Trend Analysis of Hydro-Meteorological Variables in the Wadi Ouahrane Basin, Algeria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Trend Analysis
- -
- No trend: the data refer to the 45° line;
- -
- Increasing trend: the data are located on the upper triangular area of the 45° line;
- -
- Decreasing trend: the data are placed on the lower triangular area of the 45° line.
3. Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paliaga, G.; Parodi, A. Geo-Hydrological Events and Temporal Trends in CAPE and TCWV over the Main Cities Facing the Mediterranean Sea in the Period 1979–2018. Atmosphere 2022, 13, 89. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Caloiero, T.; Caloiero, P.; Frustaci, F. Long-term precipitation trend analysis in Europe and in the Mediterranean basin. Water Environ. J. 2018, 32, 433–445. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 3–32. [Google Scholar]
- Castellanos, M.; GarcíaIsidro, M.A.; Pérez, I.A.; Sánchez, M.L.; Pardo, N.; Fernández-Duque, B. Measuring temperature trends in the Mediterranean basin. J. Atmos. Sol. Terr. Phys. 2021, 222, 105713. [Google Scholar] [CrossRef]
- Luppichini, M.; Bini, M.; Barsanti, M.; Giannecchini, R.; Zanchetta, G. Seasonal rainfall trends of a key Mediterranean area in relation to large-scale atmospheric circulation: How does current global change affect the rainfall regime? J. Hydrol. 2022, 612, 128233. [Google Scholar] [CrossRef]
- Onyutha, C. Identification of sub-trends from hydro-meteorological series. Stoch. Environ. Res. Risk Assess 2015, 30, 189–205. [Google Scholar] [CrossRef]
- Longobardi, A.; Villani, P. Trend analysis of annual and seasonal rainfall time series in the Mediterranean area. Int. J. Climatol. 2010, 30, 1538–1546. [Google Scholar] [CrossRef]
- Maheras, P.; Tolika, K.; Anagnostopoulou, C.; Vafiadis, M.; Patrikas, I.; Flocas, H. On the relationships between circulation types and changes in rainfall variability in Greece. Int. J. Climatol. 2004, 24, 1695–1712. [Google Scholar] [CrossRef]
- Altin, T.B.; Barak, B. Changes and trends in total yearly precipitation of the Antalya District, Turkey. Procedia Soc. Behav. Sci. 2014, 120, 586–599. [Google Scholar] [CrossRef]
- Shohami, D.; Dayan, U.; Morin, E. Warming and drying of the eastern Mediterranean: Additional evidence from trend analysis. J. Geophys. Res. 2011, 116, D22101. [Google Scholar] [CrossRef]
- Ziv, B.; Saaroni, H.; Pargament, R.; Harpaz, T.; Alpert, P. Trends in rainfall regime over Israel, 1975–2010, and their relationship to large-scale variability. Reg. Environ. Chang. 2014, 14, 1751–1764. [Google Scholar] [CrossRef]
- Zittis, G. Observed rainfall trends and precipitation uncertainty in the vicinity of the Mediterranean, Middle East and North Africa. Theor. Appl. Climatol. 2018, 134, 1207–1230. [Google Scholar] [CrossRef]
- Donat, M.G.; Peterson, T.C.; Brunet, M.; King, A.D.; Almazroui, M.; Kolli, R.K.; Boucherf, D.; Al-Mulla, A.Y.; Nour, A.Y.; Aly, A.A.; et al. Changes in extreme temperature and precipitation in the Arab region: Long-term trends and variability related to ENSO and NAO. Int. J. Climatol. 2014, 34, 581–592. [Google Scholar] [CrossRef]
- Meddi, M.; Hubert, P. Impact de la modification du régime pluviométrique sur les ressources en eau du Nord–Ouest de l’Algérie. In Hydrology of the Mediterranean and Semiarid Regions; Servat Najem, E., Leduc, W., Shakeel, E.A., Eds.; IAHS Publishing: Wallingford, UK, 2003; pp. 229–235. [Google Scholar]
- Goubanova, K.; Li, L. Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Glob. Planet Chang. 2007, 57, 27–42. [Google Scholar] [CrossRef]
- Tramblay, Y.; El Adlouni, S.; Servat, E. Trends and variability in extreme precipitation indices over Maghreb countries. Nat. Hazards Earth Syst. Sci. 2013, 13, 3235–3248. [Google Scholar] [CrossRef]
- Elmeddahi, Y.; Issaadi, A.; Mahmoudi, H.; Tahar Abbes, M.; Goossen, M.F.A. Effect of climate change on water resources of the Algerian Middle Cheliff basin. Desalination Water Treat. 2014, 52, 2073–2081. [Google Scholar] [CrossRef]
- Ragab, R.; Prudhomme, C. Climate change and water resources management in arid and semi-arid regions: Prospective and challenges for the 21st century. Biosyst. Eng. 2002, 81, 3–34. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Achite, M.; Ceribasi, G.; Ceyhunlu, A.I.; Wałęga, A.; Caloiero, T. The Innovative Polygon Trend Analysis (IPTA) as a Simple Qualitative Method to Detect Changes in Environment—Example Detecting Trends of the Total Monthly Precipitation in Semiarid Area. Sustainability 2021, 13, 12674. [Google Scholar] [CrossRef]
- Achite, M.; Caloiero, T.; Wałęga, A.; Krakauer, N.; Hartani, T. Analysis of the Spatiotemporal Annual Rainfall Variability in the Wadi Cheliff Basin (Algeria) over the Period 1970 to 2018. Water 2021, 13, 1477. [Google Scholar] [CrossRef]
