Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,631)

Search Parameters:
Keywords = standards for cell therapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1852 KiB  
Article
Overall Survival Associated with Real-World Treatment Sequences in Patients with CLL/SLL in the United States
by Joanna M. Rhodes, Naleen Raj Bhandari, Manoj Khanal, Dan He, Sarang Abhyankar, John M. Pagel, Lisa M. Hess and Alan Z. Skarbnik
Cancers 2025, 17(15), 2592; https://doi.org/10.3390/cancers17152592 - 7 Aug 2025
Abstract
Background/Objectives: This study compared overall survival (OS) associated with common real-world treatment sequences in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in the United States. Methods: Utilizing the nationwide Flatiron Health electronic health record-derived de-identified database, adult CLL/SLL patients who initiated [...] Read more.
Background/Objectives: This study compared overall survival (OS) associated with common real-world treatment sequences in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) in the United States. Methods: Utilizing the nationwide Flatiron Health electronic health record-derived de-identified database, adult CLL/SLL patients who initiated systemic therapy (JAN2016-NOV2023) and received at least two lines of therapy (LoTs) were analyzed. Treatment regimens were categorized based on drug class, and most frequent (n ≥ 50) sequences (first LoT followed by [→] second LoT) were compared. OS from initiation of the first LoT was compared using multivariable Cox proportional hazard models, and adjusted hazard ratios with 95% CIs were reported. Results: Among 2354 eligible patients, n = 1711 (73%) received the 16 most frequent treatment sequences. Sequencing chemoimmunotherapy (CIT) → CIT (HR: 2.29 [1.23–4.28]), anti-CD20 monoclonal antibody (anti-CD20mab) monotherapy → CIT (1.95 [1.03–3.69]), and covalent Bruton tyrosine kinase inhibitor (cBTKi) monotherapy → anti-CD20mab monotherapy (2.00 [1.07–3.74]) were associated with worse OS compared to patients treated with cBTKi monotherapy → B-cell lymphoma 2 inhibitors (BCL2i) + anti-CD20mab (reference). Conclusions: OS associated with other sequences were not significantly different from the reference sequence in adjusted analyses, suggesting a lack of evidence for the optimal standard of care for sequencing the first two LoTs in real-world settings. Future research should reassess sequencing outcomes as novel treatments become adopted into clinical practice. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

20 pages, 704 KiB  
Review
Clinical Applications of Corneal Cells Derived from Induced Pluripotent Stem Cells
by Yixin Luan, Aytan Musayeva, Jina Kim, Debbie Le Blon, Bert van den Bogerd, Mor M. Dickman, Vanessa L. S. LaPointe, Sorcha Ni Dhubhghaill and Silke Oellerich
Biomolecules 2025, 15(8), 1139; https://doi.org/10.3390/biom15081139 - 7 Aug 2025
Abstract
Corneal diseases are among the leading causes of blindness worldwide and the standard treatment is the transplantation of corneal donor tissue. Treatment for cornea-related visual impairment and blindness is, however, often constrained by the global shortage of suitable donor grafts. To alleviate the [...] Read more.
Corneal diseases are among the leading causes of blindness worldwide and the standard treatment is the transplantation of corneal donor tissue. Treatment for cornea-related visual impairment and blindness is, however, often constrained by the global shortage of suitable donor grafts. To alleviate the shortage of corneal donor tissue, new treatment options have been explored in the last decade. The discovery of induced pluripotent stem cells (iPSCs), which has revolutionized regenerative medicine, offers immense potential for corneal repair and regeneration. Using iPSCs can provide a renewable source for generating various corneal cell types, including corneal epithelial cells, stromal keratocytes, and corneal endothelial cells. To document the recent progress towards the clinical application of iPSC-derived corneal cells, this review summarizes the latest advancements in iPSC-derived corneal cell therapies, ranging from differentiation protocols and preclinical studies to the first clinical trials, and discusses the challenges for successful translation to the clinic. Full article
Show Figures

