The Evolving Role of Stem Cells in Oral Health and Regeneration: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. PICO Question
2.2. Protocol and Registration
2.3. Search Processing
2.4. Inclusion and Exclusion Criteria
2.5. Data Processing
3. Results
3.1. Study Selection and Characteristics
3.2. Quality Assessment and Risk of Bias of Included Articles
4. Discussion
4.1. Clinical Applications of MSCs in Regenerative Dentistry
4.2. Periodontal Regeneration: From Proof of Concept to Clinical Translation
4.3. Endodontic and Post-Extraction Applications: Exploring New Frontiers
4.4. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ADPMSCs | Autologous Dental Pulp Mesenchymal Stem Cells |
AMSCs | Adipose-derived Mesenchymal Stem Cells |
BCP | Biphasic Calcium Phosphate |
BMD | Bone Mineral Density |
CAL | Clinical Attachment Level |
CBCT | Cone Beam Computed Tomography |
DAP | Double Antibiotic Paste |
DPSCs | Dental Pulp Stem Cells |
EPT | Electric Pulp Testing |
GBR | Guided Bone Regeneration |
GTR | Guided Tissue Regeneration |
hUCMSCs | Human Umbilical Cord Mesenchymal Stromal Cells |
HU | Hounsfield Units |
IODs | Intraosseous Defects |
MSCs | Mesenchymal Stromal Cells |
MSFE | Maxillary Sinus Floor Elevation |
ORIF | Open Reduction/Internal Fixation |
PD | Probing Depth |
PBMSCs | Peripheral Blood-derived Mesenchymal Stem Cells |
PDL-MSCs | Periodontal Ligament Mesenchymal Stem Cells |
PRFM | Platelet-Rich Fibrin Matrix |
SB cells | Small Blood Stem Cells |
SVF | Stromal Vascular Fraction |
References
- Qin, W.; Chen, J.-Y.; Guo, J.; Ma, T.; Weir, M.D.; Guo, D.; Shu, Y.; Lin, Z.-M.; Schneider, A.; Xu, H.H.K. Novel Calcium Phosphate Cement with Metformin-Loaded Chitosan for Odontogenic Differentiation of Human Dental Pulp Cells. Stem Cells Int. 2018, 2018, 7173481. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xia, Y.; Ma, T.; Weir, M.D.; Ren, K.; Reynolds, M.A.; Shu, Y.; Cheng, L.; Schneider, A.; Xu, H.H.K. Novel Metformin-Containing Resin Promotes Odontogenic Differentiation and Mineral Synthesis of Dental Pulp Stem Cells. Drug Deliv. Transl. Res. 2019, 9, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Rajan, A.; Eubanks, E.; Edwards, S.; Aronovich, S.; Travan, S.; Rudek, I.; Wang, F.; Lanis, A.; Kaigler, D. Optimized Cell Survival and Seeding Efficiency for Craniofacial Tissue Engineering Using Clinical Stem Cell Therapy. Stem Cells Transl. Med. 2014, 3, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Scarano, A.; Mortellaro, C.; Alla, I.; Lorusso, F.; Gehrke, S.A.; Inchingolo, F.; Lucchina, A.G.; Tari, S.R. Oral Surgery and Dental Implants in Patients with Chronic Kidney Disease: Scoping Review for Oral Health Status. Discov. Med. 2024, 36, 874–881. [Google Scholar] [CrossRef]
- Wu, G.; Pan, M.; Wang, X.; Wen, J.; Cao, S.; Li, Z.; Li, Y.; Qian, C.; Liu, Z.; Wu, W.; et al. Osteogenesis of Peripheral Blood Mesenchymal Stem Cells in Self Assembling Peptide Nanofiber for Healing Critical Size Calvarial Bony Defect. Sci. Rep. 2015, 5, 16681. [Google Scholar] [CrossRef]
- Cortizo, A.M.; Sedlinsky, C.; McCarthy, A.D.; Blanco, A.; Schurman, L. Osteogenic Actions of the Anti-Diabetic Drug Metformin on Osteoblasts in Culture. Eur. J. Pharmacol. 2006, 536, 38–46. [Google Scholar] [CrossRef]
- Mancini, A.; Chirico, F.; Inchingolo, A.M.; Piras, F.; Colonna, V.; Marotti, P.; Carone, C.; Inchingolo, A.D.; Inchingolo, F.; Dipalma, G. Osteonecrosis of the Jaws Associated with Herpes Zoster Infection: A Systematic Review and a Rare Case Report. Microorganisms 2024, 12, 1506. [Google Scholar] [CrossRef]
- Keerl, S.; Gehmert, S.; Gehmert, S.; Song, Y.-H.; Alt, E. PDGF and bFGF Modulate Tube Formation in Adipose Tissue-Derived Stem Cells. Ann. Plast. Surg. 2010, 64, 487–490. [Google Scholar] [CrossRef]
- Hernigou, P.; Poignard, A.; Beaujean, F.; Rouard, H. Percutaneous Autologous Bone-Marrow Grafting for Nonunions. Influence of the Number and Concentration of Progenitor Cells. J. Bone Jt. Surg. 2005, 87, 1430–1437. [Google Scholar] [CrossRef]
- Sumita, Y.; Honda, M.J.; Ohara, T.; Tsuchiya, S.; Sagara, H.; Kagami, H.; Ueda, M. Performance of Collagen Sponge as a 3-D Scaffold for Tooth-Tissue Engineering. Biomaterials 2006, 27, 3238–3248. [Google Scholar] [CrossRef]
- Wong, S.-P.; Rowley, J.E.; Redpath, A.N.; Tilman, J.D.; Fellous, T.G.; Johnson, J.R. Pericytes, Mesenchymal Stem Cells and Their Contributions to Tissue Repair. Pharmacol. Ther. 2015, 151, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Armulik, A.; Genové, G.; Betsholtz, C. Pericytes: Developmental, Physiological, and Pathological Perspectives, Problems, and Promises. Dev. Cell 2011, 21, 193–215. [Google Scholar] [CrossRef] [PubMed]
- Cortellini, P.; Pini Prato, G.; Tonetti, M.S. Periodontal Regeneration of Human Infrabony Defects. II. Re-Entry Procedures and Bone Measures. J. Periodontol. 1993, 64, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Wikesjö, U.M.; Nilvéus, R. Periodontal Repair in Dogs: Effect of Wound Stabilization on Healing. J. Periodontol. 1990, 61, 719–724. [Google Scholar] [CrossRef]
- Wikesjö, U.M.E.; Xiropaidis, A.V.; Thomson, R.C.; Cook, A.D.; Selvig, K.A.; Hardwick, W.R. Periodontal Repair in Dogs: rhBMP-2 Significantly Enhances Bone Formation under Provisions for Guided Tissue Regeneration. J. Clin. Periodontol. 2003, 30, 705–714. [Google Scholar] [CrossRef]
- Tu, Y.-K.; Needleman, I.; Chambrone, L.; Lu, H.-K.; Faggion, C.M. A Bayesian Network Meta-Analysis on Comparisons of Enamel Matrix Derivatives, Guided Tissue Regeneration and Their Combination Therapies. J. Clin. Periodontol. 2012, 39, 303–314. [Google Scholar] [CrossRef]
- Sharma, P.; Grover, H.S.; Masamatti, S.S.; Saksena, N. A Clinicoradiographic Assessment of 1% Metformin Gel with Platelet-Rich Fibrin in the Treatment of Mandibular Grade II Furcation Defects. J. Indian Soc. Periodontol. 2017, 21, 303–308. [Google Scholar] [CrossRef]
- Meadows, C.L.; Gher, M.E.; Quintero, G.; Lafferty, T.A. A Comparison of Polylactic Acid Granules and Decalcified Freeze-Dried Bone Allograft in Human Periodontal Osseous Defects. J. Periodontol. 1993, 64, 103–109. [Google Scholar] [CrossRef]
- Romasco, T.; Tumedei, M.; Inchingolo, F.; Pignatelli, P.; Montesani, L.; Iezzi, G.; Petrini, M.; Piattelli, A.; Di Pietro, N. A Narrative Review on the Effectiveness of Bone Regeneration Procedures with OsteoBiol® Collagenated Porcine Grafts: The Translational Research Experience over 20 Years. J. Funct. Biomater. 2022, 13, 121. [Google Scholar] [CrossRef]
- Trovato, L.; Monti, M.; Del Fante, C.; Cervio, M.; Lampinen, M.; Ambrosio, L.; Redi, C.A.; Perotti, C.; Kankuri, E.; Ambrosio, G.; et al. A New Medical Device Rigeneracons Allows to Obtain Viable Micro-Grafts From Mechanical Disaggregation of Human Tissues. J. Cell. Physiol. 2015, 230, 2299–2303. [Google Scholar] [CrossRef]
- Bose, R.; Nummikoski, P.; Hargreaves, K. A Retrospective Evaluation of Radiographic Outcomes in Immature Teeth with Necrotic Root Canal Systems Treated with Regenerative Endodontic Procedures. J. Endod. 2009, 35, 1343–1349. [Google Scholar] [CrossRef]
- Tawonsawatruk, T.; West, C.C.; Murray, I.R.; Soo, C.; Péault, B.; Simpson, A.H.R.W. Adipose Derived Pericytes Rescue Fractures from a Failure of Healing--Non-Union. Sci. Rep. 2016, 6, 22779. [Google Scholar] [CrossRef]
- Gimble, J.M.; Katz, A.J.; Bunnell, B.A. Adipose-Derived Stem Cells for Regenerative Medicine. Circ. Res. 2007, 100, 1249–1260. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.M.; Dipalma, G.; Inchingolo, A.D.; Palumbo, I.; Guglielmo, M.; Morolla, R.; Mancini, A.; Inchingolo, F. Advancing Postoperative Pain Management in Oral Cancer Patients: A Systematic Review. Pharmaceuticals 2024, 17, 542. [Google Scholar] [CrossRef] [PubMed]
