Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = strong cation exchange

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 624 KB  
Review
The Use of Red Mud in Agricultural Soil Cadmium Remediation: A Critical Review
by Weiwei Sun, Wenyi Xie, Lei Wang, Lei Wang, Yang Gong, Xuwei Li, Chi Wang, Jiali Yan and Xiaochen Lin
Toxics 2026, 14(1), 16; https://doi.org/10.3390/toxics14010016 - 23 Dec 2025
Viewed by 320
Abstract
Red mud is a highly alkaline solid waste with an annual emission of over 200 million tons, which requires large-scale utilization methods. Soil Cd remediation is a global concern, due to its high toxicity and strong mobility. Given red mud’s potential for soil [...] Read more.
Red mud is a highly alkaline solid waste with an annual emission of over 200 million tons, which requires large-scale utilization methods. Soil Cd remediation is a global concern, due to its high toxicity and strong mobility. Given red mud’s potential for soil Cd remediation, this study reviews its basic characteristics, the mechanisms of soil Cd immobilization by red mud, and the use of red mud-based passivators for agricultural soil Cd remediation. In general, red mud regulates soil pH, thus increasing the soil’s Cd adsorption capacity; provides abundant surface active sites for adsorption and complexation with soil Cd; introduces cations to immobilize Cd via ion exchange; and enriches Cd-resistant microbe species to reduce soil Cd toxicity. Furthermore, the potential environmental risks and suggestions on red mud application are discussed. Further research should focus on improving the remediation effectiveness of red mud on cadmium-contaminated agricultural soil, demonstrating its long-term efficacy and economic costs, and proposing practical technical models and standards for application. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

26 pages, 1556 KB  
Review
From Environmental Threat to Control: A Review of Technologies for Removal of Quaternary Ammonium Compounds from Wastewater
by Aleksandra Klimonda and Izabela Kowalska
Membranes 2026, 16(1), 1; https://doi.org/10.3390/membranes16010001 - 19 Dec 2025
Viewed by 804
Abstract
Cationic surfactants from the group of quaternary ammonium compounds (QACs) are widely used in disinfectants, cosmetics, and household and industrial products. Their strong antimicrobial activity and chemical stability make them valuable in applications but also highly persistent and toxic when released into aquatic [...] Read more.
Cationic surfactants from the group of quaternary ammonium compounds (QACs) are widely used in disinfectants, cosmetics, and household and industrial products. Their strong antimicrobial activity and chemical stability make them valuable in applications but also highly persistent and toxic when released into aquatic environments. This problem has become increasingly relevant during and after the COVID-19 pandemic, when global use of QAC-based disinfectants increased drastically, resulting in their frequent detection in municipal, hospital, and industrial effluents. The concentrations of QACs reported in wastewater range from trace levels to several mg/L, often reaching inhibitory thresholds for biological treatment processes. Although surfactants are not listed in any current European directive, the revised Directive (EU) 2024/1440 classifies micropollutants as a priority group, imposing stricter environmental quality standards and mandatory monitoring requirements. Within this regulatory framework, QACs are recognized as compounds of emerging concern, and their effective removal from wastewater has become a critical challenge. This review summarizes the current knowledge on conventional treatment technologies (coagulation, adsorption, ion exchange, advanced oxidation, and biological processes) and membrane-based methods (ultrafiltration, nanofiltration, reverse osmosis, forward osmosis, and hybrid systems) for the removal of cationic surfactants from water and wastewater. Mechanisms of separation, performance, and operational limitations are discussed. Full article
Show Figures

