Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = storm drains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1916 KB  
Article
Comparative Performance of Green Roof Systems with Smart Cisterns: Balancing Stormwater Capture and Irrigation Supply
by Nandan H. Shetty, Mark Wang, Robert M. Elliott and Patricia J. Culligan
Water 2025, 17(20), 2987; https://doi.org/10.3390/w17202987 - 16 Oct 2025
Viewed by 798
Abstract
Using five years of field monitoring data, this study compares two types of roof systems that combine green roofs, cisterns, and real-time control (RTC) strategies: one optimized to reduce stormwater runoff (a fully vegetated roof with cisterns operating under a “smart detention” [SD] [...] Read more.
Using five years of field monitoring data, this study compares two types of roof systems that combine green roofs, cisterns, and real-time control (RTC) strategies: one optimized to reduce stormwater runoff (a fully vegetated roof with cisterns operating under a “smart detention” [SD] logic that fully empties within 24 h), and one designed to balance architectural, economic, and structural tradeoffs (a half vegetated, half bare roof with cisterns operating under a “rainwater harvesting” [RWH] logic that partially drains in anticipation of rainfall while maintaining a reserve for green roof irrigation). Both configurations demonstrated strong stormwater performance, with cisterns improving roof retention by 10.2 to 13.0% over five years. For small to medium storms (under 25 mm), representing 71.2% of events, both strategies prevented more than 95% of runoff, while forecast accuracy primarily influenced larger events. Even with modest cistern sizing, the SD system captured 96.7% and the RWH system 95.8% of runoff from small to medium storms, approaching 100% assuming perfect weather forecasts. Irrigation analysis showed that RWH cisterns supplied ~51% of irrigation demand, increasing to ~70% under perfect forecasts. This study is among the first to compare stormwater and irrigation outcomes from side-by-side RTC-managed roof systems over multiple years. The results underscore that the mixed green/bare roof with RWH logic provides nearly equivalent stormwater benefits while offering added value through irrigation supply, reduced structural loading, and design flexibility. Full article
(This article belongs to the Special Issue Stormwater Management in Sponge Cities)
Show Figures

Figure 1

25 pages, 17627 KB  
Article
The Machine Learning-Based Mapping of Urban Pluvial Flood Susceptibility in Seoul Integrating Flood Conditioning Factors and Drainage-Related Data
by Julieber T. Bersabe and Byong-Woon Jun
ISPRS Int. J. Geo-Inf. 2025, 14(2), 57; https://doi.org/10.3390/ijgi14020057 - 1 Feb 2025
Cited by 5 | Viewed by 7219
Abstract
In the last two decades, South Korea has seen an increase in extreme rainfall coinciding with the proliferation of impermeable surfaces due to urban development. When underground drainage systems are overwhelmed, pluvial flooding can occur. Therefore, recognizing drainage systems as key flood-conditioning factors [...] Read more.
In the last two decades, South Korea has seen an increase in extreme rainfall coinciding with the proliferation of impermeable surfaces due to urban development. When underground drainage systems are overwhelmed, pluvial flooding can occur. Therefore, recognizing drainage systems as key flood-conditioning factors is vital for identifying flood-prone areas and developing predictive models in highly urbanized regions. This study evaluates and maps urban pluvial flood susceptibility in Seoul, South Korea using the machine learning techniques such as logistic regression (LR), random forest (RF), and support vector machines (SVM), and integrating traditional flood conditioning factors and drainage-related data. Together with known flooding points from 2010 to 2022, sixteen flood conditioning factors were selected, including the drainage-related parameters sewer pipe density (SPD) and distance to a storm drain (DSD). The RF model performed best (accuracy: 0.837, an area under the receiver operating characteristic curve (AUC): 0.902), and indicated that 32.65% of the study area has a high susceptibility to flooding. The accuracy and AUC were improved by 7.58% and 3.80%, respectively, after including the two drainage-related variables in the model. This research provides valuable insights for urban flood management, highlighting the primary causes of flooding in Seoul and identifying areas with heightened flood susceptibility, particularly relating to drainage infrastructure. Full article
Show Figures

