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Abstract: Existing surface inlets behind terraces and water and sediment control basins (WAS-
CoBs) were replaced with alternative tile intakes (ATIs) in agricultural fields of southeast Iowa.
These ATIs consisted of a buried column of gravel atop woodchips. Computational, experimental,
and field methods were used to design and evaluate the ATIs’ capacity to reduce sediment and
nutrient export. Single-storm simulations using the Watershed Erosion Prediction Project (WEPP)
provided boundary conditions for permeameter experiments that yielded a hydraulic conductivity
for the layered gravel–woodchip configuration of 4.59 cm/s ± 0.36 cm/s. Additionally, a propor-
tional amount of sediment was retained in the permeameter (42%) compared to the amount that
settled on the permeameter surface (58%). Event monitoring of field-installed ATIs during three
growing seasons measured a sediment trapping efficiency of 86 ± 12% that led to deposition rates of
5.44 ± 3.77 cm/yr, quantified with 210Pb profiles. Percent reduction values were 43% for nitrate and
17% for ortho-phosphate. Finally, long-term continuous-storm modeling using the WEPP suggested
that these ATIs could withstand at least 75 25-year events before clogging. Modeling using the
Agricultural Conservation Planning Framework suggested watershed-scale load reductions of 1.6%
for NO3 and 1.4% for total P for ATIs draining 6.8% of the modeled watershed. Using ATIs in
conjunction with WASCOBs and terraces, or as standalone practices, can be a cost-effective means for
keeping sediment and nutrients in the landscape.

Keywords: alternative tile intakes; agricultural drainage; hydraulic conductivity; trapping
efficiency; Iowa

1. Introduction

Excessive erosion has always been an unfortunate consequence of agriculture: see,
e.g., [1]. To curb soil loss, structural practices like terraces or water and sediment control
basins (WASCoBs) can be implemented along agricultural hillslopes. These earthen-mound
structures are placed in series subdividing the slope length of a field. They force runoff to
ponds, allowing some sediment to settle. The water eventually drains through a surface
inlet to a buried conduit.

The surface inlets typically consist of orange slotted pipes extending up from the
ground. These slotted pipes drain excess water from a field, as well as enhance sediment
settling. They have a reported sediment trapping efficiency of up to 66%, as seen in, e.g., [2].
However, the intakes have little capacity to trap finer sediment sizes or remove dissolved
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nutrients from the runoff. The drain tiles subsequently convey and export the fine sediment
and nutrients directly to the receiving stream.

Tile drainage has altered hydrologic and ecological regimes in the U.S. Midwest [3].
It has increased baseflow, modified recession characteristics, and homogenized hydro-
logic responses, as seen in, e.g., [4]. The tile discharge is also a major source of nitrate-
nitrogen [5,6] and dissolved phosphorus [7–9] for waterways draining agricultural water-
sheds. Reducing excess sediment and nutrient discharge from tiles has become a major
component of several states’ nutrient reduction strategies: see, e.g., [10].

For this study, slotted inlets were replaced with less-obtrusive alternative tile intakes
(ATIs). These ATIs (Figure 1) consist of a buried column of gravel augmented with an
underlying layer of woodchips. Sediment trapping is primarily achieved through enhanced
settling from runoff ponding around the intake. A secondary trapping mechanism is
performed through filtration before the runoff passes into the drain tile.
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and their capacity to retain sediment and nutrients, thus preserving productivity.  

Figure 1. An alternative tile intake consisting of a buried column of gravel over a layer of woodchips.
Blue arrows represent flowpaths of water. The blue, irregular shapes represent ponding of water.

An ATI is projected to be more efficient than a traditional inlet at removing finer
sediment and sorbed nutrients from runoff. Gravel intakes have been shown to trap 80–98%
of the delivered sediment and sediment-bound constituents, like phosphorus. This is an
improvement over the observed 66% for orange slotted pipes [2]. ATIs are also designed
to increase the effective hydraulic retention time of the nutrient-laden runoff to optimize
the potential for denitrification. The added woodchip layer stimulates denitrification to
remove fertilizer-derived NO3. The sizes of the arrows in Figure 1 decrease progressing
through the figure, which represents the ATI slowing runoff flux, allowing more time for
denitrification to occur.

ATIs are still novel. In fact, only a few states have considered them, such as in,
e.g., [11–13]. Currently, there is very little available information regarding flow and sedi-
ment dynamics within gravel intakes used in agricultural systems, let alone the ATI design
presented in this study [14].

The goal of this study is to provide insight into the performance of these modi-
fied structures for limiting losses of sediment and associated nutrients from agricultural
fields. It demonstrates the utility of ATIs through computational, experimental, and field
means that characterize the key parameters of hydraulic conductivity, which represents the
flow-through capacity of the ATI, and trapping efficiency, which describes the functional
usefulness of the ATI. In addition, appendices are included describing the installation
process of an ATI, which can be in conjunction with WASCOBs/terraces or by itself, as well
as the ATI costs and economic benefits. This detailed study is the first to showcase these
ATIs and their capacity to retain sediment and nutrients, thus preserving productivity.
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2. Materials and Methods
2.1. Study Site

This study occurred in the Southern Iowa Drift Plain region of the U.S. Midwest
(Figure 2). This region consists of rolling landscapes with thinning Wisconsin-age loess
(from 3 to 10 m deep) and post-settlement alluvium overlying pre-Illinoian till [15]. The
silty loam (SL) and silty clay loam (SCL) soils have well-developed, organic-rich surface
horizons that are slowly permeable [16]. The predominant upland soil series are Tama
(SL), Fayette (SL), and Otley (SCL). The lowlands contain the Colo (SCL), Nodaway (SL),
and Zook (SL) series. Silt contents are >65%, with clay contents between 24% and 32%.
Organic matter contents are 3% to 4%. Saturated hydraulic conductivity values are between
0.0001 and 0.0005 cm/s. The average annual precipitation for this region during the study
period was approximately 900 mm and the average annual temperature was 10 ◦C [17].
This region is also predominately under row crop agriculture. Thus, the landscape has been
re-shaped by rain events and overland sediment movement, enhanced through agricultural
tillage [18].
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Figure 2. The study sites are in the state of Iowa, USA. The gray area is the Southern Iowa Drift Plain
region. The colored shapes are the sub-watersheds where the ATIs were installed.