Figure 1

26 pages, 6895 KiB  
Article
Generation of Individualized, Standardized, and Electrically Synchronized Human Midbrain Organoids
by Sanae El Harane, Bahareh Nazari, Nadia El Harane, Manon Locatelli, Bochra Zidi, Stéphane Durual, Abderrahim Karmime, Florence Ravier, Adrien Roux, Luc Stoppini, Olivier Preynat-Seauve and Karl-Heinz Krause
Cells 2025, 14(15), 1211; https://doi.org/10.3390/cells14151211 - 6 Aug 2025
Abstract
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address [...] Read more.
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address these issues, we developed an air–liquid interface (ALi) technology for culturing organoids, termed AirLiwell. It uses non-adhesive microwells for generating and maintaining individualized organoids on an air–liquid interface. This method ensures high standardization, prevents organoid fusion, eliminates the need for agitation, simplifies media changes, reduces media volume, and is compatible with Good Manufacturing Practices. We compared the ALi method to standard immersion culture for midbrain organoids, detailing the process from human pluripotent stem cell (hPSC) culture to organoid maturation and analysis. Air–liquid interface organoids (3D-ALi) showed optimized size and shape standardization. RNA sequencing and immunostaining confirmed neural/dopaminergic specification. Single-cell RNA sequencing revealed that immersion organoids (3D-i) contained 16% fibroblast-like, 23% myeloid-like, and 61% neural cells (49% neurons), whereas 3D-ALi organoids comprised 99% neural cells (86% neurons). Functionally, 3D-ALi organoids showed a striking electrophysiological synchronization, unlike the heterogeneous activity of 3D-i organoids. This standardized organoid platform improves reproducibility and scalability, demonstrated here with midbrain organoids. The use of midbrain organoids is particularly relevant for neuroscience and neurodegenerative diseases, such as Parkinson’s disease, due to their high incidence, opening new perspectives in disease modeling and cell therapy. In addition to hPSC-derived organoids, the method’s versatility extends to cancer organoids and 3D cultures from primary human cells. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

42 pages, 7526 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

27 pages, 1013 KiB  
Review
Efficacy of Radiotherapy for Oligometastatic Lung Cancer and Irradiation Methods Based on Metastatic Site
by Katsuyuki Shirai, Masashi Endo, Shuri Aoki, Noriko Kishi, Yukiko Fukuda, Tetsuo Nonaka and Hitoshi Ishikawa
Cancers 2025, 17(15), 2569; https://doi.org/10.3390/cancers17152569 - 4 Aug 2025
Viewed by 249
Abstract
Systemic chemotherapy is a standard treatment for patients with stage IV cancer with distant metastases, and there is little evidence of the effectiveness of local treatments for distant metastatic lesions. However, in recent years, randomized phase II trials targeting oligometastases in lung cancer [...] Read more.
Systemic chemotherapy is a standard treatment for patients with stage IV cancer with distant metastases, and there is little evidence of the effectiveness of local treatments for distant metastatic lesions. However, in recent years, randomized phase II trials targeting oligometastases in lung cancer and solid tumors have reported that local therapy combined with systemic chemotherapy improves clinical outcomes. We reviewed previous clinical trials and demonstrated the efficacy of radiotherapy for oligometastatic disease. Stereotactic body radiotherapy (SBRT) is a promising treatment that achieves high local control rates for oligometastatic disease. Although SBRT generally does not cause severe adverse events, the safety of SBRT combined with systemic chemotherapy needs to be carefully considered. We discussed the efficacy and safety of SBRT and summarized the details of SBRT methods and techniques for each metastatic site. Further research and clinical trials are warranted to improve the efficacy of SBRT combined with systemic chemotherapy for oligometastatic non-small cell lung cancer (NSCLC). Full article
(This article belongs to the Special Issue The Current Status of Treatment for Oligometastatic Lung Cancer)
Show Figures

