Supercritical Water Oxidation of Nuclear Cation Exchange Resins: Process Optimization and Reaction Mechanism
Abstract
1. Introduction
2. Experiments
2.1. Materials and Analytical Methods
2.2. Apparatus and Experimental Methods
2.3. Calculation Procedures
2.4. Design of Experiments
3. Discussion of Results
3.1. Effect of NaOH on Cation Resin Decomposition
3.2. Decomposition of Cation Resin in SCWO
3.3. Fitted Regression Model for Cation Resin in the SCWO Process
3.4. Process Conditions Optimization
4. Mechanism of Degradation
4.1. Species Identification
4.2. Mechanism Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Wan, Z. Treatment and disposal of spent radioactive ion-exchange resins produced in the nuclear industry. Prog. Nucl. Energy 2015, 78, 47–55. [Google Scholar] [CrossRef]
- Kritzer, P.; Dinjus, E. An assessment of supercritical water oxidation (SCWO)—Existing problems, possible solutions and new reactor concepts. Chem. Eng. J. 2001, 83, 207–214. [Google Scholar] [CrossRef]
- Marrone, P.A. Supercritical water oxidation-Current status of full-scale commercial activity for waste destruction. J. Supercrit. Fluids 2013, 79, 283–288. [Google Scholar] [CrossRef]
- Sugiyama, W.; Yamamura, T.; Park, K.C.; Tomiyasu, H.; Satoh, I.; Shiokawa, Y.; Okada, H.; Sugita, Y. Recovery of radioactivity as solids from nonflammable organic low-level radioactive wastes using supercritical water mixed with RuO2. J. Supercrit. Fluids 2005, 35, 240–246. [Google Scholar] [CrossRef]
- Wang, L.; Li, A.; Peng, Z.; Yi, L.; Chen, B.; Jin, H.; Chen, Y.; Guo, L. Investigation on the detailed mechanisms of cationic ion exchange resin gasification in supercritical water by ReaxFF reactive molecular dynamics simulation. Biomass Bioenergy 2025, 193, 107586. [Google Scholar] [CrossRef]
- Wang, L.; Mao, L.; Li, A.; Peng, Z.; Yi, L.; Chen, B.; Jin, H.; Chen, Y.; Guo, L. Kinetic mechanism study of mixed ion exchange resins gasification in supercritical water. Biomass Bioenergy 2025, 195, 107708. [Google Scholar] [CrossRef]
- Kim, K.; Son, S.H.; Kim, K.; Han, J.H.; Do Han, K.; Do, S.H. Treatment of radioactive ionic exchange resins by super- and sub-critical water oxidation (SCWO). Nucl. Eng. Des. 2010, 240, 3654–3659. [Google Scholar] [CrossRef]
- Xu, T.T.; Wang, S.Z.; Li, Y.H.; Li, J.; Cai, J.; Zhang, Y.; Xu, D.; Zhang, J. Review of the destruction of organic radioactive wastes by supercritical water oxidation. Sci. Total Environ. 2021, 799, 149396. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, W.; Park, K.C.; Yamamura, T.; Okada, H.; Sugita, Y.; Tomiyasu, H. Decomposition of radioactive organic wastes with supercritical water medium containing RuO2. J. Nucl. Sci. Technol. 2005, 42, 256–258. [Google Scholar] [CrossRef]
- Leybros, A.; Roubaud, A.; Guichardon, P.; Boutin, O. Ion exchange resins destruction in a stirred supercritical water oxidation reactor. J. Supercrit. Fluids 2010, 51, 369–375. [Google Scholar] [CrossRef]
- Kim, K.; Kim, K.; Choi, M.; Son, S.H.; Han, J.H. Treatment of ion exchange resins used in nuclear power plants by super- and sub-critical water oxidation—A road to commercial plant from bench-scale facility. Chem. Eng. J. 2012, 189–190, 213–221. [Google Scholar] [CrossRef]