Three ATIs were established in southeast Iowa (Figure 2) for monitoring their effec-
tiveness at reducing sediment and nutrient exports from intensively managed agricultural
fields. More specifically, the ATIs were in the following watersheds: Clear Creek in Iowa
County; Indian Creek in Keokuk County; and Little Soap Creek in Wapello County.

At the Iowa County site, the existing surface inlets upslope of three WASCoBs were
replaced with ATIs (Figure 3a). The primary ATI, which was monitored during this study,
was installed in June 2011 and drains 0.24 ha of an upland farm under a 2-year reduced-till
corn/no-till soybean rotation. The remaining ATIs were installed in December 2011.
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The Keokuk County ATI was installed in March 2019 in a field under a traditional
corn/soybean rotation that incorporates cereal rye cover crops. It replaced a surface tile
inlet associated with a grass-backed WASCoB. This ATI is similar in size to those in Iowa
County, and it drains 0.65 ha. The tile drainage system here originates at the inlet, and there
are no lateral tile lines.

The ATI in Wapello County was also installed in March 2019. It is behind a farmable
contour terrace in a field under a traditional corn/soybean rotation. This ATI is similar in
size and material make-up to the other ATIs and drains 1.38 ha. At the Wapello site, the
drainage system also originates at its inlet and there are no lateral tile lines.

These ATIs (Figure 3b) were all sized similarly following the procedure outlined in
this article’s Appendix A. The overall dimensions of each ATI were 2.44 m (l) × 0.61 m (w)
× 1.22 m (d). The ATIs extended in depth to the existing drain tile. Drain tiles in the study
area consisted of 10–15 cm diameter, slotted, corrugated plastic pipes, typically installed
1.22 m below the soil surface. The excavated soil pit over the drain tile was lined with
non-woven Class III geotextile. The hardwood chips (D50 = 0.51 cm) were laid first in the
excavated pit. Approximately 0.45 m3 of woodchips was applied evenly to a depth of
0.30 m. Then, ~1.36 m3 of washed pea gravel (D50 = 1.03 cm) was applied to a depth 0.9 m.
The porosity of the system was 0.43. Further details of the ATI design are in [14].

2.2. Method Overview

A combination of computational, experimental, and field methods was used in this
study to design and evaluate the performance of ATIs in reducing the export of sediment
and nutrients from agricultural fields. Initially, single-storm simulations were conducted us-
ing the Watershed Erosion Prediction Project, or the WEPP, to establish boundary conditions
for permeameter experiments. The permeameter experiments were used to characterize,
under controlled conditions, the parameters of hydraulic conductivity and trapping effi-
ciency. Building from these experiments, ATIs installed along three hillslopes in southeast
Iowa were monitored during the growing seasons of 2013, 2019, and 2021 for their delivery
of and ability to flow through sediment, nitrogen, and phosphorus. Finally, additional
modeling determined the expected lifespan of the ATIs through continuous-storm simula-
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tions using the WEPP and extrapolated their performance to the watershed scale using the
Agricultural Conservation Planning Framework (ACPF) toolbox.

2.3. Modeling
2.3.1. Water Erosion Prediction Project (WEPP)

The WEPP has been used extensively in Iowa and the U.S. Midwest: e.g., in [19,20].
Detailed descriptions of the model’s parameterization, calibration, and validation for fields
in southeast Iowa are in [21,22].

The WEPP is a physically based, distributed-parameter, runoff-and-erosion model that
considers heterogeneity in soil, land use, and topographic parameters along a hillslope. The
hydrologic component in the WEPP first calculates infiltration rates and then runoff rates
using the continuity equation and overland flow routing. Hence, the WEPP can be more
accurate than approaches relying on the Rational method, curve numbers, and site-specific
runoff information [23]. The model has an added extension for DRAINMOD that calculates
tile flow [24]. Regarding the modeling of sediment movement on hillslopes with the WEPP,
soil erosion begins with interrill erosion. Soil particles detach through raindrop impact
and are delivered to the rills. The detachment, transport, and deposition of sediment in
the rills are then calculated using a steady-state solution to the 1D sediment continuity
equation [25]. It provides net erosion rates based on these mechanistic approaches. In
addition, the WEPP comes with a complete management practice database.

The weather data from National Weather Service sites in Williamsburg, Sigourney, and
Ottumwa were obtained through the Iowa MESONET web site [17]. These are the closest
monitoring sites to the installed ATIs (<10 km). A lengthy period (since 1960) was used to
ensure the model processes were at a steady state before simulating the monitoring period.
The WEPP has been shown to take at least 25 years for hydrologic processes and almost
50 years for sediment processes to reach a steady state [21]. Additionally, state-provided
LiDAR data [26] were used to obtain detailed hillslope profiles, while SSURGO data [27]
were used to develop the soil profiles. A 2-year reduced-till corn/no-till soybean rotation
was used.

The key calibration parameters for the model (e.g., saturated hydraulic conductivity;
rill/interrill erodibility) were determined previously for the Iowa County site [22]. These
calibration parameters were applied to the sites in the counties of Wapello and Keokuk, as
these sites share similar hillslope properties and management practices.

2.3.2. Single-Storm Simulations for Parameterization

Single-storm simulations with the WEPP were conducted using 15 min rainfall data to
obtain runoff discharge values and sediment concentrations that could be delivered to the
study ATIs. Six rainfall events (Figure 4) were simulated, with four of the events containing
rainfall data measured during the growing season, i.e., June to September [22]. The two
remaining events were Natural Resources Conservation Service (NRCS) TR-55 design
events with 10- and 25-year return periods. These six events are within the representative
distribution of the rainfall events for the region.

Each event was simulated using five different initial field conditions that were func-
tions of time within the growing season. The initial conditions (Table 1) included the
cumulative rainfall since the last tillage, the bulk density after tillage, the degree of crop
cover, and the rill/interrill cover. The multiple sets of rainfall and initial conditions
provided a large representative range of possible runoff and sediment delivery rates to
the ATIs.
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Table 1. Summary of initial condition parameters for the WEPP single-storm simulations.

