The Relationship between Suspended Solid Loads and Dissolved Material during Floods of Various Origin in Catchments of Different Use
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
3. Results and Discussion
3.1. Hydrological and Fluvial Features of Floods of Various Origins—Statistical Approach
3.2. Analysis of the Course of Selected Floods
3.2.1. Causes of Floods
3.2.2. River Runoff
3.2.3. Concentration of Suspended Solids
3.2.4. Concentration of Dissolved Material
3.2.5. Specific Suspended Sediment Load
3.2.6. Specific Dissolved Material Load
3.2.7. Share of Suspended Solids
3.3. Average Share of Suspended Solids and Dissolved Material Loads during Floods
3.4. Selected Characteristics of Catchment Use Vs. the Share of Suspended Solids during Floods
4. Conclusions
- The land use, and in particular, the share of sealed surfaces, the density of the drainage network, water reservoirs, regulation of riverbeds and seasonal human activity, including the use of sand and salt for winter road maintenance, modify (in the forest and suburban catchments) and determine (in the urbanized catchments) both the spatial and temporal distribution of the ls in the fluvial transport.
- In the urbanized catchments, in comparison to the forest, agricultural and suburban ones, the role of summer rain-induced floods in shaping the outflow is clearly increasing, and of those caused by the snowmelt—in shaping the fluvial transport. The transformation of the flood waves of the suspended solids share in the urbanized areas consists, among others, a significant shortening of their concentration time in the first phase of the flood (rising limb).
- Urbanized areas, compared to other types of land use of similar size, produce much more dissolved substances and fine-grained sediment, and this has a significant impact on the dynamics, size and variability of the share of particular types of load in fluvial transport during floods.
- Defined relationships between selected indicators of management of particular sub-catchments and the ls in fluvial transport, with high and statistically significant coefficients of determination, make it possible to forecast changes in the structure of fluvial transport as anthropogenic transformations in the catchment increase.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grove, A.T. The dissolved and solid load carried by some West African rivers. J. Hydrol. 1972, 16, 287–300. [Google Scholar] [CrossRef]
- Froehlich, W. The carrying out of suspended and dissolved load in the Kamienica Nawojowska and Łubinka catchment basins during the flood in 1970. Stud. Geomorph. Carpatho-Balcanica 1972, 6, 105–119. [Google Scholar]
- Babiński, Z. The relationship between suspended and bed load transport in river channels. IAHS Publ. 2005, 291, 182–188. [Google Scholar]
- Alexandrov, Y.; Cohen, H.; Laronne, J.B.; Reid, I. Suspended sediment load, bed load, and dissolved load yields from a semiarid drainage basin: A 15-year study. Water Resour. Res. 2009, 45, W08408. [Google Scholar] [CrossRef]
- Martínez-Salvador, A.; Conesa-García, C. Estimation of suspended sediment and dissolved solid load in a Mediterranean semiarid karst stream using log-linear models. Hydrol. Res. 2019, 50, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Merchán, D.; Luquin, E.; Hernández-García, I.; Campo-Bescós, M.A.; Giménez, R.; Casalí, J.; Del Valle de Lersundi, J. Dissolved solids and suspended sediment dynamics from five small agricultural watersheds in Navarre, Spain: A 10-year study. Catena 2019, 173, 114–130. [Google Scholar] [CrossRef]