- Xu, T.T.; Wang, S.Z.; Li, Y.H.; Zhang, J.; Li, J.; Zhang, Y.; Yang, C. Optimization and mechanism study on destruction of the simulated waste ion-exchange resin from the nuclear industry in supercritical water. Ind. Eng. Chem. Res. 2020, 59, 18269–18279. [Google Scholar] [CrossRef]
- Tang, X.; Zheng, Y.; Liao, Z.; Wang, Y.; Yang, J.; Cai, J. A review of developments in process flow for supercritical water oxidation. Chem. Eng. Commun. 2021, 208, 1494–1510. [Google Scholar] [CrossRef]
- Yu, G.; Hu, D. Simulation and optimization of supercritical water oxidation processes. Desalination Water Treat. 2023, 295, 191–204. [Google Scholar]
- Sadri Moghaddam, S.; Alavi Moghaddam, M.R.; Arami, M. Coagulation/flocculation process for dye removal using sludge from water treatment plant: Optimization through response surface methodology. J. Hazard. Mater. 2010, 175, 651–657. [Google Scholar] [CrossRef]
- Leybros, A.; Roubaud, A.; Guichardon, P.; Boutin, O. Supercritical water oxidation of ion exchange resins: Degradation mechanisms. Process Saf. Environ. Prot. 2010, 88, 213–222. [Google Scholar] [CrossRef]
- Kritzer, P. Corrosion in high-temperature and supercritical water and aqueous solutions: A review. J. Supercrit. Fluids 2004, 29, 1–29. [Google Scholar] [CrossRef]
- Lee, G.; Nunoura, T.; Matsumura, Y.; Yamamoto, K. Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions. J. Supercrit. Fluids 2002, 24, 239–250. [Google Scholar] [CrossRef]
- Feng, X.; Liu, Y.; Li, X.; Liu, H. RSM, ANN-GA and ANN-PSO modeling of SDBS removal from greywater in rural areas via Fe2O3-coated volcanic rocks. RSC Adv. 2022, 12, 6265–6278. [Google Scholar] [CrossRef]
- Zewide, Y.T.; Yemata, T.A.; Ayalew, A.A.; Kedir, H.J.; Tadesse, A.A.; Fekad, A.Y.; Shibesh, A.K.; Getie, F.A.; Tessema, T.D.; Wubieneh, T.A.; et al. Application of response surface methodology (RSM) for experimental optimization in biogenic silica extraction from rice husk and straw ash. Sci. Rep. 2025, 15, 132. [Google Scholar] [CrossRef] [PubMed]
- Thornton, T.D.; Savage, P.E. Kinetics of phenol oxidation in supercritical water. AIChE J. 1992, 38, 321–327. [Google Scholar] [CrossRef]
- Savage, P.E. Organic Chemical Reactions in Supercritical Water. Chem. Rev. 1999, 99, 603–622. [Google Scholar] [CrossRef]
- Vogel, F.; Blanchard, J.L.D.; Marrone, P.A.; Rice, S.F.; Webley, P.A.; Peters, W.A.; Smith, K.A.; Tester, J.W. Critical review of kinetic data for the oxidation of methanol in supercritical water. J. Supercrit. Fluids 2005, 34, 249–286. [Google Scholar] [CrossRef]
- Ma, H.; Shen, M.; Tong, Y.; Wang, X. Radioactive Wastewater Treatment Technologies: A Review. Molecules 2023, 28, 1935. [Google Scholar] [CrossRef] [PubMed]
- Vera Candioti, L.; De Zan, M.; Cámara, M.; Goicoechea, H. Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta 2014, 124, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Körbahti, B.K.; Aktaş, N.; Tanyolaç, A. Optimization of electrochemical treatment of industrial paint wastewater with response surface methodology. J. Hazard. Mater. 2007, 148, 83–90. [Google Scholar] [CrossRef]
- Wang, L.; Yi, L.; Wang, G.; Li, L.; Lu, L.; Guo, L. Experimental investigation on gasification of cationic ion exchange resin used in nuclear power plants by supercritical water. J. Hazard. Mater. 2021, 419, 126437. [Google Scholar] [CrossRef]