Parameter Range of Values

Days since last harvest (d) 280–347

Days since last tillage (d) 68–135

Cumulative rainfall since last tillage (mm) 561–1108

Bulk density after last tillage (g/cm3) 1.30–1.35

Initial canopy cover (0–100%) 8–98

Initial dead root mass (kg/m2) 0.025–0.131

Initial submerged residue (kg/m2) 0.096–0.307

Initial interrill cover (0–100%) 4.33–59.9

Initial rill cover (0–100%) 4.33–59.9

Different combinations of rainfall events and initial field conditions were conducted
to determine the depth of ponding at the ATI. The ponding depth was quantified using
stage–discharge relationships, determined using the difference in flow volumes between
the WEPP-simulated runoff and outflow through the drain tile. The WEPP’s impoundment
module was used to mimic an ATI-WASCOB combination, which had a similar cross-
sectional width and flow length as those at the Iowa County site.

Along with the ponding estimates, single-storm simulations were used to compute the
sediment flux, calculated as the sediment yield mass divided by the duration of the rainfall
event. The corresponding suspended sediment concentration value was then calculated
using the sediment yield mass divided by the runoff volume of the event.

2.3.3. Continuous Modeling for Sediment and Longevity

Additionally, long-term model simulations were conducted using the WEPP at the
three study sites in order to estimate the amount of time taken to drain different storm
magnitudes. Continuous simulations were conducted for 100 years. Only the results
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from the last 50 years were used, as the first 50 years were for establishing steady-state
conditions [21]. For these simulations, the hydraulic conductivity values measured during
the permeameter studies were used for the segment of the hillslope that contained the ATI.
Additionally, the surface impoundment module and the DRAINMOD extension were used
in the continuous simulations.

2.3.4. Agricultural Conservation Planning Framework (ACPF)

To assess potential implications that ATIs may have on overall watershed load re-
ductions if implemented in certain locations, a watershed plan was developed using the
Agricultural Conservation Planning Framework toolbox [28] for the Old Man’s Creek
watershed, which is also within the Southern Iowa Drift Plain. This watershed was chosen
due to the availability of more than 20 years of continuous stream nutrient and discharge
data for quantifying the annual nutrient export loads at this watershed [29].

Following identification of all existing terraces and WASCOBs in this watershed using
the Iowa BMP Mapping Project [30], the catchment tool developed by the Iowa Department
of Natural Resources [26] was used to estimate the total watershed area that drains through
these practices. Finally, the total loads and percent reductions were estimated considering
the field monitoring results and in-stream data.

2.4. Lab
2.4.1. Permeameter Setup

A clear acrylic tube was used as a physical model of the ATI (Figure 5) in the laboratory.
The physical model consisted of a head box, the permeameter (i.e., the acrylic column), a
centrifugal pump, two inflow-regulating valves, PVC inflow/outflow pipes, an insertion
flow meter with attached datalogger, a sediment auto-sampler, and an outlet valve. The
permeameter had a length of 122 cm and a circular cross-sectional area of 198 cm2.
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Figure 5. Physical model of an ATI. This permeameter was developed to determine the effec-
tive hydraulic conductivity of the ATI and quantify its filtering efficiency through the pea gravel
and woodchips.

A 1.5-horsepower, self-priming centrifugal pump delivered water from a 3.7 m3 sump
to the head box. Two 5 cm Powell gate valves were used to regulate the flow from the
centrifugal pump into the head box. Flow exiting the permeameter was diverted to another
1.78 m3 sump with an open drain at the bottom. A flow meter was connected to the outlet
pipe for measuring the discharge through the permeameter.
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2.4.2. Constant Head Tests for Hydraulic Conductivity

Constant head tests using the permeameter were devised to determine the time series
of hydraulic conductivity for different combinations and arrangements (i.e., layered; mixed)
of the woodchips and gravel. Before placement in the permeameter, the woodchips were
allowed to saturate, and the pea gravel was washed to remove fine materials. The different
media were poured into the permeameter at a steady rate and lightly packed. The masses
of the fill media were recorded to determine the packing density.

Following packing, the permeameter was backfilled with water to prevent air bubbles
from forming. Once the permeameter was purged of air, the centrifugal pump was started.
The inflow and outflow valves were adjusted until a constant head of water, based on
the single-storm simulations using the WEPP, was achieved. Cameras were focused on
the head box to record changes in the head box during the experiment. Additionally, a
flow meter on the outflow pipe was used to measure the instantaneous flow rate of the
outflow. The discharge from the flow meter and the water level in the head box were used
to determine the hydraulic conductivity with Darcy’s law.

2.4.3. Permeameter Experiments for Trapping Efficiency

For determining the trapping efficiency, the experimental procedure was identical
to that of the constant head tests. Additionally, dry, pulverized sediment from the Iowa
County hillslope was supplied to the permeameter through a feeder at a rate based on the
WEPP single-storm simulations.

To measure the amount of sediment leaving the permeameter, an auto-sampler col-
lected discrete samples of the total suspended solids from the pipe. Bucket samples were
also collected from the outlet of the pipe.

The sediment delivery was paused to avoid overtopping when too much sediment
caused the water to accumulate in the head box above 40 cm. Once the water level returned
to its original level, the sediment delivery was resumed. Twenty-four hours after the
conclusion of a series of sediment deliveries, the pea gravel and woodchips were removed
from the permeameter, dried, and weighed.

2.5. Field Evaluation
2.5.1. Sampling Setup

Event monitoring of the installed ATIs was conducted during the growing seasons
of 2013, 2019, and 2021. At the Iowa County site, the monitoring equipment included: a
local weather station; a 7.62 m deep water table monitoring well; pressure transducers for
measuring the ponding depth and flow through the drain tile; a still camera to capture
the extent of ponding; water content reflectometers to measure the volumetric water
content; a photo-electric erosion pin for determining the amount of deposited soil; and
water–sediment autosamplers to collect runoff at the inlet and outlet of the ATI [16].

At the Keokuk and Wapello County sites (Figure 6), dual-tipping bucket rain gages
equipped with a datalogger and cellular modem were installed to record precipitation
and alert the research team when rainfall was occurring. Two sediment-and-water auto-
samplers were installed at both sites to capture pre- and post-ATI runoff samples during
a rain event. The water samplers were equipped with flow actuators to trigger sampling
during runoff-producing rainfall events. Once triggered, each sampler collected 1 L samples
at 10 min intervals for 4 h (24 samples in total). The actuators were installed within a 1 L
surface sampling sump. The surface sump was intentionally sized the same as the sample
collection volume to ensure that the sump was emptied, and new runoff water was being
collected at each interval. For the pre-ATI runoff, the sumps were installed level with the
land surface in locations where concentrated runoff and rill formation was present. The
post-treatment sampler collected water from the base of the surface tile inlet, which was
directly downstream of the ATI.
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The flow rates through these ATIs were not measured, so the loads were not calculated.
Using precipitation data collected on-site during each event and estimates of infiltration
and surface runoff made using soil survey data [27], the flow through the ATIs was
estimated; then, we estimated potential load reductions for each practice by incorporating
our measured nutrient concentration reductions.

