Clinical Applications of Corneal Cells Derived from Induced Pluripotent Stem Cells
Abstract
1. Introduction
2. Differentiation of iPSCs into Corneal Cells
2.1. Corneal Epithelial Cells
2.1.1. Protocols for Differentiation into Corneal Epithelial Cells
2.1.2. Preclinical Studies
2.1.3. Emerging Clinical Trials
2.2. Corneal Stromal Keratocytes
2.2.1. Protocols for Differentiation into Corneal Stromal Keratocytes
2.2.2. Preclinical Studies and Emerging Clinical Trials
2.3. Corneal Endothelial Cells
2.3.1. Protocols for Differentiation into Corneal Endothelial Cells
2.3.2. Preclinical Studies
2.3.3. Emerging Clinical Trials
Preclinical Studies | ||||
Corneal Cell Type | Animal Model | Cell Delivery Method | Main Findings | Reference |
CEC | Non-human primates (LSCD model) | Transplantation of cell sheets | Long-term (1 year) post-transplantation survival in monkeys; no rejection | Yoshinaga et al., 2022 [68] |
CEC | Nude mice | Subcutaneous transplantation of cell sheet | No tumor formation | Soma et al., 2024 [14] |
CEC | Rabbit (LSCD model) | Transplantation of cell sheet | Restored barrier function | Hayashi et al., 2016 [47] |
CEnC Precursors | Rabbit (Bullous keratopathy model) | Cell injection into anterior chamber | Monolayer formation of hexagonal cells; reduced corneal edema | Li et al., 2022 [119] |
CEnC | Non-human primates (Bullous keratopathy model) | Cell injection into anterior chamber | Monolayer formation of hexagonal cells; reduced corneal edema | Hatou et al., 2021 [113] |
CEnC | Rabbit (Bullous keratopathy model) | Cell injection into anterior chamber | Monolayer formation of hexagonal cells; reduced corneal edema | Hsueh et al., 2025 [102] |
CEnC | Rabbit (Bullous keratopathy model) | Cell injection into anterior chamber | Monolayer formation of hexagonal cells; reduced corneal edema | Sun et al., 2021 [103] |
CEnC | Rabbit (Bullous keratopathy model) | Transplantation of cells on a thermosensitive hydrogel scaffold | Facilitated restoration of corneal clarity and function in a rabbit model of corneal endothelial dysfunction | Chi et al., 2025 [118] |
CEnC | Rats | Cell injection into anterior chamber | No tumor formation | Hirayama et al., 2025 [15] |
Clinical Trials | ||||
Corneal Cell Type | Surgeon Indication | Cell Delivery Method | Main Finding | Reference |
CEC | LSCD | Transplantation of iPSC-derived epithelial cell sheets onto corneal surface | iPSC-derived epithelial sheets survived for up to 1 year; no serious adverse events related to the grafts | Soma et al., 2024 [14] |
CEnC | Bullous keratopathy | Cell injection into anterior chamber | Corneal transparency improved and central thickness decreased; visual acuity improved in 2 of 3 patients | Hirayama et al., 2025 [15] |
3. Challenges for Clinical Applications of iPSC-Derived Corneal Cells
3.1. Teratogenicity and Safety
3.2. Immune Response and Compatibility
3.3. Cost-Effectiveness and Regulatory and Ethical Considerations
4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | three-dimensional |
ADSC | adipose-derived mesenchymal stem cell |
CEC | corneal epithelial cell |