Figure 1

28 pages, 15672 KB  
Article
Lithium Enrichment Mechanisms in Geothermal Waters of Xiamen, Southeastern China, Revealed by SOM Classification and Hydrogeochemical Analysis
by Shuaichao Wei, Xiaoxue Yan, Ruoxi Yuan, Feng Liu, Guiling Wang, Long Li, Yong Fu and Wei Zhang
Sustainability 2025, 17(24), 11352; https://doi.org/10.3390/su172411352 - 18 Dec 2025
Viewed by 280
Abstract
Lithium (Li) is a critical metal element in geothermal systems, yet its enrichment mechanism in coastal geothermal waters remains poorly understood. This study focuses on the Xiamen coastal geothermal system, located in the South China granitic reservoir at the front of the Pacific [...] Read more.
Lithium (Li) is a critical metal element in geothermal systems, yet its enrichment mechanism in coastal geothermal waters remains poorly understood. This study focuses on the Xiamen coastal geothermal system, located in the South China granitic reservoir at the front of the Pacific subduction zone. Self-organizing map (SOM) classification, hydrogeochemical analysis, hydrogen–oxygen isotopic constraints, and a three end-member mass balance model were applied to identify the sources and enrichment mechanisms of Li. The geothermal waters are classified into two types: inland low-TDS (Cluster-1) and coastal high-TDS (Cluster-2). Isotopic data indicate a mixture of meteoric water and seawater as the recharge source. The model shows that seawater and groundwater mixing accounts for 2–45% of Li concentration, with over 55% derived from the rock end-member. The leaching of 0.002–0.187 kg of granite per liter of geothermal water explains the observed Li levels. Elevated temperature and low pH enhance Li+ release from silicate minerals, and reverse cation exchange further amplifies this process. A strong positive correlation between the CAI-II index and Li+ concentration reveals a synergistic effect of ion exchange in high-salinity environments. Overall, the results provide a quantitative framework for understanding Li enrichment and evaluating resource potential in coastal geothermal systems. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

16 pages, 2866 KB  
Article
Bifunctionalized Polyethyleneimine-Based Sponge for Adsorption of Ibuprofen from Aqueous Solution
by Xiaoyi Gou, Zia Ahmad, Zaijin You and Zhou Ren
Polymers 2025, 17(23), 3221; https://doi.org/10.3390/polym17233221 - 3 Dec 2025
Viewed by 473
Abstract
A quaternized and phenyl-functionalized hyperbranched PEI-based sponge (SHPEI-QP) was successfully prepared, and its adsorption performance was investigated to evaluate its potential for removing the anionic non-steroidal anti-inflammatory drug (ibuprofen (IBU)). We reported that the synthesis of polyethyleneimine-based sponges was achieved through [...] Read more.
A quaternized and phenyl-functionalized hyperbranched PEI-based sponge (SHPEI-QP) was successfully prepared, and its adsorption performance was investigated to evaluate its potential for removing the anionic non-steroidal anti-inflammatory drug (ibuprofen (IBU)). We reported that the synthesis of polyethyleneimine-based sponges was achieved through cryo-polymerization using 1,4-butanediol diglycidyl ether (BDDE) as the crosslinking agent. Subsequent functionalization with resorcinol diglycidyl ether (RDGE) and trimethylamine introduced quaternary ammonium cations, imparting strong basicity and hydrophilicity, as well as phenyl groups, conferring hydrophobic characteristics, respectively. The aforementioned sponge material, SHPE-QPI, primarily facilitates the efficient adsorption of IBU in aqueous solutions through the anion exchange properties of quaternary ammonium groups and the π-π interactions associated with oxygen-activated benzene rings. Various characterizations, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and specific surface area determination method (BET), confirmed the successful synthesis of the bifunctionalized SHPEI-QP adsorbent. This adsorbent features a porous structure (specific surface area of 77.2 m2 g−1 and pore size distribution of 25–100 nm) and an isoelectric point (pHpzc) of 9.38. The adsorption kinetics of the adsorbent for IBU were extremely rapid and conformed to a pseudo-second-order kinetic model, and the adsorption isotherm aligned with the Langmuir isotherm model. Noteworthily, SHPEI-QP demonstrated an exceptionally high adsorption capacity for IBU, achieving a maximum uptake of 905.73 mg g−1 at pH 7.0, which surpassed that of most of the previous reported adsorbents. Moreover, the sponge material can be chemically regenerated. After eight cycles of use, the adsorption efficiency decreased by only 4%. These findings suggest that the synthesized dendritic anion exchange adsorbent represents a promising candidate for the removal of IBU from contaminated water sources. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