- Glendor, U. Aetiology and Risk Factors Related to Traumatic Dental Injuries—A Review of the Literature. Dent. Traumatol. 2009, 25, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-H.; Chen, B.; Zhu, Q.-L.; Kong, H.; Li, Q.-H.; Gao, L.-N.; Xiao, M.; Chen, F.-M.; Yu, Q. Investigation of Dental Pulp Stem Cells Isolated from Discarded Human Teeth Extracted Due to Aggressive Periodontitis. Biomaterials 2014, 35, 9459–9472. [Google Scholar] [CrossRef]
- Seo, B.-M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.-Y.; Shi, S. Investigation of Multipotent Postnatal Stem Cells from Human Periodontal Ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Malcangi, G.; Ferrara, I.; Viapiano, F.; Netti, A.; Buongiorno, S.; Latini, G.; Azzollini, D.; De Leonardis, N.; de Ruvo, E.; et al. Laser Surgical Approach of Upper Labial Frenulum: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 1302. [Google Scholar] [CrossRef]
- Buser, D.; Dula, K.; Belser, U.; Hirt, H.P.; Berthold, H. Localized Ridge Augmentation Using Guided Bone Regeneration. 1. Surgical Procedure in the Maxilla. Int. J. Periodontics Restor. Dent. 1993, 13, 29–45. [Google Scholar]
- Buser, D.; Dula, K.; Belser, U.C.; Hirt, H.P.; Berthold, H. Localized Ridge Augmentation Using Guided Bone Regeneration. II. Surgical Procedure in the Mandible. Int. J. Periodontics Restor. Dent. 1995, 15, 10–29. [Google Scholar]
- Gao, Y.; Xue, J.; Li, X.; Jia, Y.; Hu, J. Metformin Regulates Osteoblast and Adipocyte Differentiation of Rat Mesenchymal Stem Cells. J. Pharm. Pharmacol. 2008, 60, 1695–1700. [Google Scholar] [CrossRef]
- Avinash, K.; Malaippan, S.; Dooraiswamy, J.N. Methods of Isolation and Characterization of Stem Cells from Different Regions of Oral Cavity Using Markers: A Systematic Review. Int. J. Stem Cells 2017, 10, 12–20. [Google Scholar] [CrossRef]
- Cortellini, P.; Tonetti, M.S. Minimally Invasive Surgical Technique and Enamel Matrix Derivative in Intra-Bony Defects. I: Clinical Outcomes and Morbidity. J. Clin. Periodontol. 2007, 34, 1082–1088. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.M.; Fatone, M.C.; Malcangi, G.; Avantario, P.; Piras, F.; Patano, A.; Di Pede, C.; Netti, A.; Ciocia, A.M.; De Ruvo, E.; et al. Modifiable Risk Factors of Non-Syndromic Orofacial Clefts: A Systematic Review. Children 2022, 9, 1846. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Papaccio, G.; Graziano, A.; d’Aquino, R.; Graziano, M.F.; Pirozzi, G.; Menditti, D.; De Rosa, A.; Carinci, F.; Laino, G. Long-Term Cryopreservation of Dental Pulp Stem Cells (SBP-DPSCs) and Their Differentiated Osteoblasts: A Cell Source for Tissue Repair. J. Cell. Physiol. 2006, 208, 319–325. [Google Scholar] [CrossRef]
- Harrel, S.K.; Nunn, M.E.; Belling, C.M. Long-Term Results of a Minimally Invasive Surgical Approach for Bone Grafting. J. Periodontol. 1999, 70, 1558–1563. [Google Scholar] [CrossRef]
- Jeeruphan, T.; Jantarat, J.; Yanpiset, K.; Suwannapan, L.; Khewsawai, P.; Hargreaves, K.M. Mahidol Study 1: Comparison of Radiographic and Survival Outcomes of Immature Teeth Treated with Either Regenerative Endodontic or Apexification Methods: A Retrospective Study. J. Endod. 2012, 38, 1330–1336. [Google Scholar] [CrossRef]
- Goldoni, R.; Scolaro, A.; Boccalari, E.; Dolci, C.; Scarano, A.; Inchingolo, F.; Ravazzani, P.; Muti, P.; Tartaglia, G. Malignancies and Biosensors: A Focus on Oral Cancer Detection through Salivary Biomarkers. Biosensors 2021, 11, 396. [Google Scholar] [CrossRef]
- Lang, N.P.; Tonetti, M.S. Periodontal Risk Assessment (PRA) for Patients in Supportive Periodontal Therapy (SPT). Oral Health Prev. Dent. 2003, 1, 7–16. [Google Scholar]
- Palmer, R.M.; Cortellini, P.; Group B of European Workshop on Periodontology. Periodontal Tissue Engineering and Regeneration: Consensus Report of the Sixth European Workshop on Periodontology. J. Clin. Periodontol. 2008, 35, 83–86. [Google Scholar] [CrossRef]
- Hamp, S.E.; Nyman, S.; Lindhe, J. Periodontal Treatment of Multirooted Teeth. Results after 5 Years. J. Clin. Periodontol. 1975, 2, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Belludi, S.; Singhal, L.; Gubbala, M. Peripheral Blood Mesenchymal Stem Cells and Platelet Rich Fibrin Matrix in the Management of Class II Gingival Recession: A Case Report. J. Dent. 2021, 22, 67–70. [Google Scholar] [CrossRef]
- Mancini, A.; Inchingolo, A.M.; Chirico, F.; Colella, G.; Piras, F.; Colonna, V.; Marotti, P.; Carone, C.; Inchingolo, A.D.; Inchingolo, F.; et al. Piezosurgery in Third Molar Extractions: A Systematic Review. J. Pers. Med. 2024, 14, 1158. [Google Scholar] [CrossRef] [PubMed]
- Dipalma, G.; Inchingolo, A.M.; Trilli, I.; Ferrante, L.; Noia, A.D.; de Ruvo, E.; Inchingolo, F.; Mancini, A.; Cocis, S.; Palermo, A.; et al. Management of Oro-Antral Communication: A Systemic Review of Diagnostic and Therapeutic Strategies. Diagnostics 2025, 15, 194. [Google Scholar] [CrossRef]
- Nasser, M.; Fedorowicz, Z.; Ebadifar, A. Management of the Fractured Edentulous Atrophic Mandible. Cochrane Database Syst. Rev. 2007, CD006087. [Google Scholar] [CrossRef]
- Malcangi, G.; Patano, A.; Palmieri, G.; Di Pede, C.; Latini, G.; Inchingolo, A.D.; Hazballa, D.; de Ruvo, E.; Garofoli, G.; Inchingolo, F.; et al. Maxillary Sinus Augmentation Using Autologous Platelet Concentrates (Platelet-Rich Plasma, Platelet-Rich Fibrin, and Concentrated Growth Factor) Combined with Bone Graft: A Systematic Review. Cells 2023, 12, 1797. [Google Scholar] [CrossRef]
- Peng, L.; Ye, L.; Zhou, X. Mesenchymal Stem Cells and Tooth Engineering. Int. J. Oral Sci. 2009, 1, 6–12. [Google Scholar] [CrossRef]
- Huang, G.T.-J.; Gronthos, S.; Shi, S. Mesenchymal Stem Cells Derived from Dental Tissues vs. Those from Other Sources: Their Biology and Role in Regenerative Medicine. J. Dent. Res. 2009, 88, 792–806. [Google Scholar] [CrossRef]
- Krampera, M.; Pizzolo, G.; Aprili, G.; Franchini, M. Mesenchymal Stem Cells for Bone, Cartilage, Tendon and Skeletal Muscle Repair. Bone 2006, 39, 678–683. [Google Scholar] [CrossRef]
- Lai, E.H.-H.; Yang, C.-N.; Lin, S.-K.; Wang, H.-W.; Kok, S.-H.; Hong, C.-Y.; Su, I.-H.; Yang, H.; Chang, J.Z.-C. Metformin Ameliorates Periapical Lesions through Suppression of Hypoxia-Induced Apoptosis of Osteoblasts. J. Endod. 2018, 44, 1817–1825. [Google Scholar] [CrossRef]
- Griss, T.; Vincent, E.E.; Egnatchik, R.; Chen, J.; Ma, E.H.; Faubert, B.; Viollet, B.; DeBerardinis, R.J.; Jones, R.G. Metformin Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial-Dependent Biosynthesis. PLoS Biol. 2015, 13, e1002309. [Google Scholar] [CrossRef]
- Qin, W.; Gao, X.; Ma, T.; Weir, M.D.; Zou, J.; Song, B.; Lin, Z.; Schneider, A.; Xu, H.H.K. Metformin Enhances the Differentiation of Dental Pulp Cells into Odontoblasts by Activating AMPK Signaling. J. Endod. 2018, 44, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Jang, W.G.; Kim, E.J.; Bae, I.-H.; Lee, K.-N.; Kim, Y.D.; Kim, D.-K.; Kim, S.-H.; Lee, C.-H.; Franceschi, R.T.; Choi, H.-S.; et al. Metformin Induces Osteoblast Differentiation via Orphan Nuclear Receptor SHP-Mediated Transactivation of Runx2. Bone 2011, 48, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Gjerde, C.; Mustafa, K.; Hellem, S.; Rojewski, M.; Gjengedal, H.; Yassin, M.A.; Feng, X.; Skaale, S.; Berge, T.; Rosen, A.; et al. Cell Therapy Induced Regeneration of Severely Atrophied Mandibular Bone in a Clinical Trial. Stem Cell Res. Ther. 2018, 9, 213. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.-M.; Gao, L.-N.; Tian, B.-M.; Zhang, X.-Y.; Zhang, Y.-J.; Dong, G.-Y.; Lu, H.; Chu, Q.; Xu, J.; Yu, Y.; et al. Treatment of Periodontal Intrabony Defects Using Autologous Periodontal Ligament Stem Cells: A Randomized Clinical Trial. Stem Cell Res. Ther. 2016, 7, 33. [Google Scholar] [CrossRef]
- Castillo-Cardiel, G.; López-Echaury, A.C.; Saucedo-Ortiz, J.A.; Fuentes-Orozco, C.; Michel-Espinoza, L.R.; Irusteta-Jiménez, L.; Salazar-Parra, M.; González-Ojeda, A. Bone Regeneration in Mandibular Fractures after the Application of Autologous Mesenchymal Stem Cells, a Randomized Clinical Trial. Dent. Traumatol. 2017, 33, 38–44. [Google Scholar] [CrossRef]