2.5.2. Gamma Spectroscopy

Finally, sediment cores collected at each site were sub-sectioned, dried, and lightly
crushed. The sediment was then packed in Petri dishes and placed on a gamma spec-
troscopy system for 210Pb age-dating analysis. The use of 210Pb sediment profiles is a
common geochronology technique used in deposition studies on floodplains and lakes, as
seen in, e.g., [16]. This method is used to determine the age of the soil at a certain depth
interval and involves comparing the established depth profile of the 210Pb with patterns
established using known/assumed deposition rates [31].

2.5.3. Lab Analyses for Sediment, Nitrogen, and Phosphorus

Immediately following an event during which the automatic samplers were triggered,
samples were transported to a lab for analysis. All samples were analyzed for NO3-N
concentrations using a Nitratax, Hach, Loveland, CO, USA [32]. A subset of samples from
each event was analyzed for ortho-phosphorous (OP) and total phosphorus (TP) content
using the ascorbic acid method. All glassware used in the sampling and analysis of the
dissolved reactive phosphorus was acid washed in 1 m hydrochloric acid. Instrument and
reagent blanks were run daily and did not indicate significant levels of contamination. Lab
instruments were calibrated with known concentration standard solutions according to the
analytical protocols.

3. Results
3.1. Model Parameterization

The single-storm modeling simulations provided ponding depths and sediment con-
centrations delivered to the ATIs under different combinations of rainfall events and initial
field conditions (Table 2). Ponding was only observed during the two design storm sim-
ulations. For the 10-year design storm, the ponding depths ranged between 14.4 and
14.8 cm, while for the 25-year design storm event, the range was between 20.1 and 20.7 cm.
The sediment concentration values for the events when ponding occurred ranged from 4.1
to 50.5 g/L, producing an average value of 17 g/L with a sediment flux of 18 g/s.
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Table 2. Summary of single-storm numerical modeling simulations using the WEPP for runoff and
sediment.

Data Source No. of Simulated
Events

Runoff Depth
(cm)

Ponding Depth
(cm)

Sediment
Concentration

(g/L)

Measured 140 1.9 0 11.5
(0.3–50.8)

Design storm 40 5.8 17.5
(14.4–20.7)

17.0
(4.1–50.5)

Notes: Adopted from [14]. Numbers in parentheses are the full range of values.

The simulated ponding depths and sediment concentrations were used to determine
the level of water in the head box above the permeameter and the feed rate of sediment to
the permeameter during the laboratory experiments. For the permeameter experiments,
the “worst-case” conditions (i.e., the 25-year event) for the ponding depths and average
sediment concentrations were used. The water level in the head box was set at 20 cm and
the sediment delivery concentration was 17 g/L.

3.2. Permeameter Experiments

The constant-head permeameter experiments using a 100% gravel matrix had an
average value of 5.34 cm/s ± 0.18 cm/s and the experiments using a 100% woodchip
matrix had an average value of 4.76 cm/s ± 0.20 cm/s. These values correspond well with
the ranges of values from other studies (e.g., gravel: 4.8–7.9 cm/s in [2,33]; woodchips:
2.7 to 11 cm/s in [34–36]). For the runs using the layered 0.90 m of pea gravel over
0.30 m of woodchips configuration, the average hydraulic conductivity value was
4.59 cm/s ± 0.36 cm/s, which was less than both of the 100% run averages.

When sediment was introduced to the permeameter, the largest accumulations of
sediment (Figure 7) occurred in the transition areas of the permeameter, namely, the
transition between the head box and the gravel, as well as the transition between the gravel
and the woodchips. At the permeameter surface, 4290 g (58%) settled through ponding
in the head box. This is similar to the 66% efficiency resulting from the ponding at slotted
intakes [2]. Within the permeameter, an additional 2049 g (27%) of sediment was retained in
the gravel and 1130 g (15%) in the woodchips. In this experiment, there was a proportional
amount of sediment retained in the permeameter, highlighting the benefit of the ATI, where
an additional 42% of the sediment was found.

Water 2024, 16, x FOR PEER REVIEW 10 of 22 
 

 

Table 2. Summary of single-storm numerical modeling simulations using the WEPP for runoff and 
sediment. 

Data Source 
No. of Simulated 

Events 
Runoff Depth 

(cm) 
Ponding 

Depth (cm) 
Sediment 

Concentration (g/L) 

Measured 140 1.9 0 
11.5  

(0.3–50.8) 

Design storm 40 5.8 
17.5  

(14.4–20.7) 
17.0  

(4.1–50.5) 
Notes: Adopted from [14]. Numbers in parentheses are the full range of values. 

3.2. Permeameter Experiments 
The constant-head permeameter experiments using a 100% gravel matrix had an av-

erage value of 5.34 cm/s ± 0.18 cm/s and the experiments using a 100% woodchip matrix 
had an average value of 4.76 cm/s ± 0.20 cm/s. These values correspond well with the 
ranges of values from other studies (e.g., gravel: 4.8–7.9 cm/s in [2,33]; woodchips: 2.7 to 
11 cm/s in [34–36]). For the runs using the layered 0.90 m of pea gravel over 0.30 m of 
woodchips configuration, the average hydraulic conductivity value was 4.59 cm/s ± 0.36 
cm/s, which was less than both of the 100% run averages. 

When sediment was introduced to the permeameter, the largest accumulations of 
sediment (Figure 7) occurred in the transition areas of the permeameter, namely, the tran-
sition between the head box and the gravel, as well as the transition between the gravel 
and the woodchips. At the permeameter surface, 4290 g (58%) settled through ponding in 
the head box. This is similar to the 66% efficiency resulting from the ponding at slotted 
intakes [2]. Within the permeameter, an additional 2049 g (27%) of sediment was retained 
in the gravel and 1130 g (15%) in the woodchips. In this experiment, there was a propor-
tional amount of sediment retained in the permeameter, highlighting the benefit of the 
ATI, where an additional 42% of the sediment was found. 