Figure 1

24 pages, 3811 KB  
Article
Optimization Study of Drainage Network Systems Based on the SWMM for the Wujin District, Changzhou City, Jiangsu Province, China
by Yi Pan and Xungui Li
Appl. Sci. 2025, 15(3), 1276; https://doi.org/10.3390/app15031276 - 26 Jan 2025
Viewed by 2016
Abstract
This study addresses the persistent issue of urban waterlogging in Wujin District, Changzhou City, Jiangsu Province, using a comprehensive approach integrating an optimized drainage network and low-impact development (LID) measures. Utilizing the Storm Water Management Model (SWMM), calibrated with extensive hydrological and hydraulic [...] Read more.
This study addresses the persistent issue of urban waterlogging in Wujin District, Changzhou City, Jiangsu Province, using a comprehensive approach integrating an optimized drainage network and low-impact development (LID) measures. Utilizing the Storm Water Management Model (SWMM), calibrated with extensive hydrological and hydraulic data, the model was refined through genetic algorithm-based optimization to enhance drainage efficiency. Key results indicate a substantial reduction in the average duration of waterlogging from 7.43 h to 3.12 h and a decrease in average floodwater depth from 21.27 cm to 8.65 cm. Improvements in the drainage network layout, such as the construction of new stormwater mains, branch drains, and rainwater storage facilities, combined with LID interventions like permeable pavements and rain gardens, have led to a 56.82% increase in drainage efficiency and a 63.88% reduction in system failure rates. The implementation effectively minimized peak flood flow by 25.38%, reduced runoff, and improved groundwater recharge and rainwater utilization. The proposed solutions offer a replicable, sustainable framework for mitigating flooding in urban environments, enhancing ecological resilience, and ensuring the safety and quality of urban life in densely populated areas. Full article
Show Figures

Figure 1

12 pages, 1758 KB  
Article
Supplemental Irrigation with Recycled Drainage Water: Outcomes for Corn and Soybean in a Fine-Textured Soil
by Ali R. Niaghi, Axel Garcia y Garcia and Jeffrey S. Strock
Agronomy 2024, 14(9), 1948; https://doi.org/10.3390/agronomy14091948 - 29 Aug 2024
Cited by 1 | Viewed by 1946
Abstract
Drought and heavier spring storms from climate change will increase crop water stress and affect productivity. A study was conducted to determine whether supplemental irrigation on fine-textured soils with recycled drainage and surface runoff water, combined with nitrogen (N) management, could mitigate these [...] Read more.
Drought and heavier spring storms from climate change will increase crop water stress and affect productivity. A study was conducted to determine whether supplemental irrigation on fine-textured soils with recycled drainage and surface runoff water, combined with nitrogen (N) management, could mitigate these effects. This study was set as a randomized complete block design in a split-plot arrangement with three replicates. The main plots, which were individually drained, corresponded to three water management strategies (full irrigation, limited irrigation, and rainfed), and the subplots corresponded to six N rates (0, 90, 134, 179, 224, and 269 kg/ha) in the corn phase of the rotation. In the soybean phase, the same water management strategies were uniformly applied across the subplots. Irrigation and drainage water, volumetric soil water content (SWC), and grain yield data were collected. The full irrigation significantly increased the SWC in the top 60 cm of the soil across crops during the driest year, where it increased by an average of 30% compared with the rainfed conditions. The limited irrigation increased the SWC in the top 20 cm only for the soybean during the driest year, where it increased by as much as 25%. As a result, the supplemental irrigation prevented yield reduction in one year. While the irrigation alone did not significantly affect the grain yield of either crop, the irrigation × N interaction for the corn was consistently significant, which suggests that the N effectively enhanced the corn productivity. The results suggest that reusing drainage water could be a valuable practice for reducing the effects of limited soil water on crops in fine-textured soils. Full article
Show Figures