25 pages, 2364 KB  
Article
Urea-N Activated Biochar Effectively Suppresses CO2 and N2O Emissions from Farmland Soil
by Xiao Wang, Yudong Zheng, Xuetong Liu, Dan Liu, Caiyun Cao, Kejiang Li, Ping Lu, Peiling Yang, Huiguang Wang, Chunlian Zheng and Hongkai Dang
Agronomy 2025, 15(11), 2655; https://doi.org/10.3390/agronomy15112655 - 19 Nov 2025
Viewed by 516
Abstract
The inconsistent efficacy of biochar in mitigating agricultural greenhouse gas emissions remains a major barrier to its widespread adoption and the realization of its environmental benefits. This study aimed to develop a stable and efficient mitigation strategy by optimizing biochar physicochemical properties through [...] Read more.
The inconsistent efficacy of biochar in mitigating agricultural greenhouse gas emissions remains a major barrier to its widespread adoption and the realization of its environmental benefits. This study aimed to develop a stable and efficient mitigation strategy by optimizing biochar physicochemical properties through urea-N activation (corn stover: urea mass ratios of 5:1 and 15:1). Five treatments were established: CK (control), GC (fertilization), GB (fertilization + raw biochar), GAB5 (fertilization + low-N activated biochar), and GAB15 (fertilization + high-N activated biochar). Mechanisms were elucidated by monitoring soil profile (0–20 cm) gas concentrations and surface fluxes, combined with a comprehensive analysis of soil physicochemical properties, enzyme activities, and microbial biomass. Results demonstrated that activated biochar, particularly GAB15, significantly reduced cumulative CO2 (9.4%, p < 0.05) and N2O (45.2%, p < 0.05) emissions and their concentrations in the 0–10 cm layer. This superior efficacy was linked to profound improvements in key soil properties: GAB15 significantly enhanced soil cation exchange capacity (CEC, increased by 17.3%, p < 0.05), NH4+-N content (increased by 88.2%, p < 0.05), Mean Weight Diameter (MWD, increased by 13.0%), the content of water-stable aggregates > 0.25 mm (R>0.25mm, increased by 57.3%) (p < 0.05), dissolved organic carbon (DOC), and the MBC (microbial biomass carbon)/MBN (soil microbial biomass nitrogen) ratio. Redundancy analysis (RDA) and structural equation modeling (SEM) revealed core mechanisms: CO2 mitigation primarily stemmed from the physical protection of organic carbon within macroaggregates and a negative priming effect induced by an elevated MBC/MBN ratio; N2O mitigation was attributed to weakened nitrogen mineralization due to enhanced aggregate stability and reduced substrate (inorganic N) availability for nitrification/denitrification via strong adsorption at the biochar–soil interface. This study confirms that urea-activated biochar produced at a 15:1 corn stover-to-urea mass ratio (GAB15) effectively overcomes the inconsistent efficacy of conventional biochar by targeted physicochemical optimization, offering a promising and technically feasible approach for mitigating agricultural greenhouse gas emissions. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