Figure 1

19 pages, 4313 KiB  
Article
Integrating Clinical and Imaging Markers for Survival Prediction in Advanced NSCLC Treated with EGFR-TKIs
by Thanika Ketpueak, Phumiphat Losuriya, Thanat Kanthawang, Pakorn Prakaikietikul, Lalita Lumkul, Phichayut Phinyo and Pattraporn Tajarernmuang
Cancers 2025, 17(15), 2565; https://doi.org/10.3390/cancers17152565 - 3 Aug 2025
Viewed by 279
Abstract
Background: Epidermal growth factor receptor (EGFR) mutations are presented in approximately 50% of East Asian populations with advanced non-small cell lung cancer (NSCLC). While EGFR-tyrosine kinase inhibitors (TKIs) are the standard treatment, patient outcomes are also influenced by host-related factors. This study aimed [...] Read more.
Background: Epidermal growth factor receptor (EGFR) mutations are presented in approximately 50% of East Asian populations with advanced non-small cell lung cancer (NSCLC). While EGFR-tyrosine kinase inhibitors (TKIs) are the standard treatment, patient outcomes are also influenced by host-related factors. This study aimed to investigate clinical and radiological factors associated with early mortality and develop a prognostic prediction model in advanced EGFR-mutated NSCLC. Methods: A retrospective cohort was conducted in patients with EGFR-mutated NSCLC treated with first line EGFR-TKIs from January 2012 to October 2022 at Chiang Mai University Hospital. Clinical data and radiologic findings at the initiation of treatment were analyzed. A multivariable flexible parametric survival model was used to determine the predictors of death at 18 months. The predicted survival probabilities at 6, 12, and 18 months were estimated, and the model performance was evaluated. Results: Among 189 patients, 84 (44.4%) died within 18 months. Significant predictors of mortality included body mass index <18.5 or ≥23, bone metastasis, neutrophil-to-lymphocyte ratio ≥ 5, albumin-to-globulin ratio < 1, and mean pulmonary artery diameter ≥ 29 mm. The model demonstrated good performance (Harrell’s C-statistic = 0.72; 95% CI: 0.66–0.78). Based on bootstrap internal validation, the optimism-corrected Harrell’s C-statistic was 0.71 (95% CI: 0.71–0.71), derived from an apparent C-statistic of 0.75 (95% CI: 0.74–0.75) and an estimated optimism of 0.04 (95% CI: 0.03–0.04). Estimated 18-month survival ranged from 87.1% in those without risk factors to 2.1% in those with all predictors. A web-based tool was developed for clinical use. Conclusions: The prognostic model developed from fundamental clinical and radiologic parameters demonstrated promising utility in predicting 18-month mortality in patients with advanced EGFR-mutated NSCLC receiving first-line EGFR-TKI therapy. Full article
Show Figures

Figure 1

18 pages, 2044 KiB  
Review
Histopathological and Molecular Insights into Chronic Nasopharyngeal and Otic Disorders in Children: Structural and Immune Mechanisms Underlying Disease Chronicity
by Diana Szekely, Flavia Zara, Raul Patrascu, Cristina Stefania Dumitru, Dorin Novacescu, Alexia Manole, Carmen Aurelia Mogoanta, Dan Iovanescu and Gheorghe Iovanescu
Life 2025, 15(8), 1228; https://doi.org/10.3390/life15081228 - 3 Aug 2025
Viewed by 333
Abstract
Chronic nasopharyngeal and otic disorders in children represent a significant clinical challenge due to their multifactorial etiology, variable presentation, and frequent resistance to standard therapies. Although often approached from a symptomatic or anatomical perspective, these conditions are deeply rooted in histological and molecular [...] Read more.
Chronic nasopharyngeal and otic disorders in children represent a significant clinical challenge due to their multifactorial etiology, variable presentation, and frequent resistance to standard therapies. Although often approached from a symptomatic or anatomical perspective, these conditions are deeply rooted in histological and molecular alterations that sustain inflammation, impair mucosal function, and promote recurrence. This narrative review synthesizes the current knowledge on the normal histology of the nasopharynx, Eustachian tube, and middle ear, and explores key pathophysiological mechanisms, including epithelial remodeling, immune cell infiltration, cytokine imbalance, and tissue fibrosis. Special emphasis is placed on the role of immunohistochemistry in defining inflammatory phenotypes, barrier dysfunction, and remodeling pathways. The presence of biofilm, epithelial plasticity, and dysregulated cytokine signaling are also discussed as contributors to disease chronicity. These findings have direct implications for diagnosis, therapeutic stratification, and postoperative monitoring. By integrating histological, immunological, and molecular data, clinicians can better characterize disease subtypes, anticipate treatment outcomes, and move toward a more personalized and biologically informed model of pediatric ENT care. Full article
(This article belongs to the Special Issue New Trends in Otorhinolaryngology)
Show Figures