- Gregory, K.J.; Walling, D.E. Drainage Basin: Form and Processes; Edward Arnold: London, UK, 1973. [Google Scholar]
- Zwoliński, Z. Geomorphic Adjustment of the Parsęta Channel to the Present-Day River Regime; Dokumentacja Geograficzna; Institute of Geography and Spatial Organization PAS: Warsaw, Poland, 1989. [Google Scholar]
- Smolska, E. Funkcjonowanie Systemu Korytowego w Obszarze Młodoglacjalnym na Przykładzie Górnej Szeszupy (Pojezierze Suwalskie); University of Warsaw: Warsaw, Poland, 1996. [Google Scholar]
- Krzemień, K.; Sobiecki, K. Transport of disolved and suspended matter in small catchments of the Wieliczka Foothills near Łazy. Prace Geogr. 1998, 103, 83–100. [Google Scholar]
- Chalov, S.; Zavadsky, A.; Belozerova, E.; Bulacheva, M.; Jarsjö, J.; Thorslund, J.; Yamkhin, J. Suspended and dissolved matter fluxes in the upper Selenga river basin. Geogr. Environ. Sustain. 2012, 5, 78–94. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.; Wilcock, P. Upland sediment supply and its relation to watershed sediment delivery in the contemporary mid-Atlantic Piedmont (USA). Geomorphology 2015, 232, 33–46. [Google Scholar] [CrossRef]
- Zeleňáková, M.; Kubiak-Wójcicka, K.; Weiss, R.; Weiss, E.; Abd Elhamid, H.F. Environmental risk assessment focused on water quality in the Laborec River watershed. Ecohydrol. Hydrobiol. 2021, 21, 641–654. [Google Scholar] [CrossRef]
- Obolewski, K.; Habel, M.; Chalov, S. River sediment quality and quantity: Environmental, geochemical and ecological perspectives. Ecohydrol. Hydrobiol. 2021, 21, 565–569. [Google Scholar] [CrossRef]
- Szatten, D.; Habel, M.; Babiński, Z. Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland). Resources 2021, 10, 70. [Google Scholar] [CrossRef]
- Ciupa, T. Relations between fluvial load types in highland catchments of central Poland. In Hydrology in the Protection and Landscape Environment; II National Hydrological Congress of the Association of Polish Hydrologists; Magnuszewski, A., Ed.; Monographs of Committee of Environmental Engineering PAS: Warsaw, Poland, 2014; Volume 2, pp. 381–391. [Google Scholar]
- Gil, E.; Słupik, J. The influence of the plant cover and land use on the surface runoff and wash down during heavy rain. Stud. Geomorph. Carpatho-Balcanica 1972, 6, 181–189. [Google Scholar]
- Brinkmann, W.L.F. Dissolved and suspended loads of the regulated River Nidda in the Rhine-Main area. IAHS Publ. 1983, 141, 347–357. [Google Scholar]
- Lenzi, M.A.; Marchi, L. Suspended sediment load during floods in a small stream of the Dolomites (northeastern Italy). Catena 2000, 39, 267–282. [Google Scholar] [CrossRef]
- Cohen, H.; Laronne, J.B. High rates of sediment transport by flash floods in the southern Judean Desert, Israel. Hydrol. Process. 2005, 19, 1687–1702. [Google Scholar] [CrossRef]
- Alexandrov, Y.; Laronne, J.B.; Reid, I. Intra-event and interseasonal behaviour of suspended sediment in flash floods of the semiarid Northern Negev, Israel. Geomorphology 2007, 85, 85–97. [Google Scholar] [CrossRef]
- Kijowska, M.; Bochenek, W. Dynamics of suspended material carried out from the flysch Bystrzanka catchment during selected rainfall events in the period of 1997–2008. Quaest. Geogr. 2011, 30, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Karimaee Tabarestani, M.; Zarrati, A.R. Sediment transport during flood event: A review. Int. J. Environ. Sci. Technol. 2015, 12, 775–788. [Google Scholar] [CrossRef] [Green Version]