20 pages, 25859 KB  
Article
Improved Assessment and Prediction of Groundwater Drinking Quality Integrating Game Theory and Machine Learning in the Nyangchu River Basin, Southwestern Qinghai–Tibet Plateau
by Xun Huang, Xiyong Wu, Weiting Liu, Denghui Wei, Ying Wang, Hua Wu, Yangshuang Wang, Boyi Zhu, Qili Hu, Yunhui Zhang and Wei Wang
Toxics 2025, 13(11), 985; https://doi.org/10.3390/toxics13110985 - 16 Nov 2025
Viewed by 852
Abstract
To address the limitations of traditional groundwater quality assessment and prediction methods, this study integrates game theory and machine learning to investigate the drinking quality of groundwater in the southwestern Qinghai–Tibet Plateau. The results showed that the groundwater in the study area is [...] Read more.
To address the limitations of traditional groundwater quality assessment and prediction methods, this study integrates game theory and machine learning to investigate the drinking quality of groundwater in the southwestern Qinghai–Tibet Plateau. The results showed that the groundwater in the study area is generally weakly alkaline (mean pH: 8.08) and dominated by freshwater (mean TDS: 302.58 mg/L), with hardness levels mostly ranging from soft to medium. Major cations follow the concentration order: Ca2+ > Na+ > Mg2+ > K+; anions are in the sequence of HCO3 > SO42− > Cl. The hydrochemical type is mainly Ca-HCO3. A few samples exceed the limit values specified in the Groundwater Quality Standard. Through multivariate statistical analysis, ion ratio analysis, and saturation index calculations, water-rock interaction is identified as the primary factor influencing groundwater chemistry. It consists of carbonate dissolution and silicate weathering, accompanied by cation exchange. The water quality index improved based on game theory, integrated subjective weights (from analytic hierarchy process) and objective weights (from entropy-weighted method), shows that the overall groundwater quality in the study area is good: 95.97% of the samples are high-quality water (WQI ≤ 50), more than 99% of the samples have a WQI < 150, which is suitable as drinking water sources; only 0.81% of the samples are of extremely poor quality, presumably related to local pollution. Linear regression achieved the best performance (R2 = 0.99, RMSE≈0.00) with strong stability, followed by support vector machines (test R2 = 0.98), while the extreme gradient boosting model showed overfitting. This study provides a scientific basis for groundwater management in river basins. Full article
(This article belongs to the Topic Water-Soil Pollution Control and Environmental Management)
Show Figures

Figure 1

13 pages, 3627 KB  
Article
Ion-Exchanged Beta-Based Cobalt Catalyst for Efficient Degradation of Aqueous Dye Acid Orange II
by En Fu, Xiang Liao, Chun He, Shaodan Xu and Huanxuan Li
Nanomaterials 2025, 15(21), 1630; https://doi.org/10.3390/nano15211630 - 26 Oct 2025
Viewed by 541
Abstract
A highly active Co/Beta catalyst was prepared via ion-exchange method, in which sodium cations in the beta zeolite framework were replaced by cobalt ions using an aqueous cobalt nitrate solution. Based on XRD, SEM, TEM, XPS, and nitrogen adsorption–desorption analyses, it was confirmed [...] Read more.
A highly active Co/Beta catalyst was prepared via ion-exchange method, in which sodium cations in the beta zeolite framework were replaced by cobalt ions using an aqueous cobalt nitrate solution. Based on XRD, SEM, TEM, XPS, and nitrogen adsorption–desorption analyses, it was confirmed that cobalt species successfully took the place of sodium ions in beta zeolite, while the cobalt species diffused with a uniform dispersion. Strong electronic coupling between cobalt species and zeolite framework oxygen stabilizes Co2+ sites in the material. The catalysts perform high efficiency in dye Acid Orange II (AO7) degradation reactions, which gives more than 99.5% removal efficiency at room temperature and initial pH within 10 min under low catalyst dosage. The advantages of the Co/Beta catalyst are reasonably attributed to its maximized metal−zeolite synergistic efficiency. Full article
Show Figures

