Support Vector Regression Models of Stormwater Quality for a Mixed Urban Land Use
Abstract
:1. Introduction and Background
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Field and Laboratory Data Collection
2.3. Data Pre-Processing and Analysis Techniques
3. Results and Discussion
3.1. Urbanization Trend of G-Basin over Two Decades
3.2. Stormwater Quality Analysis of Urban Surface Runoff
3.3. Significant Stormwater Quality Parameters
3.4. Relationship of Stormwater Quality Parameters with Rainfall Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. “Peace, Dignity and Equality on a Healthy Planet,” [Online]. 2022. Available online: https://www.un.org/en/global-issues/population (accessed on 3 March 2023).
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. Npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- The United Nations World Water Development Report 2021: Facts and Figures. Valuing Water; UNESCO: Paris, France, 2021; pp. 1–12.
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- Bolliger, J.; Silbernagel, J. Contribution of connectivity assessments to green infrastructure (GI). ISPRS Int. J. Geo-Inf. 2020, 9, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Liu, A.; Goonetilleke, A.; Egodawatta, P. Role of Rainfall and Catchment Characteristics on Urban Stormwater Quality. In SpringerBriefs in Water Science and Technology; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef] [Green Version]
- Marsalek, J.; Watt, W.E.; Anderson, B.C. Trace metal levels in sediments deposited in urban stormwater management facilities. Water Sci. Technol. 2006, 53, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arora, A.S.; Reddy, A.S. Multivariate analysis for assessing the quality of stormwater from different Urban surfaces of the Patiala city. Urban Water J. 2013, 10, 422–433. [Google Scholar] [CrossRef]
- Gogate, N.G.; Rawal, P.M. Identifying objectives for sustainable stormwater management in urban Indian perspective: A case study. Int. J. Environ. Eng. 2015, 7, 143–162. [Google Scholar] [CrossRef]
- US EPA. Protecting Water Quality from Urban Runoff; US EPA: Washington, DC, USA, 2003. Available online: www.epa.gov/nps (accessed on 15 January 2023).
- Lee, F.; Jones-Lee, A. Urban Stormwater Runoff Water Quality Issues. Water Encyclopedia: Surface and Agricultural Water; Wiley: Hoboken, NJ, USA, 2005; pp. 432–437. [Google Scholar]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef]
- United Nations World Water Assessment Programme, UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018. [Google Scholar]
- Goonetilleke, A.; Thomas, E.; Ginn, S.; Gilbert, D. Understanding the role of land use in urban stormwater quality management. J. Environ. Manag. 2005, 74, 31–42. [Google Scholar] [CrossRef] [Green Version]
- Huang, J. Characterization of surface runoff from a subtropics urban catchment. J. Environ. Sci. 2007, 19, 148–152. [Google Scholar] [CrossRef]
- Imteaz, M.A.; Hossain, I.; Hossain, M.I. Estimation of build-up and wash-off models parameters for an east-australian catchment. Int. J. Water 2014, 8, 48–62. [Google Scholar] [CrossRef]
- Kim, L.H.; Zoh, K.D.; Jeong, S.; Kayhanian, M.; Stenstrom, M.K. Estimating Pollutant Mass Accumulation on Highways during Dry Periods. J. Environ. Eng. 2006, 132, 985–993. [Google Scholar] [CrossRef]
- Ahyerre, M.; Chebbo, G.; Tassin, B.; Gaume, E. Storm water quality modelling, an ambitious objective? Water Sci. Technol. 1998, 37, 205–213. [Google Scholar] [CrossRef]
- Rosa, L.D.; Pappalardo, V. Planning for spatial equity—A performance-based approach for sustainable urban drainage systems. Sustain. Cities Soc. 2019, 53, 101885. [Google Scholar] [CrossRef]
- Chapman, C.; Hall, J.W. Designing green infrastructure and sustainable drainage systems in urban development to achieve multiple ecosystem benefits. Sustain. Cities Soc. 2022, 85, 104078. [Google Scholar] [CrossRef]
- Gimenez-Maranges, M.; Pappalardo, V.; Rosa, D.; Breuste, J.; Hof, A. The transition to adaptive storm-water management: Learning from existing experiences in Italy and Southern France. Sustain. Cities Soc. 2020, 55, 102061. [Google Scholar] [CrossRef]
- Trifi, M. Machine learning-based prediction of toxic metals concentration in an acid mine drainage environment, northern Tunisia. Environ. Sci. Pollut. Res. 2022, 29, 87490–87508. [Google Scholar] [CrossRef]
- Zhang, H. Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. J. Clean. Prod. 2020, 273, 122858. [Google Scholar] [CrossRef]
- Khoi, D.N.; Quan, N.T.; Linh, D.Q.; Nhi, P.T.T.; Thuy, N.T.D. Using Machine Learning Models for Predicting the Water Quality Index in the La Buong River, Vietnam. Water 2022, 14, 1552. [Google Scholar] [CrossRef]
- “Population Census.” [Online]. Available online: https://www.census2011.co.in/census/city/375-pune.html (accessed on 16 February 2023).