Figure 1

18 pages, 5743 KB  
Article
Trend Analysis of Hydro-Meteorological Variables in the Wadi Ouahrane Basin, Algeria
by Mohammed Achite, Tommaso Caloiero, Andrzej Wałęga, Alessandro Ceppi and Abdelhak Bouharira
Hydrology 2024, 11(6), 77; https://doi.org/10.3390/hydrology11060077 - 31 May 2024
Cited by 6 | Viewed by 3097
Abstract
In recent decades, a plethora of natural disasters, including floods, storms, heat waves, droughts, and various other weather-related events, have brought destruction worldwide. In particular, Algeria is facing several natural hydrometeorological and geological hazards. In this study, meteorological parameters (precipitation, temperature, relative humidity, [...] Read more.
In recent decades, a plethora of natural disasters, including floods, storms, heat waves, droughts, and various other weather-related events, have brought destruction worldwide. In particular, Algeria is facing several natural hydrometeorological and geological hazards. In this study, meteorological parameters (precipitation, temperature, relative humidity, wind speed, and sunshine) and runoff data were analyzed for the Wadi Ouahrane basin (northern Algeria), into which drains much of the surrounding agricultural land and is susceptible to floods. In particular, a trend analysis was performed using the Mann–Kendall (MK) test, the Sen’s slope estimator, and the Innovative Trend Analysis (ITA) method to detect possible trends in the time series over the period 1972/73–2017/2018. The results revealed significant trends in several hydro-meteorological variables. In particular, neither annual nor monthly precipitation showed a clear tendency, thus failing to indicate potential changes in the rainfall patterns. Temperature evidenced a warming trend, indicating a potential shift in the local climate, while streamflow revealed a decreasing trend, reflecting the complex interaction between precipitation and other hydrological factors. Full article
Show Figures

Figure 1

18 pages, 5203 KB  
Article
From Recharge to Cave to Spring: Transmission of a Flood Pulse through a Complex Karst Conduit Network, Castleton, Derbyshire (UK)
by John Gunn and Chris Bradley
Water 2024, 16(9), 1306; https://doi.org/10.3390/w16091306 - 4 May 2024
Cited by 4 | Viewed by 2117
Abstract
Storm Babet (18–21 October 2023) brought heavy and persistent rain (80–100 mm) to the English Peak District, causing widespread surface and underground flooding. The village of Castleton experienced groundwater flooding from springs that drain a complex mixed allogenic–autogenic karst catchment. Transmission of the [...] Read more.
Storm Babet (18–21 October 2023) brought heavy and persistent rain (80–100 mm) to the English Peak District, causing widespread surface and underground flooding. The village of Castleton experienced groundwater flooding from springs that drain a complex mixed allogenic–autogenic karst catchment. Transmission of the flood pulse was monitored using high-resolution (2 and 4 min intervals) logging of (a) the hydraulic head at five underground locations in the karst conduits and (b) the water depth at three springs and in the surface river fed by the springs. Underground, there were large increases in the hydraulic head (9–35 m), which resulted in two types of flow switching. Firstly, the increased head at the input end of a phreatic (water-filled) conduit system removed an underwater permeability barrier in a relatively low-elevation conduit, resulting in a dramatic increase in flow out of the conduit and a corresponding decrease in flow from a linked higher-elevation conduit that had dominated before the storm. Secondly, the increased head upstream of two conduits with limited hydraulic conductivity allowed water to spill over into conduits that were inactive prior to the storm. As expected, the conduits fed by sinking streams from the allogenic catchment responded rapidly to the recharge, but there was also a rapid response from the autogenic catchment where there are no surface streams and only a small number of dolines. The complex signals measured underground are not apparent from the spring hydrographs. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