- Bajestan, M.N.; Rajan, A.; Edwards, S.P.; Aronovich, S.; Cevidanes, L.H.S.; Polymeri, A.; Travan, S.; Kaigler, D. Stem Cell Therapy for Reconstruction of Alveolar Cleft and Trauma Defects in Adults: A Randomized Controlled, Clinical Trial. Clin. Implant. Dent. Relat. Res. 2017, 19, 793–801. [Google Scholar] [CrossRef]
- Barbier, L.; Ramos, E.; Mendiola, J.; Rodriguez, O.; Santamaria, G.; Santamaria, J.; Arteagoitia, I. Autologous Dental Pulp Mesenchymal Stem Cells for Inferior Third Molar Post-Extraction Socket Healing: A Split-Mouth Randomised Clinical Trial. Med. Oral Patol. Oral Cir. Bucal 2018, 23, e469–e477. [Google Scholar] [CrossRef]
- Jafari, N.; Seyed Habashi, M.; Afshar, A.; Ghasemi, M.; Kurmanalina, M.A.; Mussin, N.M.; Kaliyev, A.A.; Zare, S.; Khodabandeh, Z.; Tanideh, N.; et al. The Effect of Exosomes Derived from Human Umbilical Cord Mesenchymal Stromal/Stem Cells on the Regeneration of Human Pulpectomized Tooth: A Case Report. Iran. J. Med. Sci. 2025, 50, 54–58. [Google Scholar] [CrossRef]
- Feng, S.-W.; Su, Y.-H.; Lin, Y.-K.; Wu, Y.-C.; Huang, Y.-H.; Yang, F.-H.; Chiang, H.-J.; Yen, Y.; Wang, P.D.-Y. Small Blood Stem Cells for Enhancing Early Osseointegration Formation on Dental Implants: A Human Phase I Safety Study. Stem Cell Res. Ther. 2021, 12, 380. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, N.; Fierravanti, L.; Núñez, J.; Vignoletti, F.; González-Zamora, M.; Santamaría, S.; Suárez-Sancho, S.; Fernández-Santos, M.E.; Figuero, E.; Herrera, D.; et al. Periodontal Regeneration Using a Xenogeneic Bone Substitute Seeded with Autologous Periodontal Ligament-Derived Mesenchymal Stem Cells: A 12-Month Quasi-Randomized Controlled Pilot Clinical Trial. J. Clin. Periodontol. 2020, 47, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Ferrarotti, F.; Romano, F.; Gamba, M.N.; Quirico, A.; Giraudi, M.; Audagna, M.; Aimetti, M. Human Intrabony Defect Regeneration with Micrografts Containing Dental Pulp Stem Cells: A Randomized Controlled Clinical Trial. J. Clin. Periodontol. 2018, 45, 841–850. [Google Scholar] [CrossRef] [PubMed]
- Sobhnamayan, F.; Sahebi, S.; Moazami, F.; Malekzadeh, P.; Hasani, S. Combination of Metformin and Double Antibiotic Paste for the Regeneration of Non-Vital Immature Teeth: A Preliminary Randomized Clinical Study. BMC Oral Health 2023, 23, 847. [Google Scholar] [CrossRef]
- Nakashima, M.; Fukuyama, F.; Iohara, K. Pulp Regenerative Cell Therapy for Mature Molars: A Report of 2 Cases. J. Endod. 2022, 48, 1334–1340.e1. [Google Scholar] [CrossRef]
- Prins, H.-J.; Schulten, E.A.J.M.; Ten Bruggenkate, C.M.; Klein-Nulend, J.; Helder, M.N. Bone Regeneration Using the Freshly Isolated Autologous Stromal Vascular Fraction of Adipose Tissue in Combination With Calcium Phosphate Ceramics. Stem Cells Transl. Med. 2016, 5, 1362–1374. [Google Scholar] [CrossRef]
- Sreeparvathy, R.; Belludi, S.A.; Prabhu, A. Platelet Rich Fibrin Matrix (PRFM) and Peripheral Blood Mesenchymal Stem Cells (PBMSCs) in the Management of Intraosseous Defects—A Randomized Clinical Trial. J. Appl. Oral Sci. 2024, 32, e20230442. [Google Scholar] [CrossRef]
- Burastero, G.; Scarfì, S.; Ferraris, C.; Fresia, C.; Sessarego, N.; Fruscione, F.; Monetti, F.; Scarfò, F.; Schupbach, P.; Podestà, M.; et al. The Association of Human Mesenchymal Stem Cells with BMP-7 Improves Bone Regeneration of Critical-Size Segmental Bone Defects in Athymic Rats. Bone 2010, 47, 117–126. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.M.; Malcangi, G.; De Leonardis, N.; Sardano, R.; Pezzolla, C.; de Ruvo, E.; Di Venere, D.; Palermo, A.; Inchingolo, A.D.; et al. The Benefits of Probiotics on Oral Health: Systematic Review of the Literature. Pharmaceuticals 2023, 16, 1313. [Google Scholar] [CrossRef]
- Dipalma, G.; Inchingolo, A.D.; Fiore, A.; Balestriere, L.; Nardelli, P.; Casamassima, L.; Di Venere, D.; Palermo, A.; Inchingolo, F.; Inchingolo, A.M. The Differential Impact of Clear Aligners and Fixed Orthodontic Appliances on Periodontal Health: A Systematic Review. Children 2025, 12, 138. [Google Scholar] [CrossRef]
- Felippe, W.T.; Felippe, M.C.S.; Rocha, M.J.C. The Effect of Mineral Trioxide Aggregate on the Apexification and Periapical Healing of Teeth with Incomplete Root Formation. Int. Endod. J. 2006, 39, 2–9. [Google Scholar] [CrossRef]
- ElSheshtawy, A.S.; Nazzal, H.; El Shahawy, O.I.; El Baz, A.A.; Ismail, S.M.; Kang, J.; Ezzat, K.M. The Effect of Platelet-Rich Plasma as a Scaffold in Regeneration/Revitalization Endodontics of Immature Permanent Teeth Assessed Using 2-Dimensional Radiographs and Cone Beam Computed Tomography: A Randomized Controlled Trial. Int. Endod. J. 2020, 53, 905–921. [Google Scholar] [CrossRef]
- Kaigler, D.; Pagni, G.; Park, C.H.; Braun, T.M.; Holman, L.A.; Yi, E.; Tarle, S.A.; Bartel, R.L.; Giannobile, W.V. Stem Cell Therapy for Craniofacial Bone Regeneration: A Randomized, Controlled Feasibility Trial. Cell Transpl. 2013, 22, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Lin, N.-H.; Gronthos, S.; Bartold, P.M. Stem Cells and Periodontal Regeneration. Aust. Dent. J. 2008, 53, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Mirmira, R.G. Stem Cells and the Future of Organ Transplantation. Curr. Opin. Organ Transplant. 2010, 15, 52–53. [Google Scholar] [CrossRef]
- Inchingolo, A.M.; Inchingolo, A.D.; Nardelli, P.; Latini, G.; Trilli, I.; Ferrante, L.; Malcangi, G.; Palermo, A.; Inchingolo, F.; Dipalma, G. Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. J. Funct. Biomater. 2024, 15, 308. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, A.M.; Malcangi, G.; Ferrante, L.; Del Vecchio, G.; Viapiano, F.; Inchingolo, A.D.; Mancini, A.; Annicchiarico, C.; Inchingolo, F.; Dipalma, G.; et al. Surface Coatings of Dental Implants: A Review. J. Funct. Biomater. 2023, 14, 287. [Google Scholar] [CrossRef]
- Stenderup, K.; Justesen, J.; Clausen, C.; Kassem, M. Aging Is Associated with Decreased Maximal Life Span and Accelerated Senescence of Bone Marrow Stromal Cells. Bone 2003, 33, 919–926. [Google Scholar] [CrossRef]
- Matsui, Y.; Ohta, M.; Ohno, K.; Nagumo, M. Alveolar Bone Graft for Patients with Cleft Lip/Palate Using Bone Particles and Titanium Mesh: A Quantitative Study. J. Oral Maxillofac. Surg. 2006, 64, 1540–1545. [Google Scholar] [CrossRef]
- Schei, O.; Waerhaug, J.; Lovdal, A.; Arno, A. Alveolar Bone Loss as Related to Oral Hygiene and Age. J. Periodontol. 1959, 30, 7–16. [Google Scholar] [CrossRef]
- Arteagoitia, I.; Ramos, E.; Santamaria, G.; Barbier, L.; Alvarez, J.; Santamaria, J. Amoxicillin/Clavulanic Acid 2000/125 Mg to Prevent Complications Due to Infection Following Completely Bone-Impacted Lower Third Molar Removal: A Clinical Trial. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2015, 119, 8–16. [Google Scholar] [CrossRef]
- Huang, G.T.-J. Apexification: The Beginning of Its End. Int. Endod. J. 2009, 42, 855–866. [Google Scholar] [CrossRef]
- Pradeep, A.R.; Nagpal, K.; Karvekar, S.; Patnaik, K.; Naik, S.B.; Guruprasad, C.N. Platelet-Rich Fibrin with 1% Metformin for the Treatment of Intrabony Defects in Chronic Periodontitis: A Randomized Controlled Clinical Trial. J. Periodontol. 2015, 86, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Gronthos, S.; Mankani, M.; Brahim, J.; Robey, P.G.; Shi, S. Postnatal Human Dental Pulp Stem Cells (DPSCs) in Vitro and in Vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef] [PubMed]
- Saman, M.; Kadakia, S.; Ducic, Y. Postoperative Maxillomandibular Fixation After Open Reduction of Mandible Fractures. JAMA Facial Plast. Surg. 2014, 16, 140–413. [Google Scholar] [CrossRef] [PubMed]
- Aichelmann-Reidy, M.E.; Reynolds, M.A. Predictability of Clinical Outcomes Following Regenerative Therapy in Intrabony Defects. J. Periodontol. 2008, 79, 387–393. [Google Scholar] [CrossRef]