Figure 1

21 pages, 1677 KiB  
Systematic Review
Pharmacoeconomic Profiles of Advanced Therapy Medicinal Products in Rare Diseases: A Systematic Review
by Marianna Serino, Milana Krstin, Sara Mucherino, Enrica Menditto and Valentina Orlando
Healthcare 2025, 13(15), 1894; https://doi.org/10.3390/healthcare13151894 - 2 Aug 2025
Viewed by 294
Abstract
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic [...] Read more.
Background and aim: Advanced Therapy Medicinal Products (ATMPs) are innovative drugs based on genes, tissues, or cells that target rare and severe diseases. ATMPs have shown promising clinical outcomes but are associated with high costs, raising questions about cost-effectiveness. Hence, this systematic review aims to analyze the cost-effectiveness and cost-utility profiles of the European Medicines Agency-authorized ATMPs for treating rare diseases. Methods: A systematic review was conducted following PRISMA guidelines. Studies were identified by searching PubMed, Embase, Web of Science, and ProQuest scientific databases. Economic evaluations reporting incremental cost-effectiveness/utility ratios (ICERs/ICURs) for ATMPs were included. Costs were standardized to 2023 Euros, and a cost-effectiveness plane was constructed to evaluate the results against willingness-to-pay (WTP) thresholds of EUR 50,000, EUR 100,000, and EUR 150,000 per QALY, as part of a sensitivity analysis. Results: A total of 61 studies met the inclusion criteria. ATMPs for rare blood diseases, such as tisagenlecleucel and axicabtagene ciloleucel, were found to be cost-effective in a majority of studies, with incremental QALYs ranging from 1.5 to 10 per patient over lifetime horizon. Tisagenlecleucel demonstrated a positive cost-effectiveness profile in the treatment of acute lymphoblastic leukemia (58%), while axicabtagene ciloleucel showed a positive profile in the treatment of diffuse large B-cell lymphoma (85%). Onasemnogene abeparvovec for spinal muscular atrophy (SMA) showed uncertain cost-effectiveness results, and voretigene neparvovec for retinal diseases was not cost-effective in 40% of studies, with incremental QALYs around 1.3 and high costs exceeding the WTP threshold set. Conclusions: ATMPs in treating rare diseases show promising economic potential, but cost-effectiveness varies across indications. Policymakers must balance innovation with system sustainability, using refined models and the long-term impact on patient outcomes. Full article
(This article belongs to the Special Issue Healthcare Economics, Management, and Innovation for Health Systems)
Show Figures

Figure 1

26 pages, 3179 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 - 2 Aug 2025
Viewed by 255
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
Show Figures