Figure 1

19 pages, 1334 KB  
Article
Spatial Decoupling of Biological and Geochemical Phosphorus Cycling in Podzolized Soils
by Daniel F. Petticord, Benjamin T. Uveges, Elizabeth H. Boughton, Brian D. Strahm and Jed P. Sparks
Soil Syst. 2025, 9(4), 115; https://doi.org/10.3390/soilsystems9040115 - 16 Oct 2025
Viewed by 730
Abstract
Phosphorus (P) is essential to life yet constrained by finite reserves, heterogeneous distribution, and strong chemical binding to soil minerals. Pedogenesis progressively alters the availability of P: in ‘young’ soils, P associated with Ca and Mg is relatively labile, while in ‘old’ soils, [...] Read more.
Phosphorus (P) is essential to life yet constrained by finite reserves, heterogeneous distribution, and strong chemical binding to soil minerals. Pedogenesis progressively alters the availability of P: in ‘young’ soils, P associated with Ca and Mg is relatively labile, while in ‘old’ soils, acidification and leaching deplete base cations, shifting P into organic matter and recalcitrant Al- and Fe-bound pools. Podzolized soils (Spodosols) provide a unique lens for studying this transition because podzolization vertically segregates these dynamics into distinct horizons. Organic cycling dominates the surface horizon, while downward translocation of Al, Fe, and humus creates a spodic horizon that immobilizes P through sorption and co-precipitation in amorphous organometal complexes. This spatial separation establishes two contrasting P pools—biologically dynamic surface P and mineral-stabilized deep P—that may be variably accessible to plants and microbes depending on depth, chemistry, and hydrology. We synthesize mechanisms of spodic P retention and liberation, including redox oscillations, ligand exchange, root exudation, and physical disturbance, and contrast these with strictly mineral-driven or biologically dominated systems. We further propose that podzols serve as natural experimental models for ecosystem aging, allowing researchers to explore how P cycling reorganizes as soils develop, how vertical stratification structures biotic strategies for nutrient acquisition, and how deep legacy P pools may be remobilized under environmental change. By framing podzols as a spatial analogue of long-term weathering, this paper identifies them as critical systems for advancing our understanding of nutrient limitation, biogeochemical cycling, and sustainable management of P in diverse ecosystems. Full article
Show Figures

Figure 1

18 pages, 5841 KB  
Article
Supercritical Water Oxidation of Nuclear Cation Exchange Resins: Process Optimization and Reaction Mechanism
by Tiantian Xu, Yanhui Li, Shuzhong Wang, Donghai Xu, Qian Zhang, Yabin Jin and Wenhan Song
Processes 2025, 13(10), 3249; https://doi.org/10.3390/pr13103249 - 13 Oct 2025
Cited by 1 | Viewed by 608
Abstract
This study conducted a systematic investigation of the degradation pathway and process optimization of strong acid cation exchange resins subjected to SCWO. Controlled experiments evaluated the effects of operating temperature, oxidant stoichiometry, initial organic concentration, and residence time. RSM was utilized to refine [...] Read more.
This study conducted a systematic investigation of the degradation pathway and process optimization of strong acid cation exchange resins subjected to SCWO. Controlled experiments evaluated the effects of operating temperature, oxidant stoichiometry, initial organic concentration, and residence time. RSM was utilized to refine the operating parameters, and a second-order regression model (R2 = 0.9951) was established to predict COD removal (RCOD), valid within experimental ranges: reaction temperature 400–500 °C, oxidant stoichiometry 80–150%, initial COD 10,000–100,000 mg·L−1, and residence time 1–10 min. COD-dependent NaOH addition could enhance degradation efficiency. The RCOD was sensitive to operating temperature, oxidant stoichiometry, and residence time. Under the optimized conditions of 472 °C, oxidant stoichiometry of 137%, initial COD of 77,216 mg·L−1, and residence time of 4.9 min with the addition of 1.74 wt% NaOH, the RCOD reached 99.92%, which was in close agreement with model predictions. GC-MS analysis of intermediates revealed that sulfonic groups dissociated early, followed by aromatic compounds, particularly phenol, undergoing ring-opening and oxidation to small carboxylic acids and aliphatic species, which were ultimately mineralized to CO2 and H2O. These findings provide mechanistic insight into resin decomposition and offer a scientific basis for the safe treatment of radioactive waste resins using SCWO. Full article
Show Figures