- Al Jamal, G.A.; Hazza’a, A.M.; Rawashdeh, M.A. Prevalence of Dental Anomalies in a Population of Cleft Lip and Palate Patients. Cleft Palate Craniofacial J. 2010, 47, 413–420. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, C.; Hu, Y.; Peng, B. Protective Effect of Metformin on Periapical Lesions in Rats by Decreasing the Ratio of Receptor Activator of Nuclear Factor Kappa B Ligand/Osteoprotegerin. J. Endod. 2012, 38, 943–947. [Google Scholar] [CrossRef]
- Thibodeau, B.; Teixeira, F.; Yamauchi, M.; Caplan, D.J.; Trope, M. Pulp Revascularization of Immature Dog Teeth with Apical Periodontitis. J. Endod. 2007, 33, 680–689. [Google Scholar] [CrossRef]
- Cehreli, Z.C.; Isbitiren, B.; Sara, S.; Erbas, G. Regenerative Endodontic Treatment (Revascularization) of Immature Necrotic Molars Medicated with Calcium Hydroxide: A Case Series. J. Endod. 2011, 37, 1327–1330. [Google Scholar] [CrossRef]
- Chueh, L.-H.; Ho, Y.-C.; Kuo, T.-C.; Lai, W.-H.; Chen, Y.-H.M.; Chiang, C.-P. Regenerative Endodontic Treatment for Necrotic Immature Permanent Teeth. J. Endod. 2009, 35, 160–164. [Google Scholar] [CrossRef]
- Lin, J.; Zeng, Q.; Wei, X.; Zhao, W.; Cui, M.; Gu, J.; Lu, J.; Yang, M.; Ling, J. Regenerative Endodontics Versus Apexification in Immature Permanent Teeth with Apical Periodontitis: A Prospective Randomized Controlled Study. J. Endod. 2017, 43, 1821–1827. [Google Scholar] [CrossRef] [PubMed]
- Murray, P.E.; Garcia-Godoy, F.; Hargreaves, K.M. Regenerative Endodontics: A Review of Current Status and a Call for Action. J. Endod. 2007, 33, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.Y.; Cheung, G.S.; Chen, J.; Yin, X.Z.; Wang, Q.Q.; Zhang, C.F. Pulp Revascularization of Immature Teeth with Apical Periodontitis: A Clinical Study. J. Endod. 2009, 35, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, B.P.; Ashley, R.K.; Wasson, K.L.; O’Hara, C.; Gabbay, J.; Heller, J.B.; Bradley, J.P. Reduced Morbidity and Improved Healing with Bone Morphogenic Protein-2 in Older Patients with Alveolar Cleft Defects. Plast. Reconstr. Surg. 2008, 121, 209–217. [Google Scholar] [CrossRef]
- Hargreaves, K.M.; Giesler, T.; Henry, M.; Wang, Y. Regeneration Potential of the Young Permanent Tooth: What Does the Future Hold? Pediatr. Dent. 2008, 30, 253–260. [Google Scholar] [CrossRef]
- Glynis, A.; Foschi, F.; Kefalou, I.; Koletsi, D.; Tzanetakis, G.N. Regenerative Endodontic Procedures for the Treatment of Necrotic Mature Teeth with Apical Periodontitis: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Endod. 2021, 47, 873–882. [Google Scholar] [CrossRef]
- Youssef, A.; Ali, M.; ElBolok, A.; Hassan, R. Regenerative Endodontic Procedures for the Treatment of Necrotic Mature Teeth: A Preliminary Randomized Clinical Trial. Int. Endod. J. 2022, 55, 334–346. [Google Scholar] [CrossRef]
- Myeroff, C.; Archdeacon, M. Autogenous Bone Graft: Donor Sites and Techniques. J. Bone Jt. Surg. 2011, 93, 2227–2236. [Google Scholar] [CrossRef]
- Dipalma, G.; Inchingolo, A.M.; Colonna, V.; Marotti, P.; Carone, C.; Ferrante, L.; Inchingolo, F.; Palermo, A.; Inchingolo, A.D. Autologous and Heterologous Minor and Major Bone Regeneration with Platelet-Derived Growth Factors. J. Funct. Biomater. 2025, 16, 16. [Google Scholar] [CrossRef]
- Kon, E.; Muraglia, A.; Corsi, A.; Bianco, P.; Marcacci, M.; Martin, I.; Boyde, A.; Ruspantini, I.; Chistolini, P.; Rocca, M.; et al. Autologous Bone Marrow Stromal Cells Loaded onto Porous Hydroxyapatite Ceramic Accelerate Bone Repair in Critical-Size Defects of Sheep Long Bones. J. Biomed. Mater. Res. 2000, 49, 328–337. [Google Scholar] [CrossRef]
- Aimetti, M.; Ferrarotti, F.; Cricenti, L.; Mariani, G.M.; Romano, F. Autologous Dental Pulp Stem Cells in Periodontal Regeneration: A Case Report. Int. J. Periodontics Restor. Dent. 2014, 34 (Suppl. S3), s27–s33. [Google Scholar] [CrossRef]
- Sethi, R.K.V.; Kozin, E.D.; Fagenholz, P.J.; Lee, D.J.; Shrime, M.G.; Gray, S.T. Epidemiological Survey of Head and Neck Injuries and Trauma in the United States. Otolaryngol. Head Neck Surg. 2014, 151, 776–784. [Google Scholar] [CrossRef] [PubMed]
- Mancini, A.; Chirico, F.; Colella, G.; Piras, F.; Colonna, V.; Marotti, P.; Carone, C.; Inchingolo, A.D.; Inchingolo, A.M.; Inchingolo, F.; et al. Evaluating the Success Rates and Effectiveness of Surgical and Orthodontic Interventions for Impacted Canines: A Systematic Review of Surgical and Orthodontic Interventions and a Case Series. BMC Oral Health 2025, 25, 295. [Google Scholar] [CrossRef] [PubMed]
- Sabrah, A.H.A.; Yassen, G.H.; Spolnik, K.J.; Hara, A.T.; Platt, J.A.; Gregory, R.L. Evaluation of Residual Antibacterial Effect of Human Radicular Dentin Treated with Triple and Double Antibiotic Pastes. J. Endod. 2015, 41, 1081–1084. [Google Scholar] [CrossRef]
- Gastens, M.H.; Goltry, K.; Prohaska, W.; Tschöpe, D.; Stratmann, B.; Lammers, D.; Kirana, S.; Götting, C.; Kleesiek, K. Good Manufacturing Practice-Compliant Expansion of Marrow-Derived Stem and Progenitor Cells for Cell Therapy. Cell Transpl. 2007, 16, 685–696. [Google Scholar] [CrossRef]
- Warnke, P.H.; Springer, I.N.G.; Wiltfang, J.; Acil, Y.; Eufinger, H.; Wehmöller, M.; Russo, P.A.J.; Bolte, H.; Sherry, E.; Behrens, E.; et al. Growth and Transplantation of a Custom Vascularised Bone Graft in a Man. Lancet 2004, 364, 766–770. [Google Scholar] [CrossRef]
- Ion, H.; Carmen, D.; Liliana, H.L.; Raluca, J.; Mihaela, M.; Carina, B.; Oana, A.A.; Alexandra, M.M.; Irina, G. Platelet Derivatives with Dental Medicine Applications. Rom. J. Oral Rehabil. 2020, 12, 142–152. [Google Scholar]
- Molinuevo, M.S.; Schurman, L.; McCarthy, A.D.; Cortizo, A.M.; Tolosa, M.J.; Gangoiti, M.V.; Arnol, V.; Sedlinsky, C. Effect of Metformin on Bone Marrow Progenitor Cell Differentiation: In Vivo and in Vitro Studies. J. Bone Miner. Res. 2010, 25, 211–221. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Inchingolo, A.M.; Malcangi, G.; Avantario, P.; Azzollini, D.; Buongiorno, S.; Viapiano, F.; Campanelli, M.; Ciocia, A.M.; De Leonardis, N.; et al. Effects of Resveratrol, Curcumin and Quercetin Supplementation on Bone Metabolism-A Systematic Review. Nutrients 2022, 14, 3519. [Google Scholar] [CrossRef]
- Pradeep, A.R.; Patnaik, K.; Nagpal, K.; Karvekar, S.; Ramamurthy, B.L.; Naik, S.B.; Suke, D.; Singh, P.; Raju, A. Efficacy of Locally-Delivered 1% Metformin Gel in the Treatment of Intrabony Defects in Patients with Chronic Periodontitis: A Randomized, Controlled Clinical Trial. J. Investig. Clin. Dent. 2016, 7, 239–245. [Google Scholar] [CrossRef]
- Pradeep, A.R.; Rao, N.S.; Naik, S.B.; Kumari, M. Efficacy of Varying Concentrations of Subgingivally Delivered Metformin in the Treatment of Chronic Periodontitis: A Randomized Controlled Clinical Trial. J. Periodontol. 2013, 84, 212–220. [Google Scholar] [CrossRef]
- Hammarström, L. Enamel Matrix, Cementum Development and Regeneration. J. Clin. Periodontol. 1997, 24, 658–668. [Google Scholar] [CrossRef]
- Mellonig, J.T.; Nevins, M. Guided Bone Regeneration of Bone Defects Associated with Implants: An Evidence-Based Outcome Assessment. Int. J. Periodontics Restor. Dent. 1995, 15, 168–185. [Google Scholar]
- Wang, X.; Thibodeau, B.; Trope, M.; Lin, L.M.; Huang, G.T.-J. Histologic Characterization of Regenerated Tissues in Canal Space after the Revitalization/Revascularization Procedure of Immature Dog Teeth with Apical Periodontitis. J. Endod. 2010, 36, 56–63. [Google Scholar] [CrossRef]
- Bakhtiar, H.; Mirzaei, H.; Bagheri, M.R.; Fani, N.; Mashhadiabbas, F.; Baghaban Eslaminejad, M.; Sharifi, D.; Nekoofar, M.H.; Dummer, P. Histologic Tissue Response to Furcation Perforation Repair Using Mineral Trioxide Aggregate or Dental Pulp Stem Cells Loaded onto Treated Dentin Matrix or Tricalcium Phosphate. Clin. Oral Investig. 2017, 21, 1579–1588. [Google Scholar] [CrossRef]
- d’Aquino, R.; De Rosa, A.; Lanza, V.; Tirino, V.; Laino, L.; Graziano, A.; Desiderio, V.; Laino, G.; Papaccio, G. Human Mandible Bone Defect Repair by the Grafting of Dental Pulp Stem/Progenitor Cells and Collagen Sponge Biocomplexes. Eur. Cells Mater. 2009, 18, 75–83. [Google Scholar] [CrossRef]