Figure 1

29 pages, 1351 KiB  
Review
Molecular Targets for Pharmacotherapy of Head and Neck Squamous Cell Carcinomas
by Robert Sarna, Robert Kubina, Marlena Paździor-Heiske, Adrianna Halama, Patryk Chudy, Paulina Wala, Kamil Krzykawski and Ilona Nowak
Curr. Issues Mol. Biol. 2025, 47(8), 609; https://doi.org/10.3390/cimb47080609 - 1 Aug 2025
Viewed by 145
Abstract
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of tumors with a complex molecular profile. Despite therapeutic advances, patient prognosis remains poor, emphasizing the need for more effective treatment strategies. Traditional chemotherapy, with cisplatin and 5-fluorouracil (5-FU), remains the gold [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) represent a heterogeneous group of tumors with a complex molecular profile. Despite therapeutic advances, patient prognosis remains poor, emphasizing the need for more effective treatment strategies. Traditional chemotherapy, with cisplatin and 5-fluorouracil (5-FU), remains the gold standard but is limited by toxicity and tumor resistance. Immunotherapy, particularly immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and its ligand (PD-L1), has improved overall survival, especially in patients with high PD-L1 expression. In parallel, targeted therapies such as poly (ADP-ribose) polymerase 1 (PARP1) inhibitors—which impair DNA repair and increase replication stress—have shown promising activity in HNSCC. Cyclin-dependent kinase (CDK) inhibitors are also under investigation due to their potential to correct dysregulated cell cycle control, a hallmark of HNSCC. This review aims to summarize current and emerging pharmacotherapies for HNSCC, focusing on chemotherapy, immunotherapy, and PARP and CDK inhibitors. It also discusses the evolving role of targeted therapies in improving clinical outcomes. Future research directions include combination therapies, nanotechnology-based delivery systems to enhance treatment specificity, and the development of diagnostic tools such as PARP1-targeted imaging to better guide personalized treatment approaches. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

19 pages, 1025 KiB  
Review
A Genetically-Informed Network Model of Myelodysplastic Syndrome: From Splicing Aberrations to Therapeutic Vulnerabilities
by Sanghyeon Yu, Junghyun Kim and Man S. Kim
Genes 2025, 16(8), 928; https://doi.org/10.3390/genes16080928 (registering DOI) - 1 Aug 2025
Viewed by 177
Abstract
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model [...] Read more.
Background/Objectives: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model and examine translation into precision therapeutic approaches. Methods: We reviewed breakthrough discoveries from the past three years, analyzing single-cell multi-omics technologies, epitranscriptomics, stem cell architecture analysis, and precision medicine approaches. We examined cell-type-specific splicing aberrations, distinct stem cell architectures, epitranscriptomic modifications, and microenvironmental alterations in MDS pathogenesis. Results: Four interconnected mechanisms drive MDS: genetic alterations (splicing factor mutations), aberrant stem cell architecture (CMP-pattern vs. GMP-pattern), epitranscriptomic dysregulation involving pseudouridine-modified tRNA-derived fragments, and microenvironmental changes. Splicing aberrations show cell-type specificity, with SF3B1 mutations preferentially affecting erythroid lineages. Stem cell architectures predict therapeutic responses, with CMP-pattern MDS achieving superior venetoclax response rates (>70%) versus GMP-pattern MDS (<30%). Epitranscriptomic alterations provide independent prognostic information, while microenvironmental changes mediate treatment resistance. Conclusions: These advances represent a paradigm shift toward personalized MDS medicine, moving from single-biomarker to comprehensive molecular profiling guiding multi-target strategies. While challenges remain in standardizing molecular profiling and developing clinical decision algorithms, this systems-level understanding provides a foundation for precision oncology implementation and overcoming current therapeutic limitations. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 3527 KiB  
Review
Applications of Organoids and Spheroids in Anaplastic and Papillary Thyroid Cancer Research: A Comprehensive Review
by Deepak Gulwani, Neha Singh, Manisha Gupta, Ridhima Goel and Thoudam Debraj Singh
Organoids 2025, 4(3), 18; https://doi.org/10.3390/organoids4030018 - 1 Aug 2025
Viewed by 129
Abstract
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models [...] Read more.
Organoid and spheroid technologies have rapidly become pivotal in thyroid cancer research, offering models that are more physiologically relevant than traditional two-dimensional culture. In the study of papillary and anaplastic thyroid carcinomas, two subtypes that differ both histologically and clinically, three-dimensional (3D) models offer unparalleled insights into tumor biology, therapeutic vulnerabilities, and resistance mechanisms. These models maintain essential tumor characteristics such as cellular diversity, spatial structure, and interactions with the microenvironment, making them extremely valuable for disease modeling and drug testing. This review emphasizes recent progress in the development and use of thyroid cancer organoids and spheroids, focusing on their role in replicating disease features, evaluating targeted therapies, and investigating epithelial–mesenchymal transition (EMT), cancer stem cell behavior, and treatment resistance. Patient-derived organoids have shown potential in capturing individualized drug responses, supporting precision oncology strategies for both differentiated and aggressive subtypes. Additionally, new platforms, such as thyroid organoid-on-a-chip systems, provide dynamic, high-fidelity models for functional studies and assessments of endocrine disruption. Despite ongoing challenges, such as standardization, limited inclusion of immune and stromal components, and culture reproducibility, advancements in microfluidics, biomaterials, and machine learning have enhanced the clinical and translational potential of these systems. Organoids and spheroids are expected to become essential in the future of thyroid cancer research, particularly in bridging the gap between laboratory discoveries and patient-focused therapies. Full article
Show Figures

