y.; Luo, H.X. Plagiochin E, a botanic-derived phenolic compound, reverses fungal resistance to
fluconazole relating to the efflux pump. J. Appl. Microbiol. 2008, 104, 831–838. [CrossRef]

39. Khan, K.; Jalal, K.; Khan, A.; Al-Harrasi, A.; Uddin, R. Comparative Metabolic Pathways Analysis and Subtractive Genomics
Profiling to Prioritize Potential Drug Targets Against Streptococcus pneumoniae. Front. Microbiol. 2021, 12, 796363. [CrossRef]

40. Bappy, M.N.I.; Robin, T.B.; Prome, A.A.; Laskar, F.S.; Roy, A.; Akter, H.; Zinnah, K.M.A. Subtractive proteomics analysis to
uncover the potent drug targets for distinctive drug design of Candida auris. bioRxiv 2022. [CrossRef]

41. de Amorim, A.L.; de Lima, A.V.M.; Rosário, A.; Souza, E.T.D.S.; Ferriera, J.V.; Hage-Melim, L.I.dS. Molecular modeling of
inhibitors against fructose bisphosphate aldolase from Candida albicans. Silico Pharmacol. 2018, 6, 2. [CrossRef] [PubMed]

42. Elamin Elhasan, L.M.; Hassan, M.B.; Elhassan, R.M.; Abdelrhman, F.A.; Salih, E.A.; Ibrahim, A.; Mohamed, A.A.; Osman, H.S.;
Khalil, M.S.M.; Alsafi, A.A.; et al. Epitope-based peptide vaccine design against fructose bisphosphate aldolase of Candida
glabrata: An immunoinformatics approach. J. Immunol. Res. 2021, 2021, 8280925. [CrossRef] [PubMed]

http://doi.org/10.1016/j.meegid.2021.105004
http://doi.org/10.1016/j.ygeno.2020.12.015
http://doi.org/10.1016/j.meegid.2021.104928
http://doi.org/10.1016/j.compbiomed.2021.105165
http://www.ncbi.nlm.nih.gov/pubmed/34973586
http://doi.org/10.1007/s42485-021-00068-9
http://www.ncbi.nlm.nih.gov/pubmed/34305354
http://doi.org/10.1038/s41586-021-03819-2
http://www.ncbi.nlm.nih.gov/pubmed/34265844
http://doi.org/10.3390/antibiotics11050680
http://www.ncbi.nlm.nih.gov/pubmed/35625323
http://doi.org/10.1021/acs.jcim.6b00763
http://www.ncbi.nlm.nih.gov/pubmed/28475320
http://doi.org/10.1038/s41598-021-03988-0
http://doi.org/10.1002/jcc.20291
http://doi.org/10.1021/acs.jmedchem.5b00104
http://doi.org/10.1021/acsomega.1c05788
http://doi.org/10.2174/1389200223666220628095616
http://doi.org/10.1128/EC.00115-06
http://www.ncbi.nlm.nih.gov/pubmed/16896220
http://doi.org/10.1126/scitranslmed.3004404
http://www.ncbi.nlm.nih.gov/pubmed/23253612
http://doi.org/10.1093/femsre/fuaa060
http://www.ncbi.nlm.nih.gov/pubmed/33232448
http://doi.org/10.1101/cshperspect.a019273
http://www.ncbi.nlm.nih.gov/pubmed/25367975
http://doi.org/10.1371/journal.pone.0117695
http://doi.org/10.3389/fcimb.2018.00286
http://doi.org/10.1080/21505594.2016.1197444
http://doi.org/10.1111/j.1365-2672.2007.03617.x
http://doi.org/10.3389/fmicb.2021.796363
http://doi.org/10.1101/2022.04.07.487516
http://doi.org/10.1007/s40203-018-0040-x
http://www.ncbi.nlm.nih.gov/pubmed/30607315
http://doi.org/10.1155/2021/8280925
http://www.ncbi.nlm.nih.gov/pubmed/34036109


Life 2022, 12, 1743 15 of 15

43. Rodicio, R.; Schmitz, H.-P.; Heinisch, J.J. Genetic and physiological characterization of fructose-1, 6-bisphosphate aldolase and
glyceraldehyde-3-phosphate dehydrogenase in the crabtree-negative yeast Kluyveromyces lactis. Int. J. Mol. Sci. 2022, 23, 772.
[CrossRef] [PubMed]

44. Pirovich, D.B.; Da’dara, A.A.; Skelly, P.J. Multifunctional fructose 1, 6-bisphosphate aldolase as a therapeutic target. Front. Mol.
Biosci. 2021, 8, 719678. [CrossRef] [PubMed]

45. Zavrel, M.; White, T.C. Medically important fungi respond to azole drugs: An update. Future Microbiol. 2015, 10, 1355–1373.
[CrossRef] [PubMed]