- Gellis, A.C.; Myers, M.K.; Noe, G.B.; Hupp, C.R.; Schenk, E.R.; Myers, L. Storms, channel changes, and a sediment budget for an urban-suburban stream, Difficult Run, Virginia, USA. Geomorphology 2017, 278, 128–148. [Google Scholar] [CrossRef] [Green Version]
- Haddadchi, A.; Hicks, M. Understanding the effect of catchment characteristics on suspended sediment dynamics during flood events. Hydrol. Process. 2020, 34, 1558–1574. [Google Scholar] [CrossRef]
- Song, Y.; Song, X.; Shao, G.; Hu, T. Effects of Land Use on Stream Water Quality in the Rapidly Urbanized Areas: A Multiscale Analysis. Water 2020, 12, 1123. [Google Scholar] [CrossRef] [Green Version]
- Dymek, D.; Zgłobicki, W.; Baran-Zgłobicka, B. The Impact of Mosaic Land Use and Land Cover on the Quality of River Waters (Case Study: Lubelskie Province, E Poland). Land 2021, 10, 1318. [Google Scholar] [CrossRef]
- Jokiel, P. Woda na Zapleczu Wielkiego Miasta: Możliwości Wykorzystania i Problemy Ochrony Zasobów i Obiektów Wodnych w Małej Zlewni Strefy Podmiejskiej Łodzi; Uniwersytet Łódzki, IMGW: Warszawa, Poland, 2002. [Google Scholar]
- Akan, A.O.; Houghtalen, R.J. Urban Hydrology, Hydraulics, and Stormwater Quality. Engineering Applications and Computer Modeling; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Barszcz, M.; Banasik, K. The analysis of flood phenomenon in urbanized catchment—Sluzew Creek case study (Suburb of Warsaw). In Hydrological Extremes in Small Basins; Chełmicki, W., Siwek, J., Eds.; Euromediterranean Network of Representative and Experimental Basins, Jagiellonian University, Institute of Geography and Spatial Management Cracow: Kraków, Poland, 2008; p. 25. [Google Scholar]
- Li, S.; Gu, S.; Liu, W.; Han, H.; Zhang, Q. Water quality in relation to land use and land cover in the upper Han River Basin, China. Catena 2008, 75, 216–222. [Google Scholar] [CrossRef]
- Mallin, M.A. Comparative impacts of stormwater runoff on water quality of an urban, a suburban, and a rural stream. Environ. Monit. Assess. 2008, 159, 475–491. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef]
- Łajczak, A. Transport of suspended sediment by the Vistula River basin upstream of Kraków, southern Poland, and the human impact during the second half of the 20th century. IAHS Publ. 2012, 356, 49–56. [Google Scholar]
- McGrane, S. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef] [Green Version]
- Bartnik, A. Mała Rzeka w Dużym Mieście. Wybrane Aspekty OBIEGU Wody na Obszarze Zurbanizowanym na Przykładzie Łódzkiej Sokołówki; Uniwersytet Łódzki: Łódź, Poland, 2017. [Google Scholar]
- Baran-Zgłobicka, B.; Godziszewska, D.; Zgłobicki, W. The Flash Floods Risk in the Local Spatial Planning (Case Study: Lublin Upland, E Poland). Resources 2021, 10, 14. [Google Scholar] [CrossRef]
- Yazdi, M.N.; Sample, D.J.; Scott, D.; Wang, X.; Ketabchy, M. The effects of land use characteristics on urban stormwater quality and watershed pollutant loads. Sci. Total Environ. 2021, 773, 145358. [Google Scholar] [CrossRef]
- Walling, D.E. Suspended sediment and solute yields from a small catchment prior to urbanization. In Fluvial Processes in Instrumented Watersheds; Gregory, K.J., Walling, D.E., Eds.; Institute of British Geographers: London, UK, 1974; pp. 169–192. [Google Scholar]
- Kibler, D.F. Urban Stormwater Hydrology; American Geophysical Union: Washington, DC, USA, 1982. [Google Scholar]