CEnC | corneal endothelial cell |
CSK | corneal stromal keratocyte |
ESC | embryonic stem cell |
EGF | epidermal growth factor |
FGF | fibroblast growth factor |
GMP | good manufacturing practice |
HLA | human leukocyte antigen |
iPSC | induced pluripotent stem cell |
LSCD | limbal stem cell deficiency |
NCC | neural crest cell |
SEAM | self-formed ectodermal autonomous multi-zone |
References
- Gain, P.; Jullienne, R.; He, Z.; Aldossary, M.; Acquart, S.; Cognasse, F.; Thuret, G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmol. 2016, 134, 167–173. [Google Scholar] [CrossRef]
- Robaei, D.; Watson, S. Corneal Blindness: A Global Problem. Clin Exp. Ophthalmol. 2014, 42, 213–214. [Google Scholar] [CrossRef] [PubMed]
- Burton, M.J.; Ramke, J.; Marques, A.P.; Bourne, R.R.A.; Congdon, N.; Jones, I.; Ah Tong, B.A.M.; Arunga, S.; Bachani, D.; Bascaran, C.; et al. The Lancet Global Health Commission on Global Eye Health: Vision beyond 2020. Lancet Glob. Health 2021, 9, e489–e551. [Google Scholar] [CrossRef]
- Kate, A.; Basu, S. Corneal Blindness in the Developing World: The Role of Prevention Strategies. F1000Research 2023, 12, 1309. [Google Scholar] [CrossRef]
- Wang, E.Y.; Kong, X.; Wolle, M.; Gasquet, N.; Ssekasanvu, J.; Mariotti, S.P.; Bourne, R.; Taylor, H.; Resnikoff, S.; West, S. Global Trends in Blindness and Vision Impairment Resulting from Corneal Opacity 1984–2020: A Meta-Analysis. Ophthalmology 2023, 130, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Ong, H.S.; Ang, M.; Mehta, J.S. Evolution of Therapies for the Corneal Endothelium: Past, Present and Future Approaches. Br. J. Ophthalmol. 2021, 105, 454–467. [Google Scholar] [CrossRef]
- Melles, G.R.J. Posterior Lamellar Keratoplasty: DLEK to DSEK to DMEK. Cornea 2006, 25, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.T.H.; Dart, J.K.G.; Holland, E.J.; Kinoshita, S. Corneal Transplantation. Lancet 2012, 379, 1749–1761. [Google Scholar] [CrossRef]
- Lee, S.; Dohlman, T.H.; Dana, R. Immunology in Corneal Transplantation-From Homeostasis to Graft Rejection. Transpl. Rev. 2025, 39, 100909. [Google Scholar] [CrossRef]
- Hos, D.; Matthaei, M.; Bock, F.; Maruyama, K.; Notara, M.; Clahsen, T.; Hou, Y.; Le, V.N.H.; Salabarria, A.-C.; Horstmann, J.; et al. Immune Reactions after Modern Lamellar (DALK, DSAEK, DMEK) versus Conventional Penetrating Corneal Transplantation. Prog. Retin. Eye Res. 2019, 73, 100768. [Google Scholar] [CrossRef]
- Li, J.Y.; Cortina, M.S.; Greiner, M.A.; Kuo, A.N.; Miller, D.D.; Shtein, R.M.; Veldman, P.B.; Yin, J.; Kim, S.J.; Shen, J.F. Outcomes and Complications of Limbal Stem Cell Allograft Transplantation: A Report by the American Academy of Ophthalmology. Ophthalmology 2024, 131, 1121–1131. [Google Scholar] [CrossRef] [PubMed]
- Martin, U. Therapeutic Application of Pluripotent Stem Cells: Challenges and Risks. Front. Med. 2017, 4, 229. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, M.Z.; Bujko, K.; Wojakowski, W. Stem Cells and Clinical Practice: New Advances and Challenges at the Time of Emerging Problems with Induced Pluripotent Stem Cell Therapies. Pol. Arch. Med. Wewn. 2016, 126, 879–890. [Google Scholar] [CrossRef]