21 pages, 7963 KB  
Article
A Science and Community-Driven Approach to Illustrating Urban Adaptation to Coastal Flooding to Inform Management Plans
by Wendy Meguro, Josephine Briones, German Failano and Charles H. Fletcher
Sustainability 2024, 16(7), 2849; https://doi.org/10.3390/su16072849 - 29 Mar 2024
Cited by 1 | Viewed by 3243
Abstract
Academic research plays a pivotal role in illustrating and testing potential future adaptation strategies to sea level rise in low-lying coastal communities and enhances local municipalities’ adaptation plans. In Waikīkī, Hawai‘i, the built environment is increasingly impacted by flooding from multiple drivers: sea [...] Read more.
Academic research plays a pivotal role in illustrating and testing potential future adaptation strategies to sea level rise in low-lying coastal communities and enhances local municipalities’ adaptation plans. In Waikīkī, Hawai‘i, the built environment is increasingly impacted by flooding from multiple drivers: sea level rise-induced direct marine inundation, storm-drain backflow, and groundwater inundation (GWI), compounded by high-wave runup, extreme tides, heavy rainfall, and a shallow groundwater table. Given Waikīkī’s economic and cultural importance, in-place accommodation of flooding is desired, yet implementation plans have not been developed. By combining current scientific research, urban design visualizations, and community feedback, the interdisciplinary research team advanced intentional communication between the many parties seeking increased flood resilience through the end of the 21st century. Site-specific architectural renderings were a key tool to prompt structured community input on the coordination, prioritization, policy, and feasibility of adaptation measures for buildings, utilities, transportation, and open space. Public outreach reports document that the majority of participants thought all adaptation strategies presented were applicable, especially relocating critical equipment in buildings and streets. Proposed methods to develop sea level rise-adjusted minimum building elevation requirements may inform local municipalities’ future codes to minimize coastal property damage. The multi-year iterative process fostered growing participation in hosted and invited events, further improving the publicly distributed research products. Full article
(This article belongs to the Special Issue Sea-Level Rising—Coastal Vulnerability and Adaptation Management)
Show Figures

Figure 1

21 pages, 8004 KB  
Article
The Value of Traditional Ecological Knowledge in Stormwater Management: A Case Study of a Traditional Village
by Jiaxin Li, Wuzhong Zhou and Cong Tao
Land 2024, 13(2), 242; https://doi.org/10.3390/land13020242 - 16 Feb 2024
Cited by 10 | Viewed by 2420
Abstract
In recent years, floods have occurred frequently in urban and rural areas around the world, causing heavy casualties and property damage. In contrast, some traditional Chinese villages have never flooded. It is hypothesized that these villages, because of their long-term adaptations to their [...] Read more.
In recent years, floods have occurred frequently in urban and rural areas around the world, causing heavy casualties and property damage. In contrast, some traditional Chinese villages have never flooded. It is hypothesized that these villages, because of their long-term adaptations to their environment, hold necessary ecological knowledge regarding stormwater management so that damaging flooding can be avoided. Previous studies on the traditional ecological knowledge regarding stormwater management in traditional Chinese villages are mostly qualitative studies, and these fail in their evaluation of the functional performance of stormwater management facilities and measures. Therefore, we use the Storm Water Management Model (SWMM) in our quantitative evaluation of stormwater management in Zhuge, a traditional Chinese village, so as to rationally analyze the traditional ecological knowledge regarding stormwater management in traditional Chinese villages. In order to analyze the functions and efficiency of stormwater management facilities such as ponds, canals, and permeable pavement in Zhuge Village, this study sets out four scenarios: the No Pond Scenario (NO-PO), the No Canal Scenario (NO-CO), the No Permeable Pavement Scenario (NO-PP), and the actual Current Scenario (CS). The SWMM is used to simulate and quantitatively analyze the stormwater hydrological processes of the four scenarios in different rainfall return periods. The following conclusions emerged from our evaluation of the approaches used in Zhuge Village: (1) The rainwater regulation system composed of ponds, canals, and permeable pavement can play a dual role in alleviating rainstorm disasters and fully storing rainwater, achieving the flexible allocation of rainwater resources. It can effectively alleviate the problem of uneven time and space of local rainfall in shallow, hilly areas, reflecting the traditional ecological wisdom of residents in adapting to the local natural environment. (2) As a rainwater regulation device, ponds are very effective in storing water and mitigating periods of intense runoff. (3) The main function of canals is to rapidly drain water and balance rainwater resources. (4) The main function of permeable pavement is to increase rainwater infiltration and reduce the peak runoff and runoff. (5) The use of the SWMM proved effective in both quantifying the results as well as elucidating stormwater management strategies. Full article
(This article belongs to the Topic Bioclimatic Designs to Enhance Urban/Rural Resilience)
Show Figures