Figure 1

19 pages, 4228 KB  
Article
Complex Effects of Functional Groups on the Cotransport Behavior of Functionalized Fe3O4 Magnetic Nanospheres and Tetracycline in Porous Media
by Yiqun Cui, Ming Wu, Meng Chen and Yanru Hao
Water 2025, 17(19), 2889; https://doi.org/10.3390/w17192889 - 4 Oct 2025
Viewed by 769
Abstract
In this study, four types of Fe3O4-based magnetic nanospheres were functionalized with distinct surface groups to examine how surface chemistry influences their co-transport with tetracycline (TC) in porous media. The functional groups investigated are carboxyl (−COOH), epoxy (−EPOXY), silanol [...] Read more.
In this study, four types of Fe3O4-based magnetic nanospheres were functionalized with distinct surface groups to examine how surface chemistry influences their co-transport with tetracycline (TC) in porous media. The functional groups investigated are carboxyl (−COOH), epoxy (−EPOXY), silanol (−SiOH), and amino (−NH2). Particles bearing −COOH, −EPOXY, or −SiOH are negatively charged, facilitating their transport through porous media, whereas −NH2-modified particles acquire a positive charge, leading to strong electrostatic attraction to the negatively charged TC and quartz sand, and consequently substantial retention with reduced mobility. Adsorption of TC onto Fe3O4-MNPs is predominantly chemisorptive, driven by ligand exchange and the formation of coordination complexes between the ionizable carboxyl and amino groups of TC and the surface hydroxyls of Fe3O4-MNPs. Additional contributions arise from electrostatic interactions, hydrogen bonding, hydrophobic effects, and cation–π interactions. Moreover, the carboxylate moiety of TC can coordinate to surface Fe centers via its oxygen atoms. Molecular dynamics simulations reveal a hierarchy of adsorption energies for TC on the differently modified surfaces: Fe3O4-NH2 > Fe3O4-EPOXY > Fe3O4-COOH > Fe3O4-SiOH, consistent with experimental findings. The results underscore that tailoring the surface properties of engineered nanoparticles substantially modulates their environmental fate and interactions, offering insights into the potential ecological risks associated with these nanomaterials. Full article
Show Figures