Figure 1

13 pages, 1321 KiB  
Article
Intravitreal Povidone-Iodine Injection and Low-Dose Antibiotic Irrigation for Infectious Endophthalmitis: A Retrospective Case Series
by Yumiko Machida, Hiroyuki Nakashizuka, Hajime Onoe, Yorihisa Kitagawa, Naoya Nakagawa, Keisuke Miyata, Misato Yamakawa, Yu Wakatsuki, Koji Tanaka, Ryusaburo Mori and Hiroyuki Shimada
Pharmaceutics 2025, 17(8), 995; https://doi.org/10.3390/pharmaceutics17080995 (registering DOI) - 31 Jul 2025
Viewed by 249
Abstract
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the [...] Read more.
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the clinical efficacy and safety of a protocol combining intravitreal injection of 1.25% povidone-iodine (PI) with intraoperative irrigation using low concentrations of vancomycin and ceftazidime. Methods: We retrospectively analyzed 11 eyes from patients diagnosed with postoperative or injection-related endophthalmitis. Six of the eleven cases received an initial intravitreal injection of 1.25% PI, followed by pars plana vitrectomy with irrigation using balanced salt solution PLUS containing vancomycin (20 μg/mL) and ceftazidime (40 μg/mL). A second intravitreal PI injection was administered at the end of surgery in all cases. Additional PI injections were administered postoperatively based on clinical response. Clinical outcomes included best-corrected visual acuity (BCVA), microbial culture results, corneal endothelial cell density, and visual field testing. Results: All eyes achieved complete infection resolution without recurrence. The mean BCVA improved significantly from 2.18 logMAR at baseline to 0.296 logMAR at final follow-up (p < 0.001). No adverse events were observed on specular microscopy or visual field assessment. The protocol was well tolerated, and repeated PI injections showed no signs of ocular toxicity. Conclusions: This combination protocol provides a safe and effective treatment strategy for infectious endophthalmitis. It enables rapid and complete infection resolution while minimizing the risks associated with intravitreal antibiotics. These findings support further investigation of this protocol as a practical and globally accessible alternative to standard intravitreal antimicrobial therapy. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Ocular Diseases)
Show Figures