- Akai, Y.; Yamada, K.; Sako, T. Ion-exchange resin decomposition in supercritical water. High Press. Res. 2001, 20, 515–524. [Google Scholar] [CrossRef]
- Onwudili, J.A.; Williams, P.T. Flameless incineration of pyrene under sub-critical and supercritical water conditions. Fuel 2006, 85, 75–83. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, M.; Li, B. Experimental evaluation on pyrolysis and gasification characteristics of simulated waste cation exchange resin. J. Therm. Anal. Calorim. 2024, 149, 10965–10982. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Tong, W.; Du, X.; Li, P.; Zhang, Y. Oxidative pyrolysis of ion exchange resin in the presence of manganese dioxide: Product analysis, conversion and simplification mechanism. J. Environ. Chem. Eng. 2023, 11, 110695. [Google Scholar] [CrossRef]
- Wang, T.; Zhu, X. Sulfur transformations during supercritical water oxidation of a Chinese coal. Fuel 2003, 82, 2267–2272. [Google Scholar] [CrossRef]
- Wang, T.; Xiang, B.; Liu, J.; Shen, Z. Supercritical Water Oxidation of Sulfide. Environ. Sci. Technol. 2003, 37, 1955–1961. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.A.; Dozol, J.F.; Massiani, C.; Ambrosio, M. Reactivities of polystyrenic polymers with supercritical water under nitrogen or air. Identification and formation of degradation compounds. Ind. Eng. Chem. Res. 1996, 35, 2743–2747. [Google Scholar] [CrossRef]
- Scholz, D.; Kröcher, O.; Vogel, F. Deactivation and Regeneration of Sulfonated Carbon Catalysts in Hydrothermal Reaction Environments. ChemSusChem 2018, 11, 2189–2201. [Google Scholar] [CrossRef]
- Geethanjali, R.; Subhashini, S. Functionalization of PVA to synthesize p-vinyl benzene sulfonate terpolymers—A comparative study of anticorrosion, adsorption and activation properties of the terpolymers on mild steel in 1 M HCl. RSC Adv. 2016, 6, 100748–100758. [Google Scholar] [CrossRef]
- Xu, T.T.; Wang, S.Z.; Tang, X.Y.; Li, Y.; Yang, J.; Li, J.; Zhang, Y. Corrosion mechanism of inconel 600 in oxidizing supercritical aqueous systems containing multiple salts. Ind. Eng. Chem. Res. 2019, 58, 23046–23056. [Google Scholar] [CrossRef]
- Li, L.X.; Chen, P.S.; Gloyna, E.F. Generalized kinetic-model for wet oxidation of organic-compounds. AIChE J. 1991, 37, 1687–1697. [Google Scholar] [CrossRef]
- Gopalan, S.; Savage, P.E. A reaction network model for phenol oxidation in supercritical water. AIChE J. 1995, 41, 1864–1873. [Google Scholar] [CrossRef]
- Onwudili, J.A.; Williams, P.T. Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. J. Supercrit. Fluids 2007, 39, 399–408. [Google Scholar] [CrossRef]
- Gopalan, S.; Savage, P.E. Reaction mechanism for phenol oxidation in supercritical water. J. Phys. Chem. 1994, 98, 12646–12652. [Google Scholar] [CrossRef]
- Savage, P.E.; Gopalan, S.; Mizan, T.I.; Martino, C.J.; Brock, E.E. Reactions at supercritical conditions: Applications and fundamentals. AIChE J. 1995, 41, 1723–1778. [Google Scholar] [CrossRef]
- Ma, J.; Dong, X.; Yu, Y.; Zheng, B.; Zhang, M. The effects of alkalis on the dechlorination of o-chlorophenol in supercritical water: Molecular dynamics simulation and experiment. Chem. Eng. J. 2014, 241, 268–272. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Z.; Zhang, F.-S. Advanced degradation of brominated epoxy resin and simultaneous transformation of glass fiber from waste printed circuit boards by improved supercritical water oxidation processes. Waste Manag. 2016, 56, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Aurell, M.J. Unveiling the regioselectivity in electrophilic aromatic substitution reactions of deactivated benzenes through molecular electron density theory. New J. Chem. 2021, 45, 13626–13638. [Google Scholar] [CrossRef]