Figure 1

22 pages, 4784 KB  
Article
Assessing the Effectiveness of Alternative Tile Intakes on Agricultural Hillslopes
by Christopher G. Wilson, Matthew T. Streeter, William D. Ettema, Benjamin K. B. Abban, Adrian Gonzalez, Keith E. Schilling and Athanasios N. Papanicolaou
Water 2024, 16(2), 309; https://doi.org/10.3390/w16020309 - 17 Jan 2024
Cited by 1 | Viewed by 2029
Abstract
Existing surface inlets behind terraces and water and sediment control basins (WASCoBs) were replaced with alternative tile intakes (ATIs) in agricultural fields of southeast Iowa. These ATIs consisted of a buried column of gravel atop woodchips. Computational, experimental, and field methods were used [...] Read more.
Existing surface inlets behind terraces and water and sediment control basins (WASCoBs) were replaced with alternative tile intakes (ATIs) in agricultural fields of southeast Iowa. These ATIs consisted of a buried column of gravel atop woodchips. Computational, experimental, and field methods were used to design and evaluate the ATIs’ capacity to reduce sediment and nutrient export. Single-storm simulations using the Watershed Erosion Prediction Project (WEPP) provided boundary conditions for permeameter experiments that yielded a hydraulic conductivity for the layered gravel–woodchip configuration of 4.59 cm/s ± 0.36 cm/s. Additionally, a proportional amount of sediment was retained in the permeameter (42%) compared to the amount that settled on the permeameter surface (58%). Event monitoring of field-installed ATIs during three growing seasons measured a sediment trapping efficiency of 86 ± 12% that led to deposition rates of 5.44 ± 3.77 cm/yr, quantified with 210Pb profiles. Percent reduction values were 43% for nitrate and 17% for ortho-phosphate. Finally, long-term continuous-storm modeling using the WEPP suggested that these ATIs could withstand at least 75 25-year events before clogging. Modeling using the Agricultural Conservation Planning Framework suggested watershed-scale load reductions of 1.6% for NO3 and 1.4% for total P for ATIs draining 6.8% of the modeled watershed. Using ATIs in conjunction with WASCOBs and terraces, or as standalone practices, can be a cost-effective means for keeping sediment and nutrients in the landscape. Full article
Show Figures

Figure 1

22 pages, 2363 KB  
Article
Assessment of Stormwater Quality in the Context of Traffic Congestion: A Case Study in Egypt
by Mohamed Elsayed Gabr, Amira Mahmoud El Shorbagy and Hamdy Badee Faheem
Sustainability 2023, 15(18), 13927; https://doi.org/10.3390/su151813927 - 19 Sep 2023
Cited by 12 | Viewed by 3667
Abstract
The aim of this study was to investigate the effect of traffic congestion in urbanized areas (parking lots and highways) on stormwater quality. Three separate locations in Egypt’s heavily urbanized and populous Giza Governorate were picked for the purpose of monitoring and evaluating [...] Read more.
The aim of this study was to investigate the effect of traffic congestion in urbanized areas (parking lots and highways) on stormwater quality. Three separate locations in Egypt’s heavily urbanized and populous Giza Governorate were picked for the purpose of monitoring and evaluating the stormwater quality: Faisal (A), El Dokki (B), and Hadayek El-Ahram (C), with catchment areas of 10,476, 7566, and 9870 m2, and with monthly average daily traffic (MADT) values of 47,950, 20,919, and 27,064 cars, respectively. The physio-chemical and heavy metal stormwater quality parameters of six water samples were investigated and compared with Egypt’s water criteria and the World Health Organization (WHO) guidelines. The water quality index (WQI) and the irrigation water quality indices were used to assess the uses of stormwater. The results showed that the WQI varied from 426 to 929, with an average of (661 ± 168), indicating that the stormwater was contaminated at each location under examination and needed pretreatment in order to be useful. As a result, the allowed stormwater quality standards were exceeded for heavy metals such as Al, Cr, Cd, Fe, and Cu. The indicators of the stormwater quality for irrigation—the total dissolved solids (TDS), sodium adsorption ratio (SAR), soluble sodium percentage (SSP), permeability index (PI), magnesium adsorption ratio (MAR), and Kelley’s ratio (KR)—show excellent stormwater for irrigation, while the total hardness (TH) and residual sodium bicarbonate (RSBC) indicate poor irrigation water quality. It is advised to sweep the streets to remove particle-bound pollution before it reaches storm drain water, and to put in place an adequate stormwater sewerage system to catch rainwater. Full article
Show Figures