 
Figure 7. (a) Mass of deposited sediment in the permeameter after all runs. (b) Visible intrusion of 
sediment following a sediment test. Arrows indicate direction of flow. 

Figure 8 shows the pressure head (or water level) time series for the head box during 
two sets of consecutive runs where sediment was fed to the permeameter. The blue lines 
(i.e., lines A1–A4 in Figure 8) represent the first series and the green lines (i.e., lines B1–B2 
in Figure 8) represent the second series. Each line shows the pressure head increasing once 
the sediment is added at time = 0, as partial clogging of the gravel–woodchip matrix causes 
the water in the head box to pond. The sediment feed was discontinued after the depth in 
the head box rose above 40 cm in order to prevent overtopping. The black dots in Figure 
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Figure 8 shows the pressure head (or water level) time series for the head box during
two sets of consecutive runs where sediment was fed to the permeameter. The blue lines
(i.e., lines A1–A4 in Figure 8) represent the first series and the green lines (i.e., lines B1–B2
in Figure 8) represent the second series. Each line shows the pressure head increasing once
the sediment is added at time = 0, as partial clogging of the gravel–woodchip matrix causes
the water in the head box to pond. The sediment feed was discontinued after the depth in
the head box rose above 40 cm in order to prevent overtopping. The black dots in Figure 8
mark the time when the sediment delivery ceased. The influx of clear water continued at
half the original rate until the pressure head returned to 20 cm.
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Figure 8. Head box pressure (or, equivalently, the depth of water) during the sediment flux experi-
ments.

For each run, the lines in Figure 8 follow a concave-up shape while the sediment was
delivered to the permeameter, as further clogging caused a faster increase in the ponding
rate. Across the sets of curves, the time it took for the pressure head to reach a maximum
level in the head box increased for each subsequent run. The slopes of the lines decrease as
the runs progress from A1 to A4 and from B1 to B2.

Figure 9 shows how the hydraulic conductivity changes during the first set of experi-
mental runs (A1–A4). The periods when K decreases correspond to the periods of sediment
delivery to the head box. The periods when the hydraulic conductivity has a positive slope
correspond to the periods when only clean water was added.

In addition, the maximum and the range of hydraulic conductivity values decreased
across each consecutive run. Although the hydraulic conductivity values successively
decreased as clogging enhanced, the values decreased less than 20%, which is far from the
Kmin threshold for functionality [2,33].
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Figure 9. Time series of hydraulic conductivity, K, over consecutive runs. The initial hydraulic
conductivity of the gravel–woodchip matrix, K0, averaged 4.59 cm/s ± 0.36 cm/s. The minimum
hydraulic conductivity value (Kmin) is considered the minimum value at which water passes through
the matrix. The value for Kmin of 0.10 × K0 was adopted from [2,33].

3.3. Field Monitoring

At the Iowa County site, one event was sampled on 24 June 2013, where nearly
2 inches of rain fell over a period of 15 h. Observations of ponding were made at this
ATI site, as well as measurements of the depth of water (and thereby the discharge) in the
outflow pipe (Figure 10). During this sampled event, the pressure transducer measured the
flow-through of water in the drain tile and the autosampler collected the runoff.

To determine the drainage capacity, the discharge through the pipe was divided by the
drainage area, and the value exceeded 1 in/d, the NRCS-recommended value. To determine
the trapping efficiency of the sampled ATI, the total mass of sediment collected from the
outlet pipe (Figure 10c), which was 105 kg, was compared against the WEPP-simulated
influx of sediment to the ATI, which was 1054 kg. The ratio of the sediment efflux to the
sediment influx was 1:10. As a result, the WASCoB-ATI was 90% effective at trapping the
sediment delivered to it. A 90% trapping efficiency for the sediment would correspond to a
proportional decrease in P loads. This efficiency is much greater than the efficiency for an
orange slotted pipe of 66% [2].

The Keokuk and Wapello sites were monitored more extensively. More than
500 samples were collected at these sites over eight rain events in 2019 and 2021. On
average, N concentrations were reduced from approximately 31 to 18 mg/L, or by 43%.
Ortho-phosphorous (OP) concentrations were reduced by 9% on average, while total phos-
phorous (TP) was reduced by 14%. Although load reductions were not directly measured,
coupling these concentration reductions with runoff modeling showed load reduction
estimates of N, OP, and TP by 3.4, 0.02, and 0.47 kg/ha.
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3.4. Cores

Due to the limited sampling at the Iowa County site, efforts were made to understand
the long-term sedimentation rather than event monitoring. The amount of deposition over
the ATI was measured by collecting cores from the soil surface to the surface of the gravel.
Cores were taken along the 8-foot length of the ATI.

The amount of deposited sediment in front of the ATI ranged from 22 to 33 cm,
which corresponds to deposition rates of 3.3 to 4.7 cm per year. This high deposition
rate was confirmed when the cores were analyzed using gamma spectroscopy and fallout
radionuclides to determine the geochronology of the erosion/deposition. The measured
210Pb profiles (Figure 11) show that the average deposition rate was 5.44 ± 3.77 cm/yr.
This value is not statistically different from the measured values when assessed using a
standard t-test (p = 0.17).
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Figure 11. Sediment deposition rates. (a) Deposition rates over the Iowa County ATI, determined
using the 210Pb profile. The x-axis depicts the activity of the 210Pb in Becquerels per gram (Bq/g).
(b) The Iowa County ATI in 2021, which was 10 years after its installation. The “×” symbols show
where cores were collected. The arrow shows the main flow path over the ATI. The values in white
are the depth measurements at the nearest “×”.

3.5. Nutrient Monitoring Analysis

In 2019, four rain events were successfully monitored, while in 2021, an additional
four events were monitored. NO3-N concentrations were determined for all samples in
both years. Ortho-phosphate and total phosphate contents were only analyzed in 2021.
In 2019, the mean NO3-N concentrations decreased from 16.4 ± 14.9 in the surface runoff
to 8.8 ± 8.2 mg/L in the exit tile (Table 3). In 2021, NO3-N concentrations averaged
45.2 ± 12.7 in the surface runoff compared to 25.8 ± 12.0 mg/L in the exit tile (Table 3).
Despite the different magnitudes between sampling years, the percent reductions were
similar, being 46% in 2019 and 43% in 2021. In 2021, TP concentrations were reduced
through the ATI by 17% from 2.4 ± 0.3 to 2.0 ± 0.2 mg/L, while OP concentrations were
reduced by 13% from 1.8 ± 0.2 to 1.6 ± 0.2 mg/L.