- “Pune Municipal Corporation.” [Online]. Available online: https://www.pmc.gov.in/en/pune-weather-0 (accessed on 16 February 2023).
- Butsch, C.; Kumar, S.; Wagner, P.D.; Kroll, M.; Kantakumar, L.N.; Bharucha, E.; Schneider, K.; Kraas, F. Growing ‘Smart’? Urbanization Processes in the Pune Urban Agglomeration. Sustainability 2017, 9, 2335. [Google Scholar] [CrossRef] [Green Version]
- Pune Municipal Corporation. Revised City Development for Pune-2041: Physical Infrastructure; Under JNNURUM: Maharashtra, India, 2012; pp. 96–162. [Google Scholar]
- Gogate, N.G.; Rawal, P.M. Identification of potential stormwater recharge zones in dense urban context: A case study from Pune city. Int. J. Environ. Res. 2015, 9, 1259–1268. [Google Scholar]
- Gogate, N.G.; Rawal, P.M. Sustainable Stormwater Management in Developing and Developed Countries: A Review. In Proceedings of the International Conference on Advances in Design and Construction of Structures, Bangalore, India, 19–20 October 2012; pp. 1–6. [Google Scholar]
- PMC-Pune Municipal Corporation. Comprehensive Master Plan of Pune City; Pune Municipal Corporation: Pune, India, 2009. [Google Scholar]
- State of California Department of Transportation. Caltrans Stormwater Monitoring Guidance Manual. In Environmental Analysis Stormwater Program; State of California Department of Transportation: Sacramento, CA, USA, 2020. Available online: http://www.dot.ca.gov/hq/env/stormwater/ (accessed on 25 January 2023).
- Mohd Hafiyyan, M. Spatial Distribution of Water Quality Index in Stormwater Channel: A Case Study of Alur Ilmu, UKM Bangi Campus. Asia Pac. Environ. Occup. Health J. 2017, 3, 33–38. [Google Scholar]
- Datta, S.; Ground, C.; Board, W.; Kushwaha, A. Weighted Arithmetic Water Quality Index Method for Ground Water Quality Determination in and around Guwahati. In Proceedings of the conference on water resources on eastern and Northe eastern states of India, Kolkata, India, June 2018. [Google Scholar]
- Brown, R.M.; Mcclelland, N.I.; Deininger, R.A.; Tozer, R.G. A Water Quality Index—Do We Dare? Water Sew. Work. 1970, 117, 339–343. [Google Scholar]
- Indian Standard Drinking Water Specification. Bur. Indian Stand. 2012, 10500, 1–11.
- Hastie, T.; Tibshirani, R.; James, G.; Witten, D. The Elements of Statistical Learning; Springer series in statistics: New York, NY, USA, 2008; pp. 1–764. [Google Scholar]
- Jadhav, M.S.; Khare, K.C.; Warke, A.S. Water Quality Prediction of Gangapur Reservoir (India) Using LS-SVM and Genetic Programming. Lakes Reserv. Res. Manag. 2015, 20, 275–284. [Google Scholar] [CrossRef]
- Singh, K.P.; Basant, N.; Gupta, S. Support vector machines in water quality management. Anal. Chim. Acta 2011, 703, 152–162. [Google Scholar] [CrossRef]
- Kamyab-Talesh, F.; Mousavi, S.F.; Khaledian, M.; Yousefi-Falakdehi, O.; Norouzi-Masir, M. Prediction of Water Quality Index by Support Vector Machine: A Case Study in the Sefidrud Basin. Water Resour. 2019, 46, 112–116. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, Y.; Ha, K.; Lee, S.H.; Kim, G.P. Comparative evaluation of ANN-and SVM-time series models for predicting freshwater-saltwater interface fluctuations. Water 2017, 9, 323. [Google Scholar] [CrossRef] [Green Version]
- Niu, W.; Feng, Z.K. Evaluating the performances of several artificial intelligence methods in forecasting daily streamflow time series for sustainable water resources management. Sustain. Cities Soc. 2020, 64, 102562. [Google Scholar] [CrossRef]
- Sapankevych, N.; Sankar, R. Time series prediction using support vector machines: A survey. IEEE Comput. Intell. Mag. 2009, 4, 24–38. [Google Scholar] [CrossRef]
- Chou, P.H.; Wu, M.J.; Chen, K.K. Integrating support vector machine and genetic algorithm to implement dynamic wafer quality prediction system. Expert Syst. Appl. 2010, 37, 4413–4424. [Google Scholar] [CrossRef]
- Gasmi, A.; Gomez, C.; Chehbouni, A.; Dhiba, D.; Gharous, M.E. Using PRISMA Hyperspectral Satellite Imagery and GIS Approaches for Soil Fertility Mapping (FertiMap) in Northern Morocco. Remote Sens. 2022, 14, 4080. [Google Scholar] [CrossRef]
- ENVIS Centre. Punjab BIS (ISI) Water Quality Standards for Classifying Surface Water Sources, By Ministry of Environment, Forests & Climate Change, Govt of India BIS. BIS 2020, 2–3. [Google Scholar]
- “Central Pollution Control Board (CPCB), Ministry of Environment Forest and Climate Change, Government of India.” [Online]. 2023. Available online: https://cpcb.nic.in/water-quality-criteria/ (accessed on 16 February 2023).