- Cui, B.-c.; Liu, S.-z.; Cui, F.-y.; Jing, G.-l.; Liu, X.-j. Lumped kinetics for supercritical water oxidation of oily sludge. Process Saf. Environ. Prot. 2011, 89, 198–203. [Google Scholar] [CrossRef]
- Takahashi, F.; Oshima, Y.; Fukushi, K.; Yamamoto, K. Enhanced Oxidation of Alkali Metal Acetate in Supercritical Water. Chem. Lett. 2012, 41, 267–269. [Google Scholar] [CrossRef]
- Muthukumaran, P.; Gupta, R.B. Sodium-Carbonate-Assisted Supercritical Water Oxidation of Chlorinated Waste. Ind. Eng. Chem. Res. 2000, 39, 4555–4563. [Google Scholar] [CrossRef]
- Mansfield, A. Experimental and Modeling Study of the Effects of NaOH on Propane Oxidation Kinetics in Supercritical Water. Ind. Eng. Chem. Res. 2025, 64, 13060–13066. [Google Scholar] [CrossRef]
Mass Fraction of Sample (%) | C | H | O | S |
---|---|---|---|---|
Cationic resin | 41.79 | 5.89 | 36.67 | 15.65 |
Operating Parameters | Unit | Code | Actual Values Corresponding to Coded Levels | ||||
---|---|---|---|---|---|---|---|
−1.682 | −1 | 0 | 1 | 1.682 | |||
Temperature | °C | A | 400 | 420 | 450 | 480 | 500 |
Oxidant stoichiometry | % | B | 80 | 94 | 115 | 136 | 150 |
Initial organic concentration | mg·L−1 | C | 10,000 | 28,243 | 55,000 | 81,757 | 100,000 |
Residence time | min | D | 1.0 | 2.8 | 5.5 | 8.2 | 10.0 |
Parameters | Responses | ||||
---|---|---|---|---|---|
Experimental | Predicted | ||||
A (°C) | B (%) | C (mg·L−1) | D (min) | RCOD (%) | RCOD (%) |
420 | 136 | 81,757 | 8.2 | 94.78 | 94.79 |
450 | 80 | 55,000 | 5.5 | 88.72 | 88.97 |
450 | 150 | 55,000 | 5.5 | 98.64 | 98.89 |
400 | 115 | 55,000 | 5.5 | 79.12 | 79.37 |
450 | 115 | 100,000 | 5.5 | 95.32 | 95.63 |
480 | 94 | 81,757 | 8.2 | 92.06 | 91.38 |
450 | 115 | 10,000 | 5.5 | 92.67 | 92.85 |
450 | 115 | 55,000 | 5.5 | 96.01 | 96.10 |
420 | 136 | 28,243 | 8.2 | 92.45 | 92.09 |
450 | 115 | 55,000 | 10.0 | 97.08 | 97.33 |
450 | 115 | 55,000 | 1.0 | 91.13 | 91.38 |
450 | 115 | 55,000 | 5.5 | 95.46 | 96.10 |
480 | 136 | 28,243 | 2.8 | 96.74 | 96.81 |
450 | 115 | 55,000 | 5.5 | 96.58 | 96.10 |
480 | 136 | 81,757 | 2.8 | 99.92 | 99.51 |
450 | 115 | 55,000 | 5.5 | 96.26 | 96.10 |
500 | 115 | 55,000 | 5.5 | 98.56 | 98.81 |
420 | 94 | 81,757 | 2.8 | 83.67 | 83.94 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value Prob > F |
---|---|---|---|---|---|
Model | 590.24 | 12 | 49.19 | 134.54 | <0.0001 |
A-Temperature | 188.96 | 1 | 188.96 | 516.84 | <0.0001 |
B-Oxidant stoichiometry | 49.20 | 1 | 49.20 | 134.58 | <0.0001 |
C-Initial organic concentration | 9.36 | 1 | 9.36 | 25.60 | 0.0010 |
D-Residence time | 17.70 | 1 | 17.70 | 48.42 | 0.0001 |
AB | 3.92 | 1 | 3.92 | 10.72 | 0.0113 |
AD | 5.36 | 1 | 5.36 | 14.67 | 0.0050 |
BC | 2.17 | 1 | 2.17 | 5.95 | 0.0407 |
BD | 24.89 | 1 | 24.89 | 68.09 | <0.0001 |
A2 | 91.81 | 1 | 91.81 | 251.13 | <0.0001 |
B2 | 8.80 | 1 | 8.80 | 24.08 | 0.0012 |
C2 | 6.43 | 1 | 6.43 | 17.60 | 0.0030 |
D2 | 5.69 | 1 | 5.69 | 15.57 | 0.0043 |
Residual | 2.92 | 8 | 0.37 | ||