Figure 1

17 pages, 6177 KB  
Article
ClimInonda: A Web Application for Climate Data Management: A Case Study of the Bayech Basin (Southwestern Tunisia)
by Zaineb Ali, Amine Saddik, Bouajila Essifi, Brahim Erraha, Adnane Labbaci and Mohamed Ouessar
Sustainability 2023, 15(16), 12382; https://doi.org/10.3390/su151612382 - 15 Aug 2023
Cited by 4 | Viewed by 2970
Abstract
The Bayech basin is located in southwestern Tunisia, a highly prone region to flooding risks. The Bayech basin is characterized by wadis that adopt a wide, sometimes ill-defined bed, often intersected by low-lying areas, resulting in a semi-endoreismo, greatly disrupting the flow regimes. [...] Read more.
The Bayech basin is located in southwestern Tunisia, a highly prone region to flooding risks. The Bayech basin is characterized by wadis that adopt a wide, sometimes ill-defined bed, often intersected by low-lying areas, resulting in a semi-endoreismo, greatly disrupting the flow regimes. The Bayech basin drains the slopes of the Nementchas and Tebessa mountains in Algeria, collecting water from the Medjen Bel Abbes plain in its middle course before crossing the Gafsa djebls chain at the Gafsa gap. In this basin, flooding is generally caused by high-intensity storms and is often relatively limited in extent. The slope shape and soil type can promote rapid surface runoff during intense rainfall. Therefore, the purpose of creating a web application, labeled ClimInonda, is to respond to a critical need of readily available information on climatic, environmental, and land use data collected in this basin and its morphometric characteristics using recent methods. The application consists of three essential components: the front-end, back-end, and database. The front-end focuses on the user interface, allowing users to interact with the application’s features. It communicates with the back-end through Hypertext Transfer Protocol requests for data processing and retrieval. The back-end handles the server-side operations, processes requests, and provides responses by retrieving data from the database. The database stores and manages the application’s data, ensuring integrity and efficient access. This modular architecture ensures a user-friendly interface, seamless data processing, and reliable data storage. Visualizations can include different types of data, such as satellite imagery, weather data, and terrain data, and can be displayed using various techniques, such as heat maps, contour maps, and 3D models, by providing easy-to-understand visualizations. ClimInonda is an application developed to expand upon existing platforms by providing a suite of exploratory data analysis features, including the ability to calculate the total precipitation depth recorded for any period, interpolate the annual recurrence interval for rainfall events, etc. A simple evaluation of the platform was performed to assess the usefulness and user satisfaction of the tool by professional users, and positive feedback was received. There is clear evidence that ClimInonda would provide the necessary basis for informed decision making by stakeholders and development agencies in arid and semi-arid Tunisia. Full article
Show Figures

Figure 1

20 pages, 18019 KB  
Article
Predicting Compound Coastal Flooding in Embayment-Backed Urban Catchments: Seawall and Storm Drain Implications
by Boxiang Tang and T. W. Gallien
J. Mar. Sci. Eng. 2023, 11(7), 1454; https://doi.org/10.3390/jmse11071454 - 21 Jul 2023
Cited by 11 | Viewed by 4195
Abstract
Urban coastal flooding is a global humanitarian and socioeconomic hazard. Rising sea levels will increase the likelihood of hydrologic events interacting with high marine water levels. These compound events may, in turn, nonlinearly interact with urban infrastructure, potentially resulting in more extreme coastal [...] Read more.
Urban coastal flooding is a global humanitarian and socioeconomic hazard. Rising sea levels will increase the likelihood of hydrologic events interacting with high marine water levels. These compound events may, in turn, nonlinearly interact with urban infrastructure, potentially resulting in more extreme coastal flooding events. Here, an integrated Delft3D-FM based numerical modeling framework is used to concomitantly resolve multi-source flood processes (i.e., high marine water levels, precipitation) and infrastructure (e.g., seawalls, storm drains). Hydrodynamic model results are validated with embayment pressure sensor data and photographic observations from historical events. The impact of tide and precipitation phasing are examined. Multiple storm drain characterizations are presented and evaluated. Results show seawall and storm drain infrastructure is fundamental to accurately resolving spatial and temporal flood dynamics. Importantly, coastal management strategies such as raising seawall elevations to mitigate tidal flooding may exacerbate precipitation-based flooding in low-lying urban regions. Full article
(This article belongs to the Special Issue Coastal Flooding: Causes, Impacts and Mitigation)
Show Figures