- Wijesiri, B.; Egodawatta, P.; Mcgree, J.; Goonetilleke, A. In fl uence of uncertainty inherent to heavy metal build-up and wash- off on stormwater quality. Water Res. 2016, 91, 264–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Y.; Liang, X.; Li, X.; Li, J.; Fang, X.; Song, R. Influence of rainfall characteristics on total suspended solids in urban runoff: A case study in Beijing, China. Water 2016, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, T.D. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
Levels of WQI Values | Status of Water Quality | Grade | Probable Usage |
---|---|---|---|
0–25 | Excellent | A | Drinking, Irrigation and |
Industrial | |||
26–50 | Good | B | Domestic, irrigation and |
Industrial | |||
51–75 | Poor | C | Irrigation and Industrial |
76–100 | Very poor | D | Irrigation |
>100 | Unsuitable for drinking and | E | Restricted use for |
fish culture | Irrigation |
pH | CONDUCTIVITY | TURBIDITY | TDS | TSS | TS | DO | BOD | COD | Phosphate | Ammonia | Nitrate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Unit | mg/L | µs/m | NTU | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L | mg/L |
Mean | 7.883 | 0.795 | 37.4 | 514.8 | 927 | 1448 | 2.9 | 110 | 513.4 | 0.74 | 0.386 | 0.232 |
SD | 0.067 | 0.157 | 10.2 | 57.2 | 185 | 180 | 0.7 | 22.9 | 76.5 | 1.63 | 0.103 | 0.085 |
Parameters | Training Size (%) | Testing Size (%) | Training Error | Testing Error | Difference (Training and Testing) |
---|---|---|---|---|---|
TUR- | 70 | 30 | 30.47 | 45.88 | 15.41 |
BIDITY | |||||
TS | 90 | 10 | 107.47 | 162.61 | 55.14 |
TSS | 80 | 20 | 91.62 | 166.37 | 74.75 |
DO | 80 | 20 | 0.27 | 1.42 | 1.15 |
Phos- | 95 | 5 | 0.008 | 0.011 | 0.003 |
phate | |||||
Nitrate | 90 | 10 | 0.01 | 0.014 | 0.004 |
Parameters | Co-Efficient for Rainfall | Co-Efficient for ADD | Bias (Constant) | NRMSE | R2 | RPIQ |
---|---|---|---|---|---|---|
TURBID- | −0.17702 | 0.767276 | 0.24 | 0.85 | 0.39 | 0.79 |
ITY | ||||||
TS | −3.08976 | 3.140374 | −0.01 | 0.17 | 0.82 | 2.91 |
TSS | −2.70495 | 3.053751 | 0.03 | 0.3 | 0.75 | 2.23 |
DO | 0.63459 | 1.086196 | 0.28 | 0.44 | 0.79 | 1.93 |
Phos- | −1.61594 | 2.415755 | 0.2 | 0.02 | 0.67 | 1.62 |
phate | ||||||
Nitrate | 0.853082 | −0.63948 | 0.08 | 0.03 | 0.72 | 1.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kshirsagar, M.P.; Khare, K.C. Support Vector Regression Models of Stormwater Quality for a Mixed Urban Land Use. Hydrology 2023, 10, 66. https://doi.org/10.3390/hydrology10030066
Kshirsagar MP, Khare KC. Support Vector Regression Models of Stormwater Quality for a Mixed Urban Land Use. Hydrology. 2023; 10(3):66. https://doi.org/10.3390/hydrology10030066
Chicago/Turabian StyleKshirsagar, Mugdha P., and Kanchan C. Khare. 2023. "Support Vector Regression Models of Stormwater Quality for a Mixed Urban Land Use" Hydrology 10, no. 3: 66. https://doi.org/10.3390/hydrology10030066
APA StyleKshirsagar, M. P., & Khare, K. C. (2023). Support Vector Regression Models of Stormwater Quality for a Mixed Urban Land Use. Hydrology, 10(3), 66. https://doi.org/10.3390/hydrology10030066