Graphical abstract

20 pages, 1220 KiB  
Systematic Review
The Evolving Role of Stem Cells in Oral Health and Regeneration: A Systematic Review
by Gianna Dipalma, Grazia Marinelli, Arianna Fiore, Liviana Balestriere, Claudio Carone, Silvio Buongiorno, Francesco Inchingolo, Giuseppe Minervini, Andrea Palermo, Angelo Michele Inchingolo and Alessio Danilo Inchingolo
Surgeries 2025, 6(3), 65; https://doi.org/10.3390/surgeries6030065 - 30 Jul 2025
Viewed by 337
Abstract
Background: Mesenchymal stem cells (MSCs), multipotent and immune-regulatory cells derived from tissues such as bone marrow, dental pulp, and periodontal ligament, emerged as promising agents in regenerative dentistry. Their clinical applications include endodontic tissue regeneration, periodontal healing, and alveolar bone repair, addressing [...] Read more.
Background: Mesenchymal stem cells (MSCs), multipotent and immune-regulatory cells derived from tissues such as bone marrow, dental pulp, and periodontal ligament, emerged as promising agents in regenerative dentistry. Their clinical applications include endodontic tissue regeneration, periodontal healing, and alveolar bone repair, addressing critical challenges in dental tissue restoration. Methods: A systematic review was conducted following PRISMA guidelines and registered in PROSPERO. We searched PubMed, Scopus, and Web of Science databases for open-access, English-language clinical trials and observational studies published from 2015 to 2025. Studies focusing on the application of MSCs in dental tissue regeneration were included based on predefined eligibility criteria. Results: Out of 2400 initial records, 13 studies met the inclusion criteria after screening and eligibility assessment. Most studies investigated MSCs derived from dental pulp and periodontal ligament for regenerating periodontal tissues and alveolar bone defects. The majority reported improved clinical outcomes; however, variations in MSC sources, delivery methods, sample sizes, and follow-up periods introduced methodological heterogeneity. Conclusions: MSCs show significant potential in enhancing bone and periodontal regeneration in dental practice. Nonetheless, the current evidence is limited by small sample sizes, short follow-up, and inconsistent methodologies. Future large-scale, standardized clinical trials are required to validate MSC-based regenerative therapies and optimize treatment protocols. Full article
Show Figures

Figure 1

15 pages, 1343 KiB  
Article
Prognostic Value of Metabolic Tumor Volume and Heterogeneity Index in Diffuse Large B-Cell Lymphoma
by Ali Alper Solmaz, Ilhan Birsenogul, Aygul Polat Kelle, Pinar Peker, Burcu Arslan Benli, Serdar Ata, Mahmut Bakir Koyuncu, Mustafa Gurbuz, Ali Ogul, Berna Bozkurt Duman and Timucin Cil
Medicina 2025, 61(8), 1370; https://doi.org/10.3390/medicina61081370 - 29 Jul 2025
Viewed by 527
Abstract
Background and Objectives: Metabolic tumor volume (MTV) and inflammation-based indices have recently gained attention as potential prognostic markers of diffuse large B-cell lymphoma (DLBCL). We aimed to evaluate the prognostic significance of metabolic and systemic inflammatory parameters in predicting treatment response, relapse, [...] Read more.
Background and Objectives: Metabolic tumor volume (MTV) and inflammation-based indices have recently gained attention as potential prognostic markers of diffuse large B-cell lymphoma (DLBCL). We aimed to evaluate the prognostic significance of metabolic and systemic inflammatory parameters in predicting treatment response, relapse, and overall survival (OS) in patients with DLBCL. Materials and Methods: This retrospective cohort study included 70 patients with DLBCL. Clinical characteristics, laboratory values, and metabolic parameters, including maximum standardized uptake value (SUVmaxliver and SUVmax), heterogeneity indices HI1 and HI2, and MTV were analyzed. Survival outcomes were assessed using Kaplan–Meier and log-rank tests. Receiver operating characteristic analyses helped evaluate the diagnostic performance of the selected biomarkers in predicting relapse and mortality. Univariate and multivariate logistic regression analyses were conducted to identify the independent predictors. Results: The mean OS and mean relapse-free survival (RFS) were 71.6 ± 7.4 and 38.7 ± 2.9 months, respectively. SUVmaxliver ≤ 22 and HI2 > 62.3 were associated with a significantly shorter OS. High lactate dehydrogenase (LDH) levels and HI2 > 87.9 were significantly associated with a reduced RFS. LDH, SUVmaxliver, and HI2 had a significant predictive value for relapse. SUVmaxliver and HI2 levels were also predictive of mortality; SUVmaxliver ≤ 22 and HI2 > 62.3 independently predicted mortality, while HI2 > 87.9 independently predicted relapse. MTV was not significantly associated with survival. Conclusions: Metabolic tumor burden and inflammation-based markers, particularly SUVmaxliver and HI2, are significant prognostic indicators of DLBCL and may enhance risk stratification and aid in identifying patients with an increased risk of relapse or mortality, potentially guiding personalized therapy. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

Back to TopTop