- Zhang, L.; Leeman, E.; Carnes, D.C.; Graves, D.T. Human Osteoblasts Synthesize and Respond to Platelet-Derived Growth Factor. Am. J. Physiol. Cell Physiol. 1991, 261, C348–C354. [Google Scholar] [CrossRef]
- Khorsand, A.; Eslaminejad, M.B.; Arabsolghar, M.; Paknejad, M.; Ghaedi, B.; Rokn, A.R.; Moslemi, N.; Nazarian, H.; Jahangir, S. Autologous Dental Pulp Stem Cells in Regeneration of Defect Created in Canine Periodontal Tissue. J. Oral Implantol. 2013, 39, 433–443. [Google Scholar] [CrossRef]
- Inchingolo, A.D.; Malcangi, G.; Inchingolo, A.M.; Piras, F.; Settanni, V.; Garofoli, G.; Palmieri, G.; Ceci, S.; Patano, A.; De Leonardis, N.; et al. Benefits and Implications of Resveratrol Supplementation on Microbiota Modulations: A Systematic Review of the Literature. Int. J. Mol. Sci. 2022, 23, 4027. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Inchingolo, A.M.; Inchingolo, A.D.; Fatone, M.C.; Ferrante, L.; Avantario, P.; Fiore, A.; Palermo, A.; Amenduni, T.; Galante, F.; et al. Bidirectional Association between Periodontitis and Thyroid Disease: A Scoping Review. Int. J. Environ. Res. Public Health 2024, 21, 860. [Google Scholar] [CrossRef]
- Artzi, Z.; Weinreb, M.; Givol, N.; Rohrer, M.D.; Nemcovsky, C.E.; Prasad, H.S.; Tal, H. Biomaterial Resorption Rate and Healing Site Morphology of Inorganic Bovine Bone and Beta-Tricalcium Phosphate in the Canine: A 24-Month Longitudinal Histologic Study and Morphometric Analysis. Int. J. Oral Maxillofac. Implant. 2004, 19, 357–368. [Google Scholar]
- Sándor, G.K.B.; Carmichael, R.P.; Brkovic, B.M.B. Dental Implants Placed into Alveolar Clefts Reconstructed with Tongue Flaps and Bone Grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Armitage, G.C. Development of a Classification System for Periodontal Diseases and Conditions. Ann. Periodontol. 1999, 4, 1–6. [Google Scholar] [CrossRef]
- Karring, T.; Nyman, S.; Gottlow, J.; Laurell, L. Development of the Biological Concept of Guided Tissue Regeneration—Animal and Human Studies. Periodontology 1993, 1, 26–35. [Google Scholar] [CrossRef]
- Tziafas, D.; Kodonas, K. Differentiation Potential of Dental Papilla, Dental Pulp, and Apical Papilla Progenitor Cells. J. Endod. 2010, 36, 781–789. [Google Scholar] [CrossRef]
- Palma, P.J.; Martins, J.; Diogo, P.; Sequeira, D.; Ramos, J.C.; Diogenes, A.; Santos, J.M. Does Apical Papilla Survive and Develop in Apical Periodontitis Presence after Regenerative Endodontic Procedures? Appl. Sci. 2019, 9, 3942. [Google Scholar] [CrossRef]
- Ballyns, J.J.; Bonassar, L.J. Image-Guided Tissue Engineering. J. Cell. Mol. Med. 2009, 13, 1428–1436. [Google Scholar] [CrossRef]
- Shahdadfar, A.; Frønsdal, K.; Haug, T.; Reinholt, F.P.; Brinchmann, J.E. In Vitro Expansion of Human Mesenchymal Stem Cells: Choice of Serum Is a Determinant of Cell Proliferation, Differentiation, Gene Expression, and Transcriptome Stability. Stem Cells 2005, 23, 1357–1366. [Google Scholar] [CrossRef]
- Wang, Q.; Steigelman, M.B.; Walker, J.A.; Chen, S.; Hornsby, P.J.; Bohnenblust, M.E.; Wang, H.T. In Vitro Osteogenic Differentiation of Adipose Stem Cells after Lentiviral Transduction with Green Fluorescent Protein. J. Craniofacial Surg. 2009, 20, 2193–2199. [Google Scholar] [CrossRef]
- Matuliene, G.; Pjetursson, B.E.; Salvi, G.E.; Schmidlin, K.; Brägger, U.; Zwahlen, M.; Lang, N.P. Influence of Residual Pockets on Progression of Periodontitis and Tooth Loss: Results after 11 Years of Maintenance. J. Clin. Periodontol. 2008, 35, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Inchingolo, F.; Hazballa, D.; Inchingolo, A.D.; Malcangi, G.; Marinelli, G.; Mancini, A.; Maggiore, M.E.; Bordea, I.R.; Scarano, A.; Farronato, M.; et al. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. Materials 2022, 15, 1120. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.M.; Avantario, P.; Settanni, V.; Fatone, M.C.; Piras, F.; Di Venere, D.; Inchingolo, A.D.; Palermo, A.; Dipalma, G. The Effects of Periodontal Treatment on Rheumatoid Arthritis and of Anti-Rheumatic Drugs on Periodontitis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 17228. [Google Scholar] [CrossRef]
- Ribeiro, F.V.; Casarin, R.C.V.; Júnior, F.H.N.; Sallum, E.A.; Casati, M.Z. The Role of Enamel Matrix Derivative Protein in Minimally Invasive Surgery in Treating Intrabony Defects in Single-Rooted Teeth: A Randomized Clinical Trial. J. Periodontol. 2011, 82, 522–532. [Google Scholar] [CrossRef]
- Leyendecker Junior, A.; Gomes Pinheiro, C.C.; Lazzaretti Fernandes, T.; Franco Bueno, D. The Use of Human Dental Pulp Stem Cells for in Vivo Bone Tissue Engineering: A Systematic Review. J. Tissue Eng. 2018, 9, 2041731417752766. [Google Scholar] [CrossRef]
- Hak, D.J. The Use of Osteoconductive Bone Graft Substitutes in Orthopaedic Trauma. J. Am. Acad. Orthop. Surg. 2007, 15, 525–536. [Google Scholar] [CrossRef]
- Laforgia, A.; Inchingolo, A.D.; Riccaldo, L.; Avantario, P.; Buongiorno, S.; Malcangi, G.; Bordea, I.R.; Palermo, A.; Inchingolo, F.; Inchingolo, A.M.; et al. The Use of Platelet-Rich Fibrin (PRF) in the Management of Dry Socket: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 10069. [Google Scholar] [CrossRef]
- Schropp, L.; Wenzel, A.; Kostopoulos, L.; Karring, T. Bone Healing and Soft Tissue Contour Changes Following Single-Tooth Extraction: A Clinical and Radiographic 12-Month Prospective Study. Int. J. Periodontics Restor. Dent. 2003, 23, 313–323. [Google Scholar]
- Bruder, S.P.; Kurth, A.A.; Shea, M.; Hayes, W.C.; Jaiswal, N.; Kadiyala, S. Bone Regeneration by Implantation of Purified, Culture-Expanded Human Mesenchymal Stem Cells. J. Orthop. Res. 1998, 16, 155–162. [Google Scholar] [CrossRef]
- Clough, B.H.; McCarley, M.R.; Krause, U.; Zeitouni, S.; Froese, J.J.; McNeill, E.P.; Chaput, C.D.; Sampson, H.W.; Gregory, C.A. Bone Regeneration with Osteogenically Enhanced Mesenchymal Stem Cells and Their Extracellular Matrix Proteins. J. Bone Miner. Res. 2015, 30, 83–94. [Google Scholar] [CrossRef]
- Laforgia, A.; Inchingolo, A.D.; Piras, F.; Colonna, V.; Giorgio, R.V.; Carone, C.; Rapone, B.; Malcangi, G.; Inchingolo, A.M.; Inchingolo, F.; et al. Therapeutic Strategies and Genetic Implications for Periodontal Disease Management: A Systematic Review. Int. J. Mol. Sci. 2024, 25, 7217. [Google Scholar] [CrossRef] [PubMed]
- Yamauchi, N.; Yamauchi, S.; Nagaoka, H.; Duggan, D.; Zhong, S.; Lee, S.M.; Teixeira, F.B.; Yamauchi, M. Tissue Engineering Strategies for Immature Teeth with Apical Periodontitis. J. Endod. 2011, 37, 390–397. [Google Scholar] [CrossRef]
- Kawate, K.; Yajima, H.; Ohgushi, H.; Kotobuki, N.; Sugimoto, K.; Ohmura, T.; Kobata, Y.; Shigematsu, K.; Kawamura, K.; Tamai, K.; et al. Tissue-Engineered Approach for the Treatment of Steroid-Induced Osteonecrosis of the Femoral Head: Transplantation of Autologous Mesenchymal Stem Cells Cultured with Beta-Tricalcium Phosphate Ceramics and Free Vascularized Fibula. Artif. Organs 2006, 30, 960–962. [Google Scholar] [CrossRef]
- Tran, T.T.; Kahn, C.R. Transplantation of Adipose Tissue and Stem Cells: Role in Metabolism and Disease. Nat. Rev. Endocrinol. 2010, 6, 195–213. [Google Scholar] [CrossRef]
- Behnia, H.; Khojasteh, A.; Soleimani, M.; Tehranchi, A.; Atashi, A. Repair of Alveolar Cleft Defect with Mesenchymal Stem Cells and Platelet Derived Growth Factors: A Preliminary Report. J. Cranio Maxillofac. Surg. 2012, 40, 2–7. [Google Scholar] [CrossRef]
- Bajpai, I.; Kim, D.Y.; Kyong-Jin, J.; Song, I.-H.; Kim, S. Response of Human Bone Marrow-Derived MSCs on Triphasic Ca-P Substrate with Various HA/TCP Ratio. J. Biomed. Mater. Res. B Appl. Biomater. 2017, 105, 72–80. [Google Scholar] [CrossRef]
- Chen, M.Y.-H.; Chen, K.-L.; Chen, C.-A.; Tayebaty, F.; Rosenberg, P.A.; Lin, L.M. Responses of Immature Permanent Teeth with Infected Necrotic Pulp Tissue and Apical Periodontitis/Abscess to Revascularization Procedures. Int. Endod. J. 2012, 45, 294–305. [Google Scholar] [CrossRef]