- Tramblay, Y.; Saint-Hilaire, A.; Ouarda, T.B.M.J.; Moatar, F.; Hecht, B. Estimation of local extreme suspended sediment concentrations in California Rivers. Sci. Total Environ. 2010, 408, 4221–4229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becouze-Lareure, C.; Dembélé, A.; Coquery, M.; Cren-Olivé, C.; Bertrand-Krajewski, J.-L. Assessment of 34 dissolved and particulate organic and metallic micropollutants discharged at the outlet of two contrasted urban catchments. Sci. Total Environ. 2019, 651 Pt 2, 1810–1818. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.S.S.; Walsh, R.P.D.; Kalantari, Z.; Ferreira, A.J.D. Impact of Land-Use Changes on Spatiotemporal Suspended Sediment Dynamics within a Peri-Urban Catchment. Water 2020, 12, 665. [Google Scholar] [CrossRef] [Green Version]
- Ciupa, T.; Suligowski, R. Impact of the City on the Rapid Increase in the Runoff and Transport of Suspended and Dissolved Solids During Rainfall—The Example of the Silnica River (Kielce, Poland). Water 2020, 12, 2693. [Google Scholar] [CrossRef]
- Ciupa, T.; Suligowski, R.; Wałek, G. Impact of an urban area on the dynamics and features of suspended solids transport in a small catchment during floods. Ecohydrol. Hydrobiol. 2021, 21, 595–603. [Google Scholar] [CrossRef]
- Wolman, M.G.; Miller, J.P. Magnitude and frequency of forces in geomorphic processes. J. Hydrol. 1960, 68, 54–74. [Google Scholar] [CrossRef]
- Wotling, G.; Bouvier, C. Impact of urbanization on suspended sediment and organic matter fluxes from small catchments in Tahiti. Hydrol. Process. 2002, 16, 1745–1756. [Google Scholar] [CrossRef]
- Absalon, D.; Czaja, S.; Jankowski, A.T. Factors influencing floods in the urbanized and industrialized areas of the Upper Silesia Industrial Region in the 19th and 20th centuries (the Kłodnica catchment case study). Geogr. Pol. 2007, 80, 97–109. [Google Scholar]
- García–Ruiz, J.M.; Regüés, D.; Alvera, B.; Lana–Renault, N.; Serrano–Muela, P.; Nadal-Romero, E.; Navas, A.; Latron, J.; Martí–Bono, C.; Arnáez, J. Flood generation and sediment transport in experimental catchments affected by land use changes in the Central Pyrenees. J. Hydrol. 2008, 356, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Ciupa, T. The Impact of Land Use Runoff and Fluvial Transport in Small River Catchments: Based on the Sufraganiec and Silnica Rivers (Kielce, Poland); Jan Kochanowski University of Humanities and Sciences: Kielce, Poland, 2009. [Google Scholar]
- Gellis, A.C. Factors influencing storm-generated suspended-sediment concentrations and loads in four basins of contrasting land use, humid-tropical Puerto Rico. Catena 2013, 104, 39–57. [Google Scholar] [CrossRef]
- Krajewski, A.; Gładecki, J.; Banasik, K. Transport of Suspended Sediment During Flood Events In A Small Urban Catchment. Acta Sci. Pol. Formatio Circumiectus 2018, 17, 119–127. [Google Scholar] [CrossRef]
- Ciupa, T. Hydrological effects of urbanization as exemplified by the Silnica and Sufraganiec river catchments (Kielce, Poland). Folia Geogr. Ser. Geogr.-Phys. 2009, 40, 5–25. [Google Scholar]
- Michalczyk, Z. (Ed.) Ocena Warunków Występowania Wody i Tworzenia się Spływu Powierzchniowego w Lublinie; Wyd. UMCS: Lublin, Poland, 2012. [Google Scholar]
- Available online: https://meteomodel.pl (accessed on 1 September 2022).
- Available online: https://bdot10k.geoportal.gov.pl (accessed on 1 September 2022).