Figure 1

14 pages, 2526 KB  
Article
Investigating the Relationship between the Manning Coefficients (n) of a Perforated Subsurface Stormwater Drainage Pipe and the Hydraulic Parameters
by Junaidah Abdullah, Mohd Remy Rozainy Mohd Arif Zainol, Ali Riahi, Nor Azazi Zakaria, Mohd Fazly Yusof, Syafiq Shaharuddin, Muhammad Nurfasya Alias, Muhammad Zaki Mohd Kasim, Mohd Sharizal Abdul Aziz, Norazian Mohamed Noor, Mohd Hafiz Zawawi and Jazaul Ikhsan
Sustainability 2023, 15(8), 6929; https://doi.org/10.3390/su15086929 - 20 Apr 2023
Cited by 11 | Viewed by 4527
Abstract
Subsurface perforated pipes drain infiltrated stormwater runoff while attenuating the peak flow. The Manning roughness coefficient (n) was identified as a fundamental parameter for estimating roughness in various subsurface channels. Hence, in this work, the performance of a six-row non-staggered sand-slot perforated pipe [...] Read more.
Subsurface perforated pipes drain infiltrated stormwater runoff while attenuating the peak flow. The Manning roughness coefficient (n) was identified as a fundamental parameter for estimating roughness in various subsurface channels. Hence, in this work, the performance of a six-row non-staggered sand-slot perforated pipe as a sample of the subsurface drainage is investigated experimentally in a laboratory flume at Universiti Sains Malaysia (USM) aimed at determining the Manning roughness coefficients (n) of the pipe and assessing the relationship between the Manning’s n and the hydraulic parameters of the simulated runoff flow under the conditions of the tailgate channel being opened fully (GFO) and partially (GPO), as well as the pipe having longitudinal slopes of 1:750 and 1:1000. Water is pumped into the flume at a maximum discharge rate of 35 L/s, and the velocity and depth of the flow are measured at nine points along the inner parts of the pipe. Based on the calculated Reynolds numbers ranging from 38,252 to 64,801 for both GFO and GPO conditions, it is determined that most of the flow in the perforated pipe is turbulent, and the calculated flow discharges and velocities from the outlets under GFO are higher than the flow and velocity rates under GPO with similar pipe slopes of 1:750 and 1:1000. The Manning coefficients are calculated at nine points along the pipe and range from 0.004 to 0.009. Based on the ranges of the calculated Manning’s n, an inverse linear relationships between the Manning coefficients and the flow velocity under GFO and GPO conditions are observed with the R2 of 0.975 and 0.966, as well as 0.819 and 0.992 resulting from predicting the values of flow velocities with the equations v = ((0.01440 − n)/0.009175), v = ((0.01330 − n)/0.00890), v = ((0.02007 − n)/0.01814), and v = ((0.01702 − n)/0.01456) with pipe slopes of 1:750 and 1:1000, respectively. It is concluded that since the roughness coefficient (Manning’s n) of the pipe increases, it is able to reduce the flow velocity in the pipe, resulting in a lower peak of flow and the ability to control the quantity of storm water in the subsurface urban drainages. Full article
Show Figures