Table 3. Mean water quality results from 2019 and 2021 monitoring.

n NO3 (mg/L) TP (mg/L) OP (mg/L)

2019
Surface Runoff 132 16.4 ± 14.9 - -

Exit Tile 126 8.8 ± 8.2 - -

2021
Surface Runoff 136 45.2 ± 12.7 2.4 ± 0.3 1.8 ± 0.2

Exit Tile 135 25.8 ± 12.0 2.0 ± 0.2 1.6 ± 0.2
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3.6. Continuous Sediment Modeling

Table 4 lists the drainage times for the ATIs for the 24-h 25-year rainfall event (5.5 in);
the 24-h 50-year rainfall event (6.0 in); and the 24-h 100-year rainfall event (6.5 in). A runoff
coefficient of 0.5 was assumed. The drainage times for the ATIs ranged between 0.2 and
1.1 d. Only for the 24-h 100-year event at the Wapello site did it take more than 1 day to
drain. The value of 1.1 day was still reasonable, so the ATIs seemed to be properly sized.

Table 4. Simulated drainage times of the ATIs.

Site Drainage Area
(ha)

Drain Time (d):
24 h 25 yr Event

Drain Time (d):
24 h 50 yr Event

Drain Time (d):
24 h 100 yr Event

Iowa 0.24 0.2 0.2 0.3
Keokuk 0.65 0.7 0.8 0.9
Wapello 1.4 0.9 1.0 1.1

Table 5 details how much runoff and erosion was simulated along the hillslopes, as
well as the trapping efficiencies of the combined ATI-WASCOB/terrace. The Iowa County
site had relatively high runoff generation but low sediment generation along the hillslope.
This translated to a high trapping efficiency. The modeled average trapping efficiency of
98% matched closely the measured trapping efficiency of 90% from the 2013 sampled event.
The ATI-WASOB/terrace structures at the Keokuk County and Wapello County sites had
lower efficiencies of 87% and 73%, respectively.

Table 5. Continuous WEPP modeling results.

Parameter Iowa Keokuk Wapello

Runoff Volume (m3/ha/yr) 2515 1930 1995
Runoff Coefficient 0.27 0.21 0.22
Gross Erosion (T/ha/yr) 56.2 5.4 16.1
Net Erosion (T/ha/yr) 19.8 4.8 12.0
Exported Erosion (T/ha/yr) 0.3 0.6 3.2
Sediment Delivery Ratio 0.005 0.114 0.169
Sediment Trapping Efficiency 98% 87% 73%

3.7. Nutrient Monitoring and ACPF Watershed Modeling Results

Combining the concentration reductions with the runoff modeling results, the esti-
mated NO3-N load reductions were 3.45 kg/ha, whereas the TP and OP reductions were
0.05 and 0.02 kg/ha, respectively (Table 6). Based on the catchment areas monitored at the
Keokuk and Wapello sites, this load reduction equates to mass reductions of 2.2, 0.03, and
0.01 kg for the NO3-N, TP, and OP removed at the Keokuk site, respectively, and 4.8, 0.07,
and 0.03 kg for the NO3-N, TP, and OP removed at the Wapello site, respectively.

Table 6. Load reduction estimates for each study site, the study site HUC-12 watersheds, and the Old
Man’s Creek watershed.

NO3-N TP OP

Load Reduction Rates kg/ha 3.45 0.05 0.02
Total LR Keokuk ATI kg 2.2 0.03 0.01
Total LR Wapello ATI kg 4.8 0.07 0.03

Total LR Clear Creek, Keokuk kg 4548 64 31
Total LR Soap Creek, Wapello kg 2279 15 32

Total LR Old Man’s Creek kg 14,856 2027 -
Old Man’s Creek Reduction % 1.6 1.4 -

Watershed scale nutrient reductions were estimated by assuming that the mass re-
ductions measured within a single field are the same for all potential ATI locations in the
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watershed. Hence, if ATIs were to be implemented at all terrace locations within the Indian
Creek watershed in Keokuk County, approximately 4548, 64, and 31 kg of NO3-N, TP,
and OP would have been captured through this practice. In the Soap Creek watershed of
Wapello County, the same assumptions would equate to reductions of 279, 15, and 32 kg for
NO3-N, TP, and OP, respectively. Estimating a percent load reduction for this mass removal
in these two watersheds is not possible since stream discharge and nutrient data were not
available in these watersheds. If the load reduction from this ATI was applied to the nearby
63,847 ha watershed at Old Mans Creek, where loading data are available, we estimate that
approximately 14,856 kg (1.6%) of total stream NO3-N and 2027 kg (1.4%) of total stream
TP could be captured if ATIs were installed.

The estimated NO3-N reductions achieved through the ATI practice were lower than
for other tile drainage BMPs reported in the Iowa Nutrient Reduction Strategy (INRS), such
as in, e.g., [37]: bioreactors, 43 ± 21%; drainage water management, 33 ± 32%; wetlands,
52%; saturated buffers, 50 ± 13%; and multipurpose oxbows, 45%. The TP load reductions
were also much lower than those reported in the INRS, but it is important to note that these
TP practices were mainly associated with suspended sediment reductions. Specific OP
reductions have not been reported previously.

4. Discussion

ATIs were designed to increase the effective hydraulic retention time of sediment-
and-nutrient-laden runoff, thereby optimizing the potential for ponding, sedimentation,
filtration, and denitrification. The permeameter experiments conducted here allowed for
observing the flow through different ATI matrices to see which configuration produced the
greatest reductions.

Despite the different sizes and compositions, the two media had similar
hydraulic conductivities, at 5.34 cm/s ± 0.18 cm/s for the 100% gravel matrix and
4.76 cm/s ± 0.20 cm/s for the 100% woodchip matrix. However, for the runs using
the layered configuration with 0.90 m of pea gravel over 0.30 m of woodchips, the average
hydraulic conductivity (4.59 cm/s ± 0.36 cm/s) was less than both the 100% run aver-
ages because of the developed complex flow pathways, especially at different interfaces.
Hydraulic conductivity is not just a function of the media’s grain size distribution, but
also their average width, shape, and tortuosity [38]. The additional slowing of the runoff
flux achieved by adding different interfaces helped to increase the effective hydraulic
retention time.