- Achite, M.; Bazrafshan, O.; Wałęga, A.; Azhdari, Z.; Krakauer, N.; Caloiero, T. Meteorological and Hydrological Drought Risk Assessment Using Multi-Dimensional Copulas in the Wadi Ouahrane Basin in Algeria. Water 2022, 14, 653. [Google Scholar] [CrossRef]
- Achite, M.; Caloiero, T.; Toubal, A.K. Rainfall and Runoff Trend Analysis in the Wadi Mina Basin (Northern Algeria) Using Non-Parametric Tests and the ITA Method. Sustainability 2022, 14, 9892. [Google Scholar] [CrossRef]
- Achite, M.; Ceribasi, G.; Wałęga, A.; Ceyhunlu, A.I.; Elshaboury, N.; Krakauer, N.; Hartani, T.; Caloiero, T.; Gul, S. Analysis of monthly average precipitation of Wadi Ouahrane basin in Algeria by using the ITRA, ITPAM, and TPS methods. Environ. Monit. Assess. 2023, 195, 606. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Hafner Publishing Company: New York, NY, USA, 1962. [Google Scholar]
- Şen, Z. Innovative Trend Analysis Methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Caloiero, T.; Coscarelli, R.; Ferrari, E. Assessment of seasonal and annual rainfall trend in Calabria (southern Italy) with the ITA method. J. Hydroinformatics 2019, 22, 738–748. [Google Scholar] [CrossRef]
- Kisi, O. An innovative method for trend analysis of monthly pan evaporations. J. Hydrol. 2015, 527, 1123–1129. [Google Scholar] [CrossRef]
- Wu, H.; Qian, H. Innovative trend analysis of annual and seasonal rainfall and extreme values in Shaanxi, China, since the 1950s. Int. J. Climatol. 2017, 37, 2582–2592. [Google Scholar] [CrossRef]
- Giunta, G.; Vernazza, R.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M. Hourly weather forecasts for gas turbine power generation. Meteorol. Z. 2017, 26, 307–317. [Google Scholar] [CrossRef]
- Prudhomme, C.; Giuntoli, I.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.; Gerten, D.; Gosling, S.N.; et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA 2014, 111, 3262–3267. [Google Scholar] [CrossRef] [PubMed]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Tramblay, Y.; Jarlan, L.; Hanich, L.; Somot, S. Future Scenarios of Surface Water Resources Availability in North African Dams. Water Resour. Manag. 2018, 32, 1291–1306. [Google Scholar] [CrossRef]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar] [CrossRef]
- Caloiero, T.; Guagliardi, I. Climate change assessment: Seasonal and annual temperature analysis trends in the Sardinia region (Italy). Arab. J. Geosci. 2021, 14, 2149. [Google Scholar] [CrossRef]
Period | Rainfall | Runoff | Minimum Temperature | Maximum Temperature | Average Temperature | Relative Humidity | Wind Speed | Insolation |
---|---|---|---|---|---|---|---|---|
September | −0.337 | −0.005 | 0.116 | 0.468 | 0.370 | −1.591 | 0.200 | −4.172 |
October | −1.490 | −0.011 | 0.600 | 1.357 | 0.772 | −2.885 | 0.095 | 4.167 |
November | 6.263 | 0.000 | 0.025 | 0.364 | 0.400 | −0.750 | 0.250 | −3.958 |
December | −2.061 | 0.017 | 0.126 | 0.368 | 0.238 | −0.338 | 0.194 | 4.737 |
January | 2.581 | 0.045 | 0.000 | 0.111 | 0.018 | −0.406 | 0.200 | 2.091 |
February | −1.995 | −0.012 | −0.611 | 0.533 | −0.088 | −0.073 | 0.282 | 7.375 |
March | −2.685 | −0.025 | 0.071 | 0.828 | 0.309 | 0.000 | 0.286 | 0.185 |
April | −1.242 | −0.011 | 0.041 | 0.941 | 0.422 | −0.326 | 0.133 | 7.375 |
May | −0.207 | −0.007 | −0.115 | 0.763 | 0.174 | −0.909 | 0.133 | 2.714 |
June | −0.175 | −0.001 | 0.048 | 1.111 | 0.289 | −1.786 | 0.091 | 4.583 |
July | 0.001 | −0.004 | 0.167 | 0.333 | 0.237 | −2.810 | 0.050 | −4.083 |
August | −0.153 | −0.004 | 0.531 | 0.550 | 0.510 | −2.639 | 0.143 | 0.476 |
Annual | −5.832 | −0.005 | 0.045 | 0.677 | 0.418 | −1.182 | 0.107 | 0.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Achite, M.; Caloiero, T.; Wałęga, A.; Ceppi, A.; Bouharira, A. Trend Analysis of Hydro-Meteorological Variables in the Wadi Ouahrane Basin, Algeria. Hydrology 2024, 11, 77. https://doi.org/10.3390/hydrology11060077
Achite M, Caloiero T, Wałęga A, Ceppi A, Bouharira A. Trend Analysis of Hydro-Meteorological Variables in the Wadi Ouahrane Basin, Algeria. Hydrology. 2024; 11(6):77. https://doi.org/10.3390/hydrology11060077
Chicago/Turabian StyleAchite, Mohammed, Tommaso Caloiero, Andrzej Wałęga, Alessandro Ceppi, and Abdelhak Bouharira. 2024. "Trend Analysis of Hydro-Meteorological Variables in the Wadi Ouahrane Basin, Algeria" Hydrology 11, no. 6: 77. https://doi.org/10.3390/hydrology11060077
APA StyleAchite, M., Caloiero, T., Wałęga, A., Ceppi, A., & Bouharira, A. (2024). Trend Analysis of Hydro-Meteorological Variables in the Wadi Ouahrane Basin, Algeria. Hydrology, 11(6), 77. https://doi.org/10.3390/hydrology11060077