- Szeląg, B.; Suligowski, R.; Studziński, J.; De Paola, F. Application of logistic regression to simulate the influence of rainfall genesis on storm overflow operations: A probabilistic approach. Hydrol. Earth Syst. Sci. 2020, 24, 595–614. [Google Scholar] [CrossRef] [Green Version]
- Suligowski, R. Maksymalny Wiarygodny Opad na Wyżynie Kieleckiej; Wyd. UJK: Kielce, Poland, 2013. [Google Scholar]
- Ciupa, T. Chemical denudation in the catchments of the Holy Cross Mts. and Nida Basin. Landf. Anal. 2012, 20, 9–16. [Google Scholar]
- TIBCO Statistica® User’s Guide, Version 14.0. December 2020. Available online: https://docs.tibco.com/pub/stat/14.0.0/doc/html/UsersGuide/GUID-058F49FC-F4EF-4341-96FB-A785C2FA76E9-homepage.html (accessed on 5 December 2022).
- Jackson, R.B.; Jobbágy, E.G. From icy roads to salty streams. Proc. Natl. Acad. Sci. USA 2005, 102, 14487–14488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciupa, T. Współczesny Transport Fluwialny w Zlewni Białej Nidy; Wyd. WSP: Kielce, Poland, 1991. [Google Scholar]
- Froehlich, W. The role of land use in varying the suspended load during continuous rainfall (Kamienica Nawojowska catchment, Flysch Carpathians). Geogr. Pol. 1978, 41, 27–37. [Google Scholar]
- Prowse, C.W. The impact of urbanization on major ion flux through catchments: A case study in southern England. Water Air Soil Pollut. 1987, 32, 277–292. [Google Scholar] [CrossRef]
- Russell, K.; Vietz, G.; Fletcher, T.D. Global sediment yields from urban and urbanizing watersheds. Earth Sci. Rev. 2017, 168, 73–80. [Google Scholar] [CrossRef]
- Bąk, L.; Górski, J.; Górska, K.; Szeląg, B. Suspended Solids and Heavy Metals Content of Selected Rainwater Waves in an Urban Catchment Area: A Case Study. Ochr. Srod. 2012, 34, 49–52. [Google Scholar]
- Wałek, G. The Influence of Roads on Surface Runoff Formation in the Urbanized Area on the Example of Silnica River Catchment in Kielce; Jan Kochanowski University: Kielce, Poland, 2019. [Google Scholar]
- Froehlich, W.; Walling, D.E. The role of unmetalled roads as a sediment source in the fluvial systems of the Polish Flysch Carpathians. IAHS Publ. 1997, 245, 159–168. [Google Scholar]
- Kroczak, R.; Bryndal, T.; Bucała, A.; Fidelus, J. The development, temporal evolution and environmental influence of an unpaved road network on mountain terrain: An example from the Carpathian Mts. (Poland). Environ. Earth Sci. 2016, 75, 250. [Google Scholar] [CrossRef]
- Bryndal, T.; Kroczak, R. Reconstruction and characterization of the surface drainage system functioning during extreme rainfall: The analysis with use of the ALS-LIDAR data-the case study in two small flysch catchments (Outer Carpathian, Poland). Environ. Earth Sci. 2019, 78, 215. [Google Scholar] [CrossRef]
- Zgłobicki, W.; Telecka, M.; Skupiński, S. Assessment of Short-Term Changes in Street Dust Pollution with Heavy Metals in Lublin (E Poland)—Levels, Sources and Risks. Environ. Sci. Pollut. Res. 2019, 26, 35049–35060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordin, C.F. A Preliminary Study of Sediment Transport Parameters of Rio Puerco Near Bernardo, New Mexico; Professional Paper 462-C; United States Geological Survey: Washington, DC, USA, 1963. [Google Scholar]