The effect of the interfaces was also apparent in the sediment experiments with the
permeameter. When sediment was introduced to the permeameter, the largest accumula-
tions of sediment occurred at the transition between the head box and the gravel and the
transition between the gravel and the woodchips (Figure 7). Although, the characteristics
of the woodchips resulted in only a 10% decrease in the hydraulic conductivity, as more
sediment per unit length of the permeameter was trapped within the woodchip layer
due to more-complex flowpaths. The flow velocity is related to the square of the friction,
i.e., the Darcy–Weisbach equation.

As the permeameter pore spaces filled with sediment, the porosity in the gravel–
woodchip matrix further decreased the hydraulic conductivity [39]. This was seen with
the decreasing slopes of the lines A1–A4 and B1–B2 in Figure 8. Each successive run took
longer to reach its cutoff point than the preceding run. In addition, the maximum and
the range of hydraulic conductivity values decreased across consecutive runs. The lower
maximum values signified the gradual clogging of the permeameter. The smaller ranges
showed the movement towards a steady state as the sediment plug moved further through
the permeameter and dispersed more evenly.

The results from the field monitoring and long-term continuous modeling simu-
lations supported the permeameter experiments. Both approaches confirmed that the
drainage capacity of the ATIs exceeded 1 in/d, which is the NRCS recommended value.
The measured sediment trapping efficiency was at 90%, while the modeled average trap-
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ping efficiencies were between 73% and 98%. The high trapping efficiency corresponded
to measured deposition rates of 5.44 ± 3.77 cm/yr. The sampling at the Keokuk County
and Wapello County ATI sites also showed a reduction in nutrient concentrations in
the runoff moving through the ATIs. On average, N concentrations were reduced by
approximately 43%.

Research has shown that bioreactors with woodchip carbon sources provide sub-
stantial NO3-N removal from tile drainage water [40]. Nitrate removal rates can vary
considerably, as field-based studies indicate bioreactors can reduce annual NO3-N loads by
23–98% [41]. The Iowa Nutrient Reduction Strategy reported the average NO3-N reduction
from bioreactors to be 43%.

Longer retention times correlate with higher nitrate removal rates, with retention times
of 2–10 days resulting in removal efficiencies of up to 30–100% [40]. The retention times
associated with ATIs would be considerably shorter (minutes to hours, as seen through the
lab experiments and limited field studies), so less nitrate removal would be expected with
these systems. Testing a wider range of flow and sediment conditions, both in the lab and
the field, is needed to confirm these times. For example, [34] reported nitrate reductions of
10–40% with retention times less than five hours.

As the sediment slugs progress through the ATI with each successive event, the reten-
tion times of the flow and sediment increase. This delay allows for further denitrification.
If needed, flushing the gravel with clear water may decrease the retention time temporarily,
which would prolong the ATI’s lifetime.

The layered medium of pea gravel and woodchips in the permeameter was difficult
to completely clog with sediment. For just gravel inlets, the expected lifespans have been
determined to be at least 10 years [42]. The preliminary modeling efforts in this study
suggest that it would take 75 25-year events to clog the permeameter [14]. At our field
sites, the ATIs have continued to function from June 2011 to the present time without any
noticeable problems.

5. Conclusions

Through different approaches, i.e., computational, experimental, and field methods,
this study disclosed a potential benefit of replacing existing slotted-pipe inlets with an
ATI consisting of a layered gravel–woodchip filter. The ATI primarily traps sediment and
attached phosphorus through runoff ponding and enhanced sediment settling around the
intake. The gravel further filters the sediment and its contained nutrients as the runoff
passes through the ATI. The woodchips are an innovative addition that facilitates nitrate
breakdown, like a denitrifying wall or a bioreactor.

Herein, the ATIs were used as a support practice for terraces and WASCoBs.
This coupling increases their overall efficiency at retaining soil that would otherwise
pass freely through conventional open or slotted intakes. In addition, an ATI can be a
standalone practice in low-relief areas with poorly drained soils. Due to their low profile,
farmers can pass freely over ATIs, unlike with the slotted-pipe intakes.

Our constant-head permeameter experiments showed that the average hydraulic
conductivity of the layered gravel–woodchip was less than both of the 100% run aver-
ages because of the developed complex flow pathways, especially at different interfaces.
The additional slowing of the runoff flux helped to increase the effective hydraulic retention
time, thus optimizing the potential for denitrification.

The effect of the interfaces was also apparent in the sediment experiments with the
permeameter. Within the permeameter, an additional 2049 g (27%) of sediment was retained
in the gravel and 1130 g (15%) in the woodchips.

In addition, the maximum and the range of hydraulic conductivity values decreased
across consecutive runs. The decreasing maximum values signify the gradual clogging of
the permeameter, while the decreasing range suggests that less sediment is being flushed
and that the sediment is sitting in the permeameter longer.
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Our field monitoring also showed that the drainage capacity of the ATIs exceeded
1 in/d, the NRCS recommended value. The trapping efficiency of the WASCoB-ATI was at
90%, which is much greater than the efficiency for an orange slotted pipe of 66% [2]. This
high trapping efficiency corresponds to deposition rates of 5.44 ± 3.77 cm/yr.

At the Keokuk County and Wapello County ATI sites, more than 500 runoff samples
were collected over eight rain events, which were then analyzed for their nitrogen and
phosphorus content. On average, N concentrations were reduced from approximately 31 to
18 mg/L, or 43%. The OP concentrations were reduced by 9% on average, and the TP was
reduced by 14%. These concentration reductions were estimated to reduce loads of N, OP,
and TP by 3.4, 0.02, and 0.47 kg/ha, respectively.

Finally, our long-term continuous modeling simulations estimated that the amount
of time taken to drain even a 100-year design storm was less than 1.1 d with the ATIs.
The modeled average trapping efficiency was 98% at the Iowa County site. The structures
at the Keokuk and Wapello sites had lower efficiencies of 87% and 73%, respectively.