- da Silva, L.A.B.; Nelson-Filho, P.; da Silva, R.A.B.; Flores, D.S.H.; Heilborn, C.; Johnson, J.D.; Cohenca, N. Revascularization and Periapical Repair after Endodontic Treatment Using Apical Negative Pressure Irrigation versus Conventional Irrigation plus Triantibiotic Intracanal Dressing in Dogs’ Teeth with Apical Periodontitis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 779–787. [Google Scholar] [CrossRef]
- Jadhav, G.; Shah, N.; Logani, A. Revascularization with and without Platelet-Rich Plasma in Nonvital, Immature, Anterior Teeth: A Pilot Clinical Study. J. Endod. 2012, 38, 1581–1587. [Google Scholar] [CrossRef]
- Song, M.; Cao, Y.; Shin, S.-J.; Shon, W.-J.; Chugal, N.; Kim, R.H.; Kim, E.; Kang, M.K. Revascularization-Associated Intracanal Calcification: Assessment of Prevalence and Contributing Factors. J. Endod. 2017, 43, 2025–2033. [Google Scholar] [CrossRef]
- Hynes, K.; Menicanin, D.; Gronthos, S.; Bartold, P.M. Clinical Utility of Stem Cells for Periodontal Regeneration. Periodontology 2000 2012, 59, 203–227. [Google Scholar] [CrossRef]
- Nosrat, A.; Kolahdouzan, A.; Khatibi, A.H.; Verma, P.; Jamshidi, D.; Nevins, A.J.; Torabinejad, M. Clinical, Radiographic, and Histologic Outcome of Regenerative Endodontic Treatment in Human Teeth Using a Novel Collagen-Hydroxyapatite Scaffold. J. Endod. 2019, 45, 136–143. [Google Scholar] [CrossRef]
- Cobos-Carbó, A.; Augustovski, F. CONSORT 2010 Declaration: Updated guideline for reporting parallel group randomised trials. Med. Clin. 2011, 137, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, H.; Peng, C. Continued Root Development of Immature Permanent Teeth after Regenerative Endodontics with or without a Collagen Membrane: A Randomized, Controlled Clinical Trial. Int. J. Paediatr. Dent. 2022, 32, 284–293. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, C.; Huang, G.T.-J.; Cheung, G.S.P.; Dissanayaka, W.L.; Zhu, W. Transplantation of Dental Pulp Stem Cells and Platelet-Rich Plasma for Pulp Regeneration. J. Endod. 2012, 38, 1604–1609. [Google Scholar] [CrossRef]
- Silujjai, J.; Linsuwanont, P. Treatment Outcomes of Apexification or Revascularization in Nonvital Immature Permanent Teeth: A Retrospective Study. J. Endod. 2017, 43, 238–245. [Google Scholar] [CrossRef]
- Park, J.S.; Kim, B.C.; Kim, B.H.; Lee, J.I.; Lee, J. Up-and-Coming Mandibular Reconstruction Technique With Autologous Human Bone Marrow Stem Cells and Iliac Bone Graft in Patients With Large Bony Defect. J. Craniofacial Surg. 2015, 26, e718–e720. [Google Scholar] [CrossRef]
- Goldoni, R.; Dolci, C.; Boccalari, E.; Inchingolo, F.; Paghi, A.; Strambini, L.; Galimberti, D.; Tartaglia, G.M. Salivary Biomarkers of Neurodegenerative and Demyelinating Diseases and Biosensors for Their Detection. Ageing Res. Rev. 2022, 76, 101587. [Google Scholar] [CrossRef]
- Gathani, K.M.; Raghavendra, S.S. Scaffolds in Regenerative Endodontics: A Review. Dent. Res. J. 2016, 13, 379–386. [Google Scholar] [CrossRef]
- Iohara, K.; Zheng, L.; Ito, M.; Tomokiyo, A.; Matsushita, K.; Nakashima, M. Side Population Cells Isolated from Porcine Dental Pulp Tissue with Self-Renewal and Multipotency for Dentinogenesis, Chondrogenesis, Adipogenesis, and Neurogenesis. Stem Cells 2006, 24, 2493–2503. [Google Scholar] [CrossRef]
- Matuliene, G.; Studer, R.; Lang, N.P.; Schmidlin, K.; Pjetursson, B.E.; Salvi, G.E.; Brägger, U.; Zwahlen, M. Significance of Periodontal Risk Assessment in the Recurrence of Periodontitis and Tooth Loss. J. Clin. Periodontol. 2010, 37, 191–199. [Google Scholar] [CrossRef]
- Brunelli, G.; Motroni, A.; Graziano, A.; D’Aquino, R.; Zollino, I.; Carinci, F. Sinus Lift Tissue Engineering Using Autologous Pulp Micro-Grafts: A Case Report of Bone Density Evaluation. J. Indian Soc. Periodontol. 2013, 17, 644–647. [Google Scholar] [CrossRef]
- O’Connell, S.M.; Hessler, K.; Dardik, H. Cascade® Autologous System Platelet-Rich Fibrin Matrix in the Treatment of Chronic Leg Ulcers. Adv. Wound Care 2012, 1, 52–55. [Google Scholar] [CrossRef]
- Meijer, G.J.; de Bruijn, J.D.; Koole, R.; van Blitterswijk, C.A. Cell Based Bone Tissue Engineering in Jaw Defects. Biomaterials 2008, 29, 3053–3061. [Google Scholar] [CrossRef]
- Viollet, B.; Guigas, B.; Garcia, N.S.; Leclerc, J.; Foretz, M.; Andreelli, F. Cellular and Molecular Mechanisms of Metformin: An Overview. Clin. Sci. 2011, 122, 253–270. [Google Scholar] [CrossRef]
- Petrino, J.A.; Boda, K.K.; Shambarger, S.; Bowles, W.R.; McClanahan, S.B. Challenges in Regenerative Endodontics: A Case Series. J. Endod. 2010, 36, 536–541. [Google Scholar] [CrossRef]
- Saoud, T.M.A.; Zaazou, A.; Nabil, A.; Moussa, S.; Lin, L.M.; Gibbs, J.L. Clinical and Radiographic Outcomes of Traumatized Immature Permanent Necrotic Teeth after Revascularization/Revitalization Therapy. J. Endod. 2014, 40, 1946–1952. [Google Scholar] [CrossRef]
- Jepsen, S.; Topoll, H.; Rengers, H.; Heinz, B.; Teich, M.; Hoffmann, T.; Al-Machot, E.; Meyle, J.; Jervøe-Storm, P.-M. Clinical Outcomes after Treatment of Intra-Bony Defects with an EMD/Synthetic Bone Graft or EMD Alone: A Multicentre Randomized-Controlled Clinical Trial. J. Clin. Periodontol. 2008, 35, 420–428. [Google Scholar] [CrossRef]
- Trombelli, L.; Farina, R. Clinical Outcomes with Bioactive Agents Alone or in Combination with Grafting or Guided Tissue Regeneration. J. Clin. Periodontol. 2008, 35, 117–135. [Google Scholar] [CrossRef]
- Graziani, F.; Gennai, S.; Cei, S.; Cairo, F.; Baggiani, A.; Miccoli, M.; Gabriele, M.; Tonetti, M. Clinical Performance of Access Flap Surgery in the Treatment of the Intrabony Defect. A Systematic Review and Meta-Analysis of Randomized Clinical Trials. J. Clin. Periodontol. 2012, 39, 145–156. [Google Scholar] [CrossRef]
- Connolly, J.F. Clinical Use of Marrow Osteoprogenitor Cells to Stimulate Osteogenesis. Clin. Orthop. Relat. Res. 1998, 355, S257–S266. [Google Scholar] [CrossRef] [PubMed]
- Goldschlager, T.; Rosenfeld, J.V.; Jenkin, G.; Ghosh, P. Chondrogenic Differentiation of Adipose-Derived Stem Cells. ANZ J. Surg. 2009, 79, 856–857. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, G. Circulating Mesenchymal Stem Cells and Their Clinical Implications. J. Orthop. Transl. 2014, 2, 1–7. [Google Scholar] [CrossRef]
- Dohan Ehrenfest, D.M.; Rasmusson, L.; Albrektsson, T. Classification of Platelet Concentrates: From Pure Platelet-Rich Plasma (P-PRP) to Leucocyte- and Platelet-Rich Fibrin (L-PRF). Trends Biotechnol. 2009, 27, 158–167. [Google Scholar] [CrossRef]
- Simon, B.I.; Zatcoff, A.L.; Kong, J.J.W.; O’Connell, S.M. Clinical and Histological Comparison of Extraction Socket Healing Following the Use of Autologous Platelet-Rich Fibrin Matrix (PRFM) to Ridge Preservation Procedures Employing Demineralized Freeze Dried Bone Allograft Material and Membrane. Open Dent. J. 2009, 3, 92–99. [Google Scholar] [CrossRef]
- Pelegrine, A.A.; da Costa, C.E.S.; Correa, M.E.P.; Marques, J.F.C. Clinical and Histomorphometric Evaluation of Extraction Sockets Treated with an Autologous Bone Marrow Graft. Clin. Oral Implant. Res. 2010, 21, 535–542. [Google Scholar] [CrossRef]
- Reparadora, Sociedad Española de Cirugía Plástica. SECPRE—Sociedad Española de Cirugía Plástica, Reparadora y Estética; SECPRE: Madrid, Spain, 2005. [Google Scholar]
- Mitsiadis, T.A.; Barrandon, O.; Rochat, A.; Barrandon, Y.; De Bari, C. Stem Cell Niches in Mammals. Exp. Cell Res. 2007, 313, 3377–3385. [Google Scholar] [CrossRef]
- Gronthos, S.; Brahim, J.; Li, W.; Fisher, L.W.; Cherman, N.; Boyde, A.; DenBesten, P.; Robey, P.G.; Shi, S. Stem Cell Properties of Human Dental Pulp Stem Cells. J. Dent. Res. 2002, 81, 531–535. [Google Scholar] [CrossRef]
- Sampson, S.; Botto-van Bemden, A.; Aufiero, D. Stem Cell Therapies for Treatment of Cartilage and Bone Disorders: Osteoarthritis, Avascular Necrosis, and Non-Union Fractures. PM&R 2015, 7, S26–S32. [Google Scholar] [CrossRef]