46. Jalal, K.; Khan, K.; Hassam, M.; Abbas, M.N.; Uddin, R.; Khusro, A.; Sahibzada, M.U.K.; Gajdacs, M. Identification of a Novel
Therapeutic Target against XDR Salmonella Typhi H58 Using Genomics Driven Approach Followed up by Natural Products
Virtual Screening. Microorganisms 2021, 9, 2512. [CrossRef]

47. Wangyal, R.; Tidwell, T.; Dhondrup, W.; Yungdrung, T.; Dhondrup, G.; He, Q.; Zhang, Y. Dataset of materia medica in Sowa Rigpa:
Tibetan medicine botanicals and Gawé Dorjé’s classification system. Data Brief 2020, 33, 106498. [CrossRef]

48. Pandey, M.M.; Rastogi, S.; Rawat, A.K. Indian traditional ayurvedic system of medicine and nutritional supplementation.
Evid.Based Complement. Altern. Med. 2013, 2013, 376327. [CrossRef]

49. Li, Q.; Li, H.J.; Xu, T.; Du, H.; Huan Gang, C.L.; Huan Gang, C.L.; Fan, G.; Zhang, Y. Natural Medicines Used in the Traditional
Tibetan Medical System for the Treatment of Liver Diseases. Front. Pharmacol. 2018, 9, 29. [CrossRef]

50. Devpura, G.; Tomar, B.S.; Nathiya, D.; Sharma, A.; Bhandari, D.; Haldar, S.; Balkrishna, A.; Varshney, A. Random-
ized placebo-controlled pilot clinical trial on the efficacy of ayurvedic treatment regime on COVID-19 positive patients.
Phytomedicine 2021, 84, 153494. [CrossRef]

51. Liu, W.; Wu, Y.H.; Hu, S.Y.; Zhong, C.; Gao, M.; Liu, D.; Wang, H.; Chen, M.; Song, Y.; Yang, B.; et al. A multicenter, randomized,
double-blind, placebo-controlled trial evaluating the efficacy and safety of Tong Luo Hua Shi capsule, a modernized Tibetan
medicine, in patients with rheumatoid arthritis. Trials 2016, 17, 359. [CrossRef] [PubMed]

52. Shang, Y.X.; Dong, X.; Xie, Z.M.; Li, X.; Wang, X.; Huang, J.; Wei, S.; Liu, Y.; Liu, J. Efficacy and safety of Tibetan medicine
Qingpeng ointment for acute gouty arthritis: Protocol for a multi-center, randomized, double-blind, placebo-controlled trial.
Trials 2022, 23, 387. [CrossRef] [PubMed]

53. Witt, C.M.; Michalsen, A.; Roll, S.; Morandi, A.; Gupta, S.; Rosenberg, M.; Kronpass, L.; Stapelfeldt, E.; Hisar, S.; Muller, M.; et al.
Comparative effectiveness of a complex Ayurvedic treatment and conventional standard care in osteoarthritis of the knee-study
protocol for a randomized controlled trial. Trials 2013, 14, 149. [CrossRef]

54. Sharifi-Rad, J.; Hoseini-Alfatemi, S.M.; Sharifi-Rad, M.; Sahrifi-Rad, M.; Iriti, M.; Sharifi-Rad, M.; Sharifi-Rad, R.; Raeisis, S.
Phytochemical Compositions Biological Activities of Essential Oil from Xanthium strumarium L. Biomolecules 2015, 20, 7034–7047.
[CrossRef] [PubMed]

55. Sharifi-Rad, J.; Soufi, L.; Ayatollahi, S.A.; Iriti, M.; Sharifi-Rad, M.; Varoni, E.M.; Shahri, F.; Esposito, S.; Kuhestani, K.; Sharifi-Rad,
M. Anti-bacterial effect of essential oil from Xanthium strumarium against shiga toxin-producing Escherichia coli. Cell. Mol. Biol.
2016, 62, 69–74.

56. Soulaimani, B.; Varoni, E.; Iriti, M.; Mezrioui, N.; Hassani, L.; Abbad, A. Synergistic Anticandidal Effects of Six Essential Oils in
Combination with Fluconazole or Amphotericin B against Four Clinically Isolated Candida Strains. Antibiotics 2021, 10, 1049.
[CrossRef]

57. Al-Karmalawy, A.A.; Dahab, M.A.; Metwaly, A.M.; Elhady, S.S.; Elkaeed, E.B.; Eissa, I.H.; Darwish, K.M. Molecular Docking and
Dynamics Simulation Revealed the Potential Inhibitory Activity of ACEIs Against SARS-CoV-2 Targeting the h ACE2 Receptor.
Front. Chem. 2021, 9, 661230. [CrossRef]

58. Brogi, S.J.M. Computational approaches for drug discovery. Molecules 2019, 24, 3061. [CrossRef]
59. Yasmin, A.; Basharat, Z.; Safdar, N. In-silico Approach to Target Cancer Cell DNA Repair Pathway. In Phytochemistry: An In-Silico

and In-Vitro Update; Springer: Berlin/Heidelberg, Germany, 2019; pp. 373–392.
60. Herbert, J.; Augereau, J.; Gleye, J.; Maffrand, J.P. Chelerythrine is a potent specific inhibitor of protein kinase, C. Biochem. Biophys.