- Soma, T.; Oie, Y.; Takayanagi, H.; Matsubara, S.; Yamada, T.; Nomura, M.; Yoshinaga, Y.; Maruyama, K.; Watanabe, A.; Takashima, K.; et al. Induced Pluripotent Stem-Cell-Derived Corneal Epithelium for Transplant Surgery: A Single-Arm, Open-Label, First-in-Human Interventional Study in Japan. Lancet 2024, 404, 1929–1939. [Google Scholar] [CrossRef]
- Hirayama, M.; Hatou, S.; Nomura, M.; Hokama, R.; Hirayama, O.I.; Inagaki, E.; Aso, K.; Sayano, T.; Dohi, H.; Hanatani, T.; et al. A First-in-Human Clinical Study of an Allogenic iPSC-Derived Corneal Endothelial Cell Substitute Transplantation for Bullous Keratopathy. Cell Rep. Med. 2025, 6, 101847. [Google Scholar] [CrossRef] [PubMed]
- Eghrari, A.O.; Riazuddin, S.A.; Gottsch, J.D. Overview of the Cornea: Structure, Function, and Development. Prog. Mol. Biol. Transl. Sci. 2015, 134, 7–23. [Google Scholar] [CrossRef]
- Park, J.W.; Yang, J.; Xu, R.-H. PAX6 Alternative Splicing and Corneal Development. Stem Cells Dev. 2018, 27, 367–377. [Google Scholar] [CrossRef]
- Graw, J. Eye Development. Curr. Top. Dev. Biol. 2010, 90, 343–386. [Google Scholar] [CrossRef]
- Chow, R.L.; Lang, R.A. Early Eye Development in Vertebrates. Annu. Rev. Cell Dev. Biol. 2001, 17, 255–296. [Google Scholar] [CrossRef]
- Collomb, E.; Yang, Y.; Foriel, S.; Cadau, S.; Pearton, D.J.; Dhouailly, D. The Corneal Epithelium and Lens Develop Independently from a Common Pool of Precursors. Dev. Dyn. 2013, 242, 401–413. [Google Scholar] [CrossRef]
- Wolosin, J.M.; Budak, M.T.; Akinci, M.A.M. Ocular Surface Epithelial and Stem Cell Development. Int. J. Dev. Biol. 2004, 48, 981–991. [Google Scholar] [CrossRef] [PubMed]
- Echevarria, T.J.; Di Girolamo, N. Tissue-Regenerating, Vision-Restoring Corneal Epithelial Stem Cells. Stem Cell Rev. Rep. 2011, 7, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Kitazawa, K.; Hikichi, T.; Nakamura, T.; Mitsunaga, K.; Tanaka, A.; Nakamura, M.; Yamakawa, T.; Furukawa, S.; Takasaka, M.; Goshima, N.; et al. OVOL2 Maintains the Transcriptional Program of Human Corneal Epithelium by Suppressing Epithelial-to-Mesenchymal Transition. Cell Rep. 2016, 15, 1359–1368. [Google Scholar] [CrossRef]
- Yoon, J.J.; Ismail, S.; Sherwin, T. Limbal Stem Cells: Central Concepts of Corneal Epithelial Homeostasis. World J. Stem Cells 2014, 6, 391–403. [Google Scholar] [CrossRef]
- Takahashi, K.; Tanabe, K.; Ohnuki, M.; Narita, M.; Ichisaka, T.; Tomoda, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 2007, 131, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef]
- Cerneckis, J.; Cai, H.; Shi, Y. Induced Pluripotent Stem Cells (iPSCs): Molecular Mechanisms of Induction and Applications. Signal Transduct. Target. Ther. 2024, 9, 112. [Google Scholar] [CrossRef]
- Maiers, M.; Sullivan, S.; McClain, C.; Leonhard-Melief, C.; Turner, M.L.; Turner, D. Harnessing Global HLA Data for Enhanced Patient Matching in iPSC Haplobanks. Cytotherapy 2025, 27, 300–306. [Google Scholar] [CrossRef]
- Kinoshita, S.; Adachi, W.; Sotozono, C.; Nishida, K.; Yokoi, N.; Quantock, A.J.; Okubo, K. Characteristics of the Human Ocular Surface Epithelium. Prog. Retin. Eye Res. 2001, 20, 639–673. [Google Scholar] [CrossRef]