Coupling WASCOBs and terraces with ATIs will make them more efficient at pre-
venting soil from passing freely through conventional open or slotted-pipe intakes. ATIs
will also reduce the dissolved nutrient loading to local streams and improve downstream
water quality.
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Appendix A

To install an ATI, the following steps are suggested:
Step 1: Calculate the delivery of water to the ATI. Using the premise of improving the

filtration of runoff without increasing the surface storage time, the size of the ATI is based
on the delivery rate of runoff to it and/or the maximum flow rate of the drain tile outlet.
If the delivery rate of runoff is used, then the ATI should be sized to drain a 25-year 24 h
design storm in 1 day or less. If the flow rate of the drain tile outlet is used, then the ponded
water should not exceed the storage capacity of the terrace or WASCOB, which could lead
to overtopping. For both options, the thresholds should apply even as the ATI begins to fill
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with deposited sediment and is buried under deposited sediment, which would essentially
be a worst-case scenario.

To determine the volumetric flow rate (Q) through the ATI, Darcy’s law is used:

Q = K × A × I (A1)

where K is the hydraulic conductivity, A is the area, and I is the hydraulic gradient.
The hydraulic gradient is assumed to be 1. This would be determined as the depth

of the ATI plus the ponding depth, divided by the depth of the ATI. As a reminder, the
depth of the ATI is set at 122 cm. To determine the effective conductivity of a clogged ATI,
the different hydraulic conductivities used are listed in Table A1. It is assumed that the
pores are filled with silty clay soil that has a conductivity of ~9.95 × 10−5 cm/s. Silt clay
soil was chosen because it has the slowest conductivity of all soil textures. Using a porosity
of 0.43 and determining the effective conductivity as the weighted average of the pea
gravel–hardwood chip mixture with that of the silty clay soil, a clogged ATI would have a
conductivity of 2.62 cm/s. With 30 cm of deposited sediment sitting atop the clogged ATI,
the conductivity would drop to 2.1 cm/s. For sizing the ATI, the clogged ATI conditions
are used and doubled to provide a margin of safety.

Table A1. Hydraulic conductivities.

Media Hydraulic Conductivity
cm/s

Clean ATI 4.59
Silty Clay Soil 9.95 × 10−5

Clogged ATI 2.62
Clogged ATI, + 30 cm of Deposited Soil 2.1

Step 2: Calculate the size of the ATI. Darcy’s equation is solved for the area that would
be the area of the ATI. If you fix the width of the ATI (this is along the downslope) to match
that of the backhoe used to dig the trench (i.e., ~61 cm wide), then the remaining dimension
is the length of the ATI, which runs in a cross-slope direction.

The depth of the ATI has been set at 122 cm to match the depth of most drain tiles. The
layering of the pea gravel and the woodchips was determined through laboratory studies
using a physical model; it was determined that a layered 75% pea gravel–25% hardwood
chip composition was most efficient in terms of filtering and water retention for facilitating
denitrification. This translates to 91 cm of pea gravel sitting atop 30 cm of hardwood chips.

The median grain size of the pea gravel used in this study was 1.03 cm, and the median
diameter of the hardwood chips was 0.51 cm. The porosity of the system was 0.43.

Step 3: Identify the low point, either in the field or behind the terrace/WASCOB.
Measure out the dimensions of the ATI as determined in Step 2.

Step 4: Dig a trench with the backhoe to install the ATI. The trench should be deep
enough to reach the main slope drain tile below.

Step 5: Lay a lateral drain tile along the length of the trench and connect it to the main
slope drain tile with a T connection.

Step 6: Line the walls of the trench with geofabric. The geofabric should lay over the
tile line.

Step 7: Add the woodchips (Figure A1). Spread them evenly to an approximate
30 cm thickness.

Step 8: Add the washed pea gravel over the woodchips (Figure A1). Spread it evenly
to an approximate 91 cm thickness. At the soil surface, mound the gravel slightly.
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Figure A1. Installation of an ATI. (A) A layer of woodchips is placed in a trench over an existing
drain tile. (B) Pea gravel is placed over the woodchips. (C) The gravel is slightly mounded.

Step 9: An emergency inlet can be added to drain more water before it overtops the
terrace/WASCOB (optional).

Step 10: Regarding maintenance, it may be necessary to dredge out sediment deposited
over the ATI, if deposition rates are high. This would be primarily for maintaining the
storage capacity behind the terrace/WASCOB. As a qualitative anecdote, an ATI installed
in 2011 is still performing adequately even with deposition rates averaging greater than
3 cm/yr.

Appendix B

A cost–benefit analysis was conducted that compares the price of installing an ATI as
a support practice for a terrace or WASCOB against the monetary equivalent of the lost soil
if no such practice had been there. Details of this cost–benefit methodology are in [43].

The total cost for installing an ATI was estimated at USD 883. The price of installing
the ATI includes the rental of a backhoe and labor, as well as the material costs for the
gravel, woodchips, geotextile fabric, and drain tile. The total amount does not consider
installation costs of co-located practices like terraces or WASCOBs. Only one-third of the
total cost was attributed to the purchasing of the materials. The remaining two-thirds was
for the equipment rental and associated labor costs. The maintenance costs are minimal, as
the Iowa County ATI, which was installed in 2011, is still performing adequately and has
not yet required any maintenance.

To determine a monetary value for the associated benefits of an ATI, the “Cost of
Erosion” studies by Iowa State University [44] were used. The cost of soil lost resulting
from agricultural practices is calculated according to the cost of the equivalent amount
of lost fertilizer. For each ton of soil eroded, there is the equivalent of 2.32 pounds of
nitrogen and 1 pound of phosphorus lost. The estimated costs per pound for nitrogen and
phosphorus in 2012 were USD 0.63 and USD 0.64, respectively, which translates to USD
2.10 per ton of soil loss. Additionally, the loss of soil also translates to a drop in productivity
and, hence, less profit for the farmer. On average, erosion decreases land values by about
USD 340 per acre. The loss of a ton of soil would decrease land values by about USD 0.75.

To determine the benefit of the ATIs, the range of erosion rates determined at the
Iowa County demonstration site from the collected core, which were between 1.87 and 4.13
cm/yr, were used to identify how much soil could be lost if no practice was implemented.
The Iowa County site’s annual losses were between USD 171 and USD 473; the Keokuk
site’s annual losses were between USD 456 and USD 1260; and the Wapello site’s annual
losses were between USD 970 and USD 2678 per year. Thus, in less than 5 years, a farmer
would save enough money to recoup the costs of installing an ATI.
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