- Froehlich, W. Mechanizm Transportu Fluwialnego i Dostawy Zwietrzelin do Koryta w Górskiej Zlewni Fliszowej; Institute of Geography and Spatial Organization PAS: Warsaw, Poland, 1982; Volume 143. [Google Scholar]
- Pearce, A.J.; Stewart, M.K.; Sklash, M.G. Storm runoff generation in humid headwater catchments. 1. Where does the water come from? Water Resour. Res. 1986, 22, 1263–1272. [Google Scholar] [CrossRef]
- Hooper, R.P.; Christophersen, N.; Peters, N.E. Modelling streamwater chemistry as a mixture of soilwater end members—An application to tile Panola Mountain catchment. J. Hydrol. 1990, 116, 321–343. [Google Scholar] [CrossRef]
- Kostrzewski, A.; Stach, A.; Zwoliński, Z. Transport of suspended load in the Parseta River during the flash flood of June 1988, Poland. Geogr. Pol. 1994, 63, 63–73. [Google Scholar]
- Löfgren, S. The chemical effects of de-icing salt on soiland stream water of five catchments in Southeast Sweden. Water Air Soil Pollut. 2001, 130, 863–868. [Google Scholar] [CrossRef]
- Thunqvist, E.L. Regional increase of mean chloride concentration in water due to the application of deicingsalt. Sci. Total Environ. 2004, 325, 29–37. [Google Scholar] [CrossRef]
- Gardner, K.M.; Royer, T.V. Effect of road salt application on seasonal chloride concentrations and toxicity in south-central Indiana streams. J. Environ. Qual. 2010, 39, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Szeląg, B.; Górski, J.; Bąk, Ł.; Górska, K. The Impact of Precipitation Characteristics on the Washout of Pollutants Based on the Example of an Urban Catchment in Kielce. Water 2021, 13, 3187. [Google Scholar] [CrossRef]
- Święchowicz, J. Linkage of Slope and Fluvial Processes in Sediment and Solute Export from a Foothill Catchment in the Carpathian Foothills of South Poland; Institute of Geography and Spatial Management of the Jagiellonian University: Cracow, Poland, 2002. [Google Scholar]
- Świeca, A. Wpływ Czynników Antropogenicznych na Rzeczny Odpływ Roztworów i Zawiesin na Międzyrzeczu Wisły i Bugu; Rozpr. Habil. 61; UMCS: Lublin, Poland, 1998. [Google Scholar]
- Cyberski, J. Sedymentacja rumowiska w Zbiorniku Rożnowskim. Prace PIHM 1969, 96, 21–42. [Google Scholar]
- Froehlich, W. Dynamics of Fluvial Transport in the Kamienica Nawojowska; Geographical Studies PAS: Wroclaw, Poland; Warsaw, Poland, 1975; Volume 114. [Google Scholar]
- Rodzik, J.; Ciupa, T.; Janicki, G.; Kociuba, W.; Tyc, A.; Zgłobicki, W. Współczesne przemiany rzeźby Wyżyn Polskich. In Współczesne Przemiany Rzeźby Polski; Kostrzewski, A., Krzemień, K., Migoń, P., Starkel, L., Winowski, M., Zwoliński, Z., Eds.; Bogucki Wyd. Naukowe: Poznań, Poland, 2021; pp. 333–414. [Google Scholar]
- Biernat, T. Areas supplying weathered material and the mechanism of transportation of the suspended material in the Łososina catchment area (Holy Cross Mountain, central Poland). Quaest. Geogr. 1985, 1, 61–73. [Google Scholar]