Figure 1

17 pages, 2957 KB  
Article
Support Vector Regression Models of Stormwater Quality for a Mixed Urban Land Use
by Mugdha P. Kshirsagar and Kanchan C. Khare
Hydrology 2023, 10(3), 66; https://doi.org/10.3390/hydrology10030066 - 13 Mar 2023
Cited by 7 | Viewed by 3813
Abstract
The present study is an attempt to model the stormwater quality of a stream located in Pune, India. The city is split up into twenty-three basins (named A to W) by the Pune Municipal Corporation. The selected stream lies in the haphazardly expanded [...] Read more.
The present study is an attempt to model the stormwater quality of a stream located in Pune, India. The city is split up into twenty-three basins (named A to W) by the Pune Municipal Corporation. The selected stream lies in the haphazardly expanded peri-urban G basin. The G basin has constructed stormwater drains which open up in this selected open stream. The runoff over the regions picks up the non-point source pollutants which are also added to the selected stream. The study becomes more complex as the stream is misused to dump trash materials, garbage and roadside litter, which adds to the stormwater pollution. Experimental investigations include eleven distinct locations on a naturally occurring stream in the G basin. Stormwater samples were collected for twenty-two storm events, for the monsoon season over four years from 2018–2021, during and after rainfall. The physicochemical characteristics were analyzed for twelve water quality parameters, including pH, Conductivity, Turbidity, Total solids (TS), Total Suspended Solids (TSS), Total Dissolved Solids (TDS), Bio-chemical Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Dissolved Oxygen (DO), Phosphate, Ammonia and Nitrate. The Water Quality Index (WQI) ranged from 46.9 to 153.9 and from 41.20 to 87.70 for samples collected during and immediately after the rainfall, respectively. Principal Component Analysis was used to extract the most significant stormwater quality parameters. To understand the non-linear complex relationship of rainfall characteristics with significant stormwater pollutant parameters, a Support Vector Regression (SVR) model with Radial Basis Kernel Function (RBF) was developed. The Support Vector Machine is a powerful supervised algorithm that works best on smaller datasets but on complex ones with the help of kernel tricks. The accuracy of the model was evaluated based on normalized root-mean-square error (NRMSE), coefficient of determination (R2) and the ratio of performance to the interquartile range (RPIQ). The SVR model depicted the best performance for parameter TS with NRMSE (0.17), R2 (0.82) and RPIQ (2.91). The unit increase or decrease in the coefficients of rainfall characteristics displays the weighted deviation in the values of pollutant parameters. Non-linear Support Vector Regression models confirmed that both antecedent dry days and rainfall are correlated with significant stormwater quality parameters. The conclusions drawn can provide effective information to decision-makers to employ an appropriate treatment train approach of varied source control measures (SCM) to be proposed to treat and mitigate runoff in an open stream. This holistic approach serves the stakeholder’s objectives to manage stormwater efficiently. The research can be further extended by selecting a multi-criteria decision-making tool to adopt the best SCM and its multiple potential combinations. Full article
(This article belongs to the Special Issue Stormwater/Drainage Systems and Wastewater Management)
Show Figures

Figure 1

22 pages, 4170 KB  
Article
The Relationship between Suspended Solid Loads and Dissolved Material during Floods of Various Origin in Catchments of Different Use
by Tadeusz Ciupa and Roman Suligowski
Water 2023, 15(1), 90; https://doi.org/10.3390/w15010090 - 27 Dec 2022
Cited by 4 | Viewed by 2900
Abstract
The paper presents the results of stationary, detailed studies on the variability of the mutual share of two fluvial loads, i.e., suspended solids and dissolved material during floods caused by rainstorm, continuous rainfalls and snowmelt in selected rivers (Silnica, Sufraganiec) draining small catchments [...] Read more.
The paper presents the results of stationary, detailed studies on the variability of the mutual share of two fluvial loads, i.e., suspended solids and dissolved material during floods caused by rainstorm, continuous rainfalls and snowmelt in selected rivers (Silnica, Sufraganiec) draining small catchments in central Poland, including two characterized by a high level of urbanization. Irrespective of the origin of the flood, the share of suspended solids load did not exceed 80% in urbanized catchments, in suburban catchments—44%, and in forest catchments—32%. In the former, the gradient of the increase in the share of suspended solids and concentration time in the first phase of the flood was several times higher than in the other catchments. It was proved that statistically significant relationships exist between the share of sealed surfaces (roads, car parks, roofs, etc.) in the total catchment area and the average share of suspended solids, both in the rising and falling phase of the flood wave, regardless of their origin. Similar relationships were documented by analyzing: the density of the drainage network (storm sewers, roads, etc.)—the share of suspension. The obtained results have an interesting cognitive aspect and in practice are used for the development of hydrotechnical documentation related to water management in the city. Full article
(This article belongs to the Special Issue Sediment Transport, Budgets and Quality in Riverine Environments)
Show Figures

Figure 1

Back to TopTop