- Parker, S.E.; Mai, C.T.; Canfield, M.A.; Rickard, R.; Wang, Y.; Meyer, R.E.; Anderson, P.; Mason, C.A.; Collins, J.S.; Kirby, R.S.; et al. Updated National Birth Prevalence Estimates for Selected Birth Defects in the United States, 2004–2006. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 1008–1016. [Google Scholar] [CrossRef]
- da Costa, C.E.S.; Pelegrine, A.A.; Fagundes, D.J.; de Jesus Simoes, M.; Taha, M.O. Use of Corticocancellous Allogeneic Bone Blocks Impregnated with Bone Marrow Aspirate: A Clinical, Tomographic, and Histomorphometric Study. Gen. Dent. 2011, 59, e200–e205. [Google Scholar]
- Carmichael, R.P.; Sándor, G.K.B. Use of Dental Implants in the Management of Cleft Lip and Palate. Atlas Oral Maxillofac. Surg. Clin. N. Am. 2008, 16, 61–82. [Google Scholar] [CrossRef]
- Miron, R.J.; Zucchelli, G.; Pikos, M.A.; Salama, M.; Lee, S.; Guillemette, V.; Fujioka-Kobayashi, M.; Bishara, M.; Zhang, Y.; Wang, H.-L.; et al. Use of Platelet-Rich Fibrin in Regenerative Dentistry: A Systematic Review. Clin. Oral Investig. 2017, 21, 1913–1927. [Google Scholar] [CrossRef]
- Kim, Y.K.; Yeo, H.H.; Kim, S.G. Use of the Tongue Flap for Intraoral Reconstruction: A Report of 16 Cases. J. Oral Maxillofac. Surg. 1998, 56, 716–719; discussion 720–721. [Google Scholar] [CrossRef]
- Feng, F.; Akiyama, K.; Liu, Y.; Yamaza, T.; Wang, T.-M.; Chen, J.-H.; Wang, B.B.; Huang, G.T.-J.; Wang, S.; Shi, S. Utility of PDL Progenitors for In Vivo Tissue Regeneration: A Report of 3 Cases. Oral Dis. 2010, 16, 20–28. [Google Scholar] [CrossRef]
KEYWORDS | A: Stem Cell; Stem Cells; B: Dentistry; Oral Health; C: Regeneration; Tissue Regeneration; Repair; Regenerative Medicine |
---|---|
BOOLEAN INDICATORS | “A” AND “B” AND “C” |
TIMESPAN | From 1 January 2015 to 31 March 2025 |
ELECTRONIC DATABASES | PubMed, Scopus and Web of Science |
Authors | Type of Study | Patients | Aim of Study | Materials and Methods | Conclusions |
---|---|---|---|---|---|
Gjerde C., et al., 2018 [55] | Clinical trial | 13 patients initially enrolled; 11 completed (aged 52–79, healthy, non-smokers) | To evaluate the feasibility, safety, and efficacy of using autologous bone marrow-derived mesenchymal stromal cells (MSCs) combined with biphasic calcium phosphate (BCP) to regenerate mandibular bone. | Bone marrow was aspirated from the iliac crest. These were combined with BCP granules and grafted onto resorbed mandibular ridges using a tenting technique with membranes. | MSC and BCP grafting protocol successfully regenerated bone sufficient for implant placement with no adverse events. The procedure was safe, feasible, and resulted in high patient satisfaction. |
Chen F., et al., 2016 [56] | Randomized Clinical Trial | 30 patients with 48 periodontitis-affected teeth; 41 teeth ultimately treated (21 control, 20 test) | To assess the safety and feasibility of autologous periodontal ligament stem cells (PDLSCs) combined with Bio-Oss® in treating periodontal intrabony defects. | Patients were randomly assigned to two groups: Control (Bio-Oss® with GTR) and Cell (PDLSC sheets + Bio-Oss® + GTR). PDLSCs were isolated from patients’ extracted teeth and prepared under GMP. A 12-month follow-up was conducted with clinical and radiographic assessments, including bone defect depth and periodontal parameters (CAL, PD, and GR). | PDLSC treatment was safe and feasible with no serious adverse effects. Both groups showed significant bone gain, but no statistically significant difference between them. Larger multicenter trials are needed to confirm efficacy. |
Castillo-Cardiel G., et al., 2016 [57] | Single-blind RCT (pilot) | 20 male patients (10 AMSCs, 10 control) | To evaluate the effectiveness of autologous mesenchymal stem cells (AMSCs) in enhancing bone regeneration in mandibular fractures. | Patients with mandibular fractures were randomized into two groups: AMSCs + open reduction/internal fixation (ORIF), and ORIF alone. AMSCs were extracted from adipose tissue 24 h pre-surgery, processed in a lab, and applied at the fracture site. Radiographic (panoramic and CT) bone density was evaluated at weeks 4 and 12 post-surgery using ImageJ software (Version 1.54p). Grey levels were compared statistically. | AMSCs significantly improved bone regeneration, with 36.48% higher ossification at week 12 vs. control. The application is safe, minimally invasive, and promotes faster recovery. The study supports the potential of AMSCs as a treatment in mandibular fractures. |
Bajestan M.N., et al., 2017 [58] | Randomized controlled trial | 18 adult patients (cleft palate or trauma) | To evaluate the safety and efficacy of stem cell therapy (ixmyelocel-t) for the reconstruction of large alveolar defects in adults. | Patients were randomized to receive either autogenous bone block grafts (control) or stem cell therapy using ex vivo expanded bone marrow-derived cells (ixmyelocel-t). Cells were harvested ~2 weeks before grafting. Grafts were evaluated 4 months later with Cone Beam Computed Tomography (CBCT) and clinical measures. Implant placement and stability were assessed. Secondary outcomes included complications, need for re-grafting, and patient satisfaction. | Stem cell therapy was safe and led to bone regeneration, but less effective than conventional bone grafts, especially in cleft palate cases. Implants were successfully placed in all control patients, but only in 5 of 10 stem cell patients. Optimization of delivery and materials is needed for broader clinical success. |
Barbier L., et al., 2018 [59] | Double-blind RCT, split-mouth | 30 patients (18–30 y.o., 60 third molars total) | To assess whether autologous dental pulp mesenchymal stem cells (ADPMSCs) reduce bone resorption in post-extraction sockets of lower third molars. | Each patient underwent bilateral third molar extraction. One socket was randomly assigned to receive ADPMSCs (Rigenera® Protocol) in a collagen matrix; the contralateral socket received collagen alone. CT scans were taken at day 0 and at 6 months to assess bone density (HU) and bone resorption (height of the interdental septum). Measurements were independently evaluated by two blinded neuroradiologists. Inter-observer agreement and statistical analysis were conducted with STATA 14. | No statistically significant differences in bone density or bone resorption was found between the stem cell-treated sockets and controls. The study did not demonstrate that ADPMSCs reduce bone resorption in post-extraction third molar sites. Further studies are needed to confirm their clinical efficacy. |
Jafari N. et al., 2025 [60] | Case report | 1 patient (40-year-old male) with irreversible pulpitis in the mandibular second premolar | To evaluate the regenerative potential of exosomes derived from human umbilical cord mesenchymal stromal cells (hUCMSCs) in a pulpectomized tooth. | Exosomes were isolated from hUCMSCs. Mixed with chitosan and applied to the root canal after pulpectomy. Clinical and radiographic follow-ups at 1, 2, 4, 12, 16, and 24 weeks. Assessments included vitality tests, CBCT, visual inspection, palpation, and periapical radiographs. | The treatment showed signs of successful pulp regeneration with no adverse clinical symptoms. Radiographically, progressive healing was observed (initial periapical radiolucency and periodontal ligament widening). hUCMSC-derived exosomes demonstrated potential as a regenerative therapy, providing a promising alternative to cell-based methods. Further studies with larger samples are needed to confirm efficacy. |