Graphical abstract

25 pages, 4329 KB  
Article
Investigation of the Temperature Effect on Oil–Water–Rock Interaction Mechanisms During Low-Salinity Water Flooding in Tight Sandstone Reservoirs
by Min Sun and Yuetian Liu
Processes 2025, 13(10), 3135; https://doi.org/10.3390/pr13103135 - 30 Sep 2025
Cited by 1 | Viewed by 760
Abstract
Temperature is a key factor in regulating interfacial behaviors and enhancing oil recovery during low-salinity water flooding in tight sandstone reservoirs. This study systematically investigates the synergistic mechanisms of temperature and salinity on ion exchange, wettability alteration, interfacial tension, and crude oil desorption. [...] Read more.
Temperature is a key factor in regulating interfacial behaviors and enhancing oil recovery during low-salinity water flooding in tight sandstone reservoirs. This study systematically investigates the synergistic mechanisms of temperature and salinity on ion exchange, wettability alteration, interfacial tension, and crude oil desorption. The experimental results show that elevated temperature significantly strengthens the oil–water–rock interactions induced by low-salinity water, thereby improving oil recovery. At 70 °C, the release of divalent cations such as Ca2+ and Mg2+ from the rock surface is notably enhanced. Simultaneously, the increase in interfacial electrostatic repulsion is evidenced by a shift in the rock–brine zeta potential from −3.14 mV to −6.26 mV. This promotes the desorption of polar components, such as asphaltenes, from the rock surface, leading to a significant change in wettability. The wettability alteration index increases to 0.4647, indicating a strong water-wet condition. Additionally, the reduction in oil–water interfacial zeta potential and the enhancement in interfacial viscoelasticity contribute to a further decrease in interfacial tension. Under conditions of 0.6 PW salinity and 70 °C, non-isothermal core flooding experiments demonstrate that rock–fluid interactions are the dominant mechanism responsible for enhanced oil recovery. By applying a staged injection strategy, where 0.6 PW is followed by 0.4 PW, the oil recovery reaches 34.89%, which is significantly higher than that achieved with high-salinity water flooding. This study provides critical mechanistic insights and optimized injection strategies for the development of high-temperature tight sandstone reservoirs using low-temperature waterflooding. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 4993 KB  
Article
Stable Non-Competitive DPP-IV Inhibitory Hexapeptide from Parkia timoriana Seeds: A Candidate for Functional Food Development in Type 2 Diabetes
by Sakinah Hilya Abida, Christoper Caesar Yudho Sutopo, Wei-Ting Hung, Nhung Thi Phuong Nong, Tunjung Mahatmanto and Jue-Liang Hsu
Processes 2025, 13(10), 3079; https://doi.org/10.3390/pr13103079 - 26 Sep 2025
Viewed by 719
Abstract
The tree bean (Parkia timoriana), an underutilized legume valued for its nutritional profile, represents a potential source of bioactive peptides for diabetes management. To our knowledge, this is the first study to identify and characterize DPP-IV inhibitory peptides derived from tree [...] Read more.
The tree bean (Parkia timoriana), an underutilized legume valued for its nutritional profile, represents a potential source of bioactive peptides for diabetes management. To our knowledge, this is the first study to identify and characterize DPP-IV inhibitory peptides derived from tree bean seed protein hydrolysates. The tree bean proteins were digested with trypsin, thermolysin, chymotrypsin, pepsin, and simulated gastrointestinal (SGI) enzymes, among which SGI hydrolysis yielded the highest degree of hydrolysis (14%) and strongest DPP-IV inhibitory activity (IC50 = 1289 ± 58 µg/mL). Guided by DPP-IV inhibitory assays, sequential fractionation using strong cation exchange and RP-HPLC yielded the most potent fraction, H5, with an IC50 of 949 ± 50 µg/mL. After peptide identification and synthesis, APLGPF (AF6) emerged as the most potent inhibitor, with an IC50 of 396 ± 18 µM. Enzyme kinetics revealed a non-competitive inhibition mechanism, corroborated by molecular docking, which indicated binding at an allosteric site of DPP-IV. Furthermore, AF6 remained stable under simulated gastrointestinal digestion and enzymatic exposure, highlighting its resistance to proteolysis. Taken together, these findings highlight P. timoriana as an underexplored source of peptides with DPP-IV inhibitory activity and identify AF6 as a promising lead for developing functional foods or nutraceuticals aimed at type 2 diabetes management. Full article
(This article belongs to the Special Issue Peptides: Advances and Innovations from Discovery to Application)
Show Figures

Graphical abstract

15 pages, 1680 KB  
Article
Environmental Effects on Atractylodes macrocephala Rhizome Growth and Compounds
by Dong Hwan Lee, Yonghwan Son, Jun Hyuk Jang, Dae Hui Jeong, Hyun-Jun Kim and Ji Ah Kim
Agriculture 2025, 15(18), 1950; https://doi.org/10.3390/agriculture15181950 - 15 Sep 2025
Cited by 1 | Viewed by 903
Abstract
The rhizome of Atractylodes macrocephala, a perennial herb in the Asteraceae family, is valued for its bioactive atractylenolides, but achieving consistent quality in cultivation is challenging. This study aimed to decipher how environmental factors differentially regulate its biomass and atractylenolide content. We [...] Read more.
The rhizome of Atractylodes macrocephala, a perennial herb in the Asteraceae family, is valued for its bioactive atractylenolides, but achieving consistent quality in cultivation is challenging. This study aimed to decipher how environmental factors differentially regulate its biomass and atractylenolide content. We sampled from 22 Korean cultivation sites and performed correlation analyses, rigorously controlled by a False Discovery Rate (FDR) correction. Our analysis revealed that the environmental networks governing quantitative growth and qualitative composition are largely independent. While growth was weakly correlated with environmental factors, likely due to suboptimal temperatures at our sites, atractylenolide content was robustly associated with soil properties and climate. Specifically, soil texture was a dominant factor, with sand content showing a strong negative correlation (−0.717 ***) with total atractylenolides, whereas silt (0.675 ***) and clay (0.622 ***) had strong positive correlations. Additionally, cation exchange capacity (0.517 *) and temperature were positively correlated, while relative humidity showed a negative correlation (−0.553 **). This decoupling suggests that optimizing yield and phytochemical quality requires distinct cultivation strategies, providing a foundational framework for developing site-specific practices and quality control for this high-value medicinal herb. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