Lack of fit | 1.89 | 4 | 0.47 | 1.83 | 0.2863 |
Pure Error | 1.03 | 4 | 0.26 | ||
R2 = 0.9951, AP = 42.333, Adj R2 = 0.9877, Pred R2 = 0.8712 |
Parameters | Responses | |||||
---|---|---|---|---|---|---|
Predicted | Experimental | |||||
Number | A (°C) | B (%) | C (mg·L−1) | D (min) | RCOD a (%) | RCOD (%) |
1 | 472 | 137 | 77,216 | 4.9 | 100 | 99.92 |
2 | 480 | 130 | 62,116 | 4.0 | 100 | 99.91 |
Compound | Formula | Peak Area Ratio/% |
---|---|---|
Ethylbenzene | C8H10 | 2.08 |
o-Xylene | C8H10 | 2.13 |
Benzaldehyde | C7H6O | 8.93 |
Phenol | C6H6O | 12.72 |
o-Cymene | C10H14 | 4.14 |
2-Methylphenol | C7H8O | 3.12 |
Acetophenone | C8H8O | 9.22 |
3-Methylbenzaldehyde | C8H8O | 1.36 |
Benzoic acid | C7H6O2 | 6.26 |
1-Ethyl-4-vinylbenzene | C10H12 | 1.52 |
2-Ethylphenol | C8H10O | 2.26 |
2′-Hydroxyacetophenone | C8H8O2 | 5.43 |
4-Ethylbenzaldehyde | C9H10O | 2.24 |
4′-Ethylacetophenone | C10H12O | 3.68 |
Biphenyl | C12H10 | 2.32 |
2,4-Di-tert-butylphenol | C14H22O | 1.82 |
Dibenzofuran | C12H8O | 2.28 |
Benzophenone | C13H10O | 1.95 |
Xanthone | C13H8O2 | 1.87 |
Anthraquinone | C14H8O2 | 2.16 |
Experiment with Residence Time of 1 min | Experiment with Residence Time of 3.7 min | ||||
---|---|---|---|---|---|
Compound | Formula | Peak Area Ratio (%) | Compound | Formula | Peak Area Ratio (%) |
Phenol | C6H6O | 4.42 | 4-Penten-1-ol | C5H10O | 2.46 |
Benzoic acid | C7H6O2 | 8.43 | 4,5-Dimethyl-2,6-octadiene | C10H18 | 7.82 |
4,5-Dimethyl-2,6-octadiene | C10H18 | 2.35 | 2,6-Dimethylnonane | C11H24 | 6.85 |
Phthalic anhydride | C8H4O3 | 3.58 | 5-Methyltetradecane | C15H32 | 7.74 |
Phthalaldehydic Acid | C8H6O3 | 4.62 | Diethyl adipate | C10H18O4 | 4.87 |
2-Hydroxymethylbenzoic acid | C8H8O3 | 7.68 | Methyl 10-oxohexadecanoate | C17H32O3 | 2.34 |
Phthalic acid | C8H6O4 | 8.71 | trans-2,3-Epoxyoctane | C8H16O | 1.85 |
2-Methyl-3-octanone | C9H18O | 2.52 | Tridecanoic acid | C13H26O2 | 17.42 |
5-Methyl-Z-5-docosene | C23H46 | 3.74 | Pentadecanoic acid | C15H30O2 | 16.03 |
Tridecanoic acid | C13H26O2 | 4.62 | |||
Pentadecanoic acid | C15H30O2 | 3.87 | |||
Palmitic Acid | C16H32O2 | 5.69 | |||
(Z)-7-Hexadecenal | C16H30O | 2.18 | |||
Methyl 10-oxohexadecanoate | C17H32O3 | 4.59 | |||
Geranylgeranyl Alcohol | C20H34O | 2.35 | |||
Heneicosane | C21H44 | 3.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, T.; Li, Y.; Wang, S.; Xu, D.; Zhang, Q.; Jin, Y.; Song, W. Supercritical Water Oxidation of Nuclear Cation Exchange Resins: Process Optimization and Reaction Mechanism. Processes 2025, 13, 3249. https://doi.org/10.3390/pr13103249
Xu T, Li Y, Wang S, Xu D, Zhang Q, Jin Y, Song W. Supercritical Water Oxidation of Nuclear Cation Exchange Resins: Process Optimization and Reaction Mechanism. Processes. 2025; 13(10):3249. https://doi.org/10.3390/pr13103249
Chicago/Turabian StyleXu, Tiantian, Yanhui Li, Shuzhong Wang, Donghai Xu, Qian Zhang, Yabin Jin, and Wenhan Song. 2025. "Supercritical Water Oxidation of Nuclear Cation Exchange Resins: Process Optimization and Reaction Mechanism" Processes 13, no. 10: 3249. https://doi.org/10.3390/pr13103249
APA StyleXu, T., Li, Y., Wang, S., Xu, D., Zhang, Q., Jin, Y., & Song, W. (2025). Supercritical Water Oxidation of Nuclear Cation Exchange Resins: Process Optimization and Reaction Mechanism. Processes, 13(10), 3249. https://doi.org/10.3390/pr13103249