Feng S. et al., 2021 [61] | Clinical trial | 9 adult patients (aged 29–81) with severe alveolar bone defects (D3 bone density); grouped into 3 dosage cohorts (low, medium, high) | To evaluate the safety and tolerability of small blood stem cells (SB cells) for enhancing osseointegration in dental implants. | SB cells (CD61−Lin−) were isolated from patients’ peripheral blood and purified. Three dose levels were tested (105, 106, 107 cells per 0.25 mL DPBS). Cells were combined with hydroxyapatite and collagen membrane during guided bone regeneration (GBR) before dental implantation. CT scans and Hounsfield Unit (HU) scoring assessed bone mineral density (BMD) up to 24 weeks post-treatment. Cytokines/chemokines were also monitored. | SB cell therapy was well tolerated with no serious adverse events. All patients showed increased BMD and improved osseointegration. Cytokine profiles suggest pro-regenerative and immunomodulatory effects. Although the study lacked a control group, results support further investigation in phase II trials for regenerative applications in dental medicine. |
Sánchez N. et al., 2020 [62] | Clinical Trial | 20 patients (10 test, 10 control) | To evaluate the safety and efficacy of embedding in a xenogeneic bone scaffold for periodontal regeneration. | Patients with intrabony defects were assigned to a test group (or a control group. Clinical, radiographic, and patient-reported outcomes were measured over 12 months. Blinding and standardized surgery were used. | The therapy was safe with no serious adverse events. There was a trend toward better clinical outcomes in the test group, but no statistically significant differences were found. Larger studies are needed to confirm the benefit. |
Ferrarotti F. et al., 2018 [63] | Randomized controlled clinical trial | 29 patients (15 test, 14 control) | To evaluate whether micrografts with dental pulp stem cells (DPSCs) in a collagen scaffold improve periodontal regeneration in intrabony defects. | Patients with periodontitis and one deep intrabony defect requiring extraction of a vital tooth were enrolled. Test group received DPSCs from the extracted tooth on a collagen scaffold using the Rigenera system; control received scaffold alone. Clinical and radiographic evaluations were performed at baseline, 6 and 12 months. | DPSCs significantly improved clinical outcomes compared to control. The therapy is promising but limited by the need for an intact tooth for stem cell harvesting. Further independent trials are needed to confirm these results. |
Sobhnamayan F. et al., 2023 [64] | Triple-blind randomized clinical trial | 26 pediatric patients | To evaluate whether adding metformin to double antibiotic paste (DAP) enhances root regeneration in non-vital immature teeth. | 32 patients were enrolled; 6 excluded for incomplete follow-up. In total, 15 received DAP; 11 received DAP + 1% metformin. All underwent regenerative endodontic procedures with average 18-month follow-up. Clinical and radiographic outcomes (e.g., apical closure, root length/width) were assessed. Statistical analysis used chi-square test; p < 0.05 was considered significant. | Adding metformin to DAP significantly enhanced root length and apical closure compared to DAP alone. All patients showed resolution of apical periodontitis. No canal obliteration occurred in the metformin group. |
Nakashima M. et al., 2022 [65] | Case report | 2 male patients (26 and 29 years old) with mature multirooted molars | To assess the feasibility and outcome of pulp regenerative therapy using autologous DPSCs in mature multirooted molars. | Extraction of nonfunctional third molars to isolate autologous DPSCs. DPSCs cultured under hypoxic conditions. After thorough disinfection (using nanobubble antibiotic irrigation). Sealing was accomplished with Biodentine and composite resin. Follow-ups included electric pulp testing (EPT), CBCT, and blood/urine tests over 48 weeks. | The therapy showed no adverse events or systemic toxicity. Teeth responded positively to EPT by week 4. CBCT confirmed pulp regeneration and absence of periapical pathology. Suggests the potential of using DPSC-based therapy for mature multirooted teeth, extending regenerative endodontic possibilities beyond single-rooted cases. |
Prins H. et al., 2016 [66] | Clinical trial | 10 patients undergoing maxillary sinus floor elevation | To assess the feasibility, safety, and potential efficacy of a one-step surgical procedure combining freshly isolated autologous SVF with calcium phosphate ceramics for bone regeneration. | Adipose tissue was harvested via liposuction and processed with the Celution system to isolate SVF, which was seeded BCP carriers. Maxillary sinus floor elevation (MSFE) was performed with these constructs. Biopsies were taken 6 months later during implant placement. Outcomes included micro-CT and histomorphometric analysis for bone/osteoid/graft volume, plus clinical monitoring over 3 years. | The procedure was safe and feasible with no adverse events. SVF-treated sites showed higher bone and osteoid volume compared to control sites. The results suggest that SVF supplementation enhances bone regeneration and that this approach could be a promising strategy for future cell-based bone regeneration therapies. |
Sreeparvathy R. et al., 2025 [67] | Randomized controlled clinical trial | 17 patients (12 men, 5 women), 34 mandibular defect sites | To evaluate the regenerative capacity of combining PRFM with PBMSCs (Supercell) versus PRFM alone in periodontal intraosseous defects (IODs). | Patients with bilateral mandibular three-wall IODs were treated with PRFM alone (control) or PRFM + PBMSCs (Supercell, test). Split-mouth design. Clinical and radiographic parameters recorded at baseline, 3, and 6 months. PRFM and PBMSCs were obtained from peripheral blood using a single-spin Merisis kit. Surgical procedures involved open flap debridement, defect filling, suturing, and follow-up. | The Supercell group showed significantly greater reductions in probing pocket depth and defect depth, and greater bone fill percentage than PRFM alone at 6 months. No significant difference in early wound healing index. The combination therapy enhanced periodontal regeneration and inflammation resolution, indicating that PBMSCs improve the regenerative effect of PRFM. |
Authors | D1 | D2 | D3 | D4 | D5 | D6 | D7 | Overall |
---|---|---|---|---|---|---|---|---|
Gjerde C. et al., 2018 [55] | ||||||||
Chen F. et al., 2016 [56] | ||||||||
Castillo-Cardiel G. et al., 2016 [57] | ||||||||
Bajestan M.N. et al., 2017 [58] | ||||||||
Barbier L. et al., 2018 [59] | ||||||||
Jafari N. et al., 2025 [60] | ||||||||
Feng S. et al., 2021 [61] | ||||||||
Sánchez N. et al., 2020 [62] | ||||||||
Ferrarotti F. et al., 2018 [63] | ||||||||
Sobhnamayan F. et al., 2023 [64] | ||||||||
Nakashima M. et al., 2022 [65] | ||||||||
Prins H. et al., 2016 [66] | ||||||||
Sreeparvathy R. et al. 2025 [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dipalma, G.; Marinelli, G.; Fiore, A.; Balestriere, L.; Carone, C.; Buongiorno, S.; Inchingolo, F.; Minervini, G.; Palermo, A.; Inchingolo, A.M.; et al. The Evolving Role of Stem Cells in Oral Health and Regeneration: A Systematic Review. Surgeries 2025, 6, 65. https://doi.org/10.3390/surgeries6030065
Dipalma G, Marinelli G, Fiore A, Balestriere L, Carone C, Buongiorno S, Inchingolo F, Minervini G, Palermo A, Inchingolo AM, et al. The Evolving Role of Stem Cells in Oral Health and Regeneration: A Systematic Review. Surgeries. 2025; 6(3):65. https://doi.org/10.3390/surgeries6030065
Chicago/Turabian StyleDipalma, Gianna, Grazia Marinelli, Arianna Fiore, Liviana Balestriere, Claudio Carone, Silvio Buongiorno, Francesco Inchingolo, Giuseppe Minervini, Andrea Palermo, Angelo Michele Inchingolo, and et al. 2025. "The Evolving Role of Stem Cells in Oral Health and Regeneration: A Systematic Review" Surgeries 6, no. 3: 65. https://doi.org/10.3390/surgeries6030065
APA StyleDipalma, G., Marinelli, G., Fiore, A., Balestriere, L., Carone, C., Buongiorno, S., Inchingolo, F., Minervini, G., Palermo, A., Inchingolo, A. M., & Inchingolo, A. D. (2025). The Evolving Role of Stem Cells in Oral Health and Regeneration: A Systematic Review. Surgeries, 6(3), 65. https://doi.org/10.3390/surgeries6030065