29 pages, 1943 KB  
Review
Revitalizing Degraded Soils: The Role of Biochar in Enhancing Soil Health and Productivity
by Stavroula Dimitriadou, Ekavi Aikaterini Isari, Eleni Grilla, Petros Kokkinos and Ioannis K. Kalavrouziotis
Environments 2025, 12(9), 324; https://doi.org/10.3390/environments12090324 - 14 Sep 2025
Cited by 2 | Viewed by 2578
Abstract
Biochar (BC), a carbonaceous material derived from biomass pyrolysis, exhibits a wide range of physicochemical properties, including a high cation exchange capacity, porosity, and specific surface area, which make it a highly valuable amendment for soil enhancement and environmental sustainability. As BC has [...] Read more.
Biochar (BC), a carbonaceous material derived from biomass pyrolysis, exhibits a wide range of physicochemical properties, including a high cation exchange capacity, porosity, and specific surface area, which make it a highly valuable amendment for soil enhancement and environmental sustainability. As BC has shown strong potential to remediate soils, enhance their fertility, and increase crop productivity, it can successfully be used as a soil remediation factor. Additionally, it can play a critical role in carbon sequestration and climate change mitigation, revealing a high sorption capacity, multifunctionality, and long-term persistence in soils, where it can remain stable for hundreds to thousands of years. The present systematic review aims at presenting the dynamics of BC when incorporated into a soil system, focusing on its pH, water-holding capacity, aeration, microbiota, and carbon and nutrient availability across various case studies, particularly in acid, saline/sodic, and heavy metal-contaminated soils. Given the variability in BC performance, robust, long-term field-based research is essential to validate the current findings and support the development of targeted and sustainable biochar applications. Full article
Show Figures

Graphical abstract

17 pages, 2111 KB  
Article
Mitigating Soil Acidity: Impact of Aglime (CaCO3) Particle Size and Application Rate on Exchangeable Aluminium and Base Cations Dynamics
by Alina Lațo, Adina Berbecea, Iaroslav Lațo, Florin Crista, Laura Crista, Florin Sala and Isidora Radulov
Sustainability 2025, 17(18), 8135; https://doi.org/10.3390/su17188135 - 10 Sep 2025
Cited by 1 | Viewed by 1881
Abstract
Liming is an essential practice for neutralizing soil acidity, influenced by factors like lime particle size and application rate, addressing challenges from climate change, acid rain, nitrate leaching, and mineral oxidation. This study evaluated the efficiency of fine (0.1 mm) and coarse lime [...] Read more.
Liming is an essential practice for neutralizing soil acidity, influenced by factors like lime particle size and application rate, addressing challenges from climate change, acid rain, nitrate leaching, and mineral oxidation. This study evaluated the efficiency of fine (0.1 mm) and coarse lime (1–2 mm) applied at rates of 3 t/ha and 6 t/ha in mitigating soil acidity, with a particular focus on their impact on subsoil characteristics. Over two years, key soil parameters were monitored, including pH, cation exchange capacity (CEC), and exchangeable base cations (Ca2+, Mg2+, K+), along with exchangeable aluminum (Al3+). Fine lime particles demonstrated superior effectiveness compared to coarser ones, leading to faster and more uniform pH increases due to their greater surface area and higher solubility. Lime application significantly improved CEC by reducing exchangeable aluminum and increasing calcium availability, particularly in the topsoil. While these effects were most pronounced in surface layers, aluminum toxicity remained a concern in deeper soil levels. Strong positive correlations were observed between lime application and soil parameters such as pH, CEC, and exchangeable cations, while aluminum showed a negative correlation. Principal component analysis confirmed the benefits of higher lime doses, with fine lime producing rapid improvements and coarse lime offering a slower but sustained effect on soil health. Full article
Show Figures

Figure 1

Back to TopTop