- Hatt, B.; Fletcher, T.; Walsh, C.; Taylor, S.L. The Influence of Urban Density and Drainage Infrastructure on the Concentrations and Loads of Pollutants in Small Streams. Environ. Manag. 2004, 34, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Siakeu, J.; Oguchi, T.; Aoki, T.; Esaki, Y.; Jarvie, H.P. Change in river in suspended sediment concentration in central Japan in response to late 20th century human activities. Catena 2004, 55, 231–254. [Google Scholar] [CrossRef]
- Ciupa, T.; Suligowski, R. Water Problems in Urban Areas. In Quality of Water Resources in Poland; Zeleňáková, M., Kubiak-Wójcicka, K., Negm, A., Eds.; Springer International Publishing AG: Berlin/Heidelberg, Germany, 2021; pp. 399–422. [Google Scholar]
River | Outlet (Name) | Physiographic Parameters | Land Use | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | River Lenght (km) | Mean Slope | Average Catchment Height (m asl.) | Forests (%) | Meadows (%) | Arable Land (%) | Impervious Areas (%) | Density of Road Network (km·km−2) | Density of Covered and Open Canals (km·km−2) | |||
River (‰) | Catchment (‰) | |||||||||||
Silnica | Si1 (Dąbrowa) | 9.23 | 4.27 | 14.86 | 64.5 | 360.8 | 72.9 | 12.9 | 3.6 | 4.6 | 4.84 | 1.16 |
Si2 (Piaski) | 15.48 | 8.78 | 11.66 | 59.0 | 339.0 | 51.2 | 15.0 | 9.9 | 12.7 | 6.08 | 1.58 | |
Si3 (Jesionowa) | 17.88 | 9.88 | 10.67 | 58.8 | 331.8 | 44.9 | 15.3 | 9.1 | 17.4 | 7.14 | 1.99 | |
Si4 (Pakosz) | 42.6 | 14.49 | 8.37 | 52.0 | 302.4 | 29.6 | 16.3 | 4.3 | 30.2 | 12.67 | 4.97 | |
Si5 (Białogon) | 49.37 | 17.81 | 7.33 | 53.2 | 297.4 | 32.7 | 17.0 | 4.1 | 27.6 | 11.83 | 4.65 | |
Sufraganiec | Su1 (Grzeszyn) | 13.61 | 4.50 | 20.98 | 68.1 | 355.7 | 65.5 | 11.7 | 17.0 | 1.7 | 2.03 | 0.46 |
Su2 (Niewachlów) | 42.25 | 9.69 | 12.08 | 54.3 | 330.4 | 59.0 | 9.7 | 23.0 | 3.4 | 2.88 | 0.83 | |
Su3 (Pietraszki) | 61.93 | 15.88 | 8.38 | 48.8 | 313.0 | 46.7 | 14.7 | 25.7 | 6.7 | 5.27 | 1.72 |
River | Outlet | ls (%) | |||||
---|---|---|---|---|---|---|---|
Rainstorm (N = 4) | Continuous (N = 3) | Snowmelt (N = 4) | |||||
Mean | Max | Mean | Max | Mean | Max | ||
Silnica | Si1 | 10.1 | 31.8 | 10.6 | 34.8 | 10.4 | 37.5 |
Si2 | 11.6 | 40.1 | 12.6 | 43.5 | 12.8 | 37.0 | |
Si3 | 10.5 | 19.0 | 12.5 | 38.3 | 9.8 | 32.9 | |
Si4 | 24.5 | 79.3 | 22.6 | 77.6 | 24.0 | 70.3 | |
Si5 | 25.9 | 75.3 | 23.2 | 69.6 | 24.8 | 69.3 | |
Sufraganiec | Su1 | 10.1 | 24.3 | 10.9 | 28.7 | 9.0 | 28.7 |
Su2 | 10.2 | 23.2 | 11.1 | 27.8 | 12.2 | 39.3 | |
Su3 | 12.8 | 35.7 | 13.1 | 32.0 | 17.5 | 44.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciupa, T.; Suligowski, R. The Relationship between Suspended Solid Loads and Dissolved Material during Floods of Various Origin in Catchments of Different Use. Water 2023, 15, 90. https://doi.org/10.3390/w15010090
Ciupa T, Suligowski R. The Relationship between Suspended Solid Loads and Dissolved Material during Floods of Various Origin in Catchments of Different Use. Water. 2023; 15(1):90. https://doi.org/10.3390/w15010090
Chicago/Turabian StyleCiupa, Tadeusz, and Roman Suligowski. 2023. "The Relationship between Suspended Solid Loads and Dissolved Material during Floods of Various Origin in Catchments of Different Use" Water 15, no. 1: 90. https://doi.org/10.3390/w15010090