Res. Commun. 1990, 172, 993–999. [CrossRef]
61. Fan, L.; Fan, Y.; Liu, L.; Tao, W.; Shan, X.; Dong, Y.; Li, L.; Zhang, S.; Wang, H. Chelerythrine attenuates the inflammation of

lipopolysaccharide-induced acute lung inflammation through NF-κB signaling pathway mediated by Nrf2. Front. Pharmacol.
2018, 9, 1047. [CrossRef]

62. De Buck, S.S.; Sinha, V.K.; Fenu, L.A.; Nijsen, M.J.; Mackie, C.E.; Gilissen, R.A.H.J. Prediction of human pharmacokinetics using
physiologically based modeling: A retrospective analysis of 26 clinically tested drugs. Drug Metab. Dispos. 2007, 35, 1766–1780.
[CrossRef] [PubMed]

63. Shiran, M.; Proctor, N.; Howgate, E.; Rowland-Yew, K.; Tucker, G.T.; Rostami-Hodjegan, A. Prediction of metabolic drug clearance
in humans: In vitro–in vivo extrapolation vs. allometric scaling. Xenobiotica 2006, 36, 567–580. [CrossRef] [PubMed]

64. Parrott, N.; Lukacova, V.; Fraczkiewicz, G.; Bolger, M.B. Predicting pharmacokinetics of drugs using physiologically based
modeling—Application to food effects. AAPS J. 2009, 11, 45–53. [CrossRef]

65. Jones, H.M.; Parrott, N.; Ohlenbusch, G.; Lave, T. Predicting pharmacokinetic food effects using biorelevant solubility media and
physiologically based modelling. Clin. Pharmacokinet. 2006, 45, 1213–1226. [CrossRef] [PubMed]

66. Parrott, N.; Lave, T. Applications of physiologically based absorption models in drug discovery and development. Mol. Pharm.
2008, 5, 760–775. [CrossRef] [PubMed]

http://doi.org/10.3390/ijms23020772
http://www.ncbi.nlm.nih.gov/pubmed/35054955
http://doi.org/10.3389/fmolb.2021.719678
http://www.ncbi.nlm.nih.gov/pubmed/34458323
http://doi.org/10.2217/FMB.15.47
http://www.ncbi.nlm.nih.gov/pubmed/26234644
http://doi.org/10.3390/microorganisms9122512
http://doi.org/10.1016/j.dib.2020.106498
http://doi.org/10.1155/2013/376327
http://doi.org/10.3389/fphar.2018.00029
http://doi.org/10.1016/j.phymed.2021.153494
http://doi.org/10.1186/s13063-016-1481-3
http://www.ncbi.nlm.nih.gov/pubmed/27465818
http://doi.org/10.1186/s13063-022-06338-1
http://www.ncbi.nlm.nih.gov/pubmed/35549757
http://doi.org/10.1186/1745-6215-14-149
http://doi.org/10.3390/molecules20047034
http://www.ncbi.nlm.nih.gov/pubmed/25898416
http://doi.org/10.3390/antibiotics10091049
http://doi.org/10.3389/fchem.2021.661230
http://doi.org/10.3390/molecules24173061
http://doi.org/10.1016/0006-291X(90)91544-3
http://doi.org/10.3389/fphar.2018.01047
http://doi.org/10.1124/dmd.107.015644
http://www.ncbi.nlm.nih.gov/pubmed/17620347
http://doi.org/10.1080/00498250600761662
http://www.ncbi.nlm.nih.gov/pubmed/16864504
http://doi.org/10.1208/s12248-008-9079-7
http://doi.org/10.2165/00003088-200645120-00006
http://www.ncbi.nlm.nih.gov/pubmed/17112297
http://doi.org/10.1021/mp8000155
http://www.ncbi.nlm.nih.gov/pubmed/18547054

	Introduction 
	Material & Methods 
	Data Retrieval 
	Essentiality Analysis 
	Drug Target Mining 
	Virtual Screening 
	ADMET Profiling 

	Results 
	Therapeutic Candidate Mining 
	Virtual Screening 
	ADMET Profiling 

	Discussion 
	Conclusions 
	References