- Gonzalez, G.; Sasamoto, Y.; Ksander, B.R.; Frank, M.H.; Frank, N.Y. Limbal Stem Cells: Identity, Developmental Origin, and Therapeutic Potential. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, e303. [Google Scholar] [CrossRef]
- Whitcher, J.P.; Srinivasan, M.; Upadhyay, M.P. Corneal Blindness: A Global Perspective. Bull. World Health Organ. 2001, 79, 214–221. [Google Scholar]
- Kolli, S.; Ahmad, S.; Lako, M.; Figueiredo, F. Successful Clinical Implementation of Corneal Epithelial Stem Cell Therapy for Treatment of Unilateral Limbal Stem Cell Deficiency. Stem Cells 2010, 28, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Genna, V.G.; Maurizi, E.; Rama, P.; Pellegrini, G. Biology and Medicine on Ocular Surface Restoration: Advancements and Limits of Limbal Stem Cell Deficiency Treatments. Ocul. Surf. 2025, 35, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Cieślar-Pobuda, A.; Rafat, M.; Knoflach, V.; Skonieczna, M.; Hudecki, A.; Małecki, A.; Urasińska, E.; Ghavami, S.; Łos, M.J. Human Induced Pluripotent Stem Cell Differentiation and Direct Transdifferentiation into Corneal Epithelial-like Cells. Oncotarget 2016, 7, 42314–42329. [Google Scholar] [CrossRef]
- da Mata Martins, T.M.; de Carvalho, J.L.; da Silva Cunha, P.; Gomes, D.A.; de Goes, A.M. Induction of Corneal Epithelial Differentiation of Induced Pluripotent and Orbital Fat-Derived Stem Cells Seeded on Decellularized Human Corneas. Stem Cell Rev. Rep. 2022, 18, 2522–2534. [Google Scholar] [CrossRef] [PubMed]
- Edel, M.J.; Casellas, H.S.; Osete, J.R.; Nieto-Nicolau, N.; Arnalich-Montiel, F.; De Miguel, M.P.; McLenachan, S.; Roshandel, D.; Casaroli-Marano, R.P.; Alvarez-Palomo, B. An Optimized Method to Produce Human-Induced Pluripotent Stem Cell-Derived Limbal Stem Cells Easily Adaptable for Clinical Use. Stem Cells Dev. 2025, 34, 49–60. [Google Scholar] [CrossRef]
- Mikhailova, A.; Ilmarinen, T.; Uusitalo, H.; Skottman, H. Small-Molecule Induction Promotes Corneal Epithelial Cell Differentiation from Human Induced Pluripotent Stem Cells. Stem Cell Rep. 2014, 2, 219–231. [Google Scholar] [CrossRef]
- Shalom-Feuerstein, R.; Serror, L.; De La Forest Divonne, S.; Petit, I.; Aberdam, E.; Camargo, L.; Damour, O.; Vigouroux, C.; Solomon, A.; Gaggioli, C.; et al. Pluripotent Stem Cell Model Reveals Essential Roles for miR-450b-5p and miR-184 in Embryonic Corneal Lineage Specification. Stem Cells 2012, 30, 898–909. [Google Scholar] [CrossRef]
- Ahmad, S.; Stewart, R.; Yung, S.; Kolli, S.; Armstrong, L.; Stojkovic, M.; Figueiredo, F.; Lako, M. Differentiation of Human Embryonic Stem Cells into Corneal Epithelial-like Cells by in Vitro Replication of the Corneal Epithelial Stem Cell Niche. Stem Cells 2007, 25, 1145–1155. [Google Scholar] [CrossRef]
- Hanson, C.; Hardarson, T.; Ellerström, C.; Nordberg, M.; Caisander, G.; Rao, M.; Hyllner, J.; Stenevi, U. Transplantation of Human Embryonic Stem Cells onto a Partially Wounded Human Cornea in Vitro. Acta Ophthalmol. 2013, 91, 127–130. [Google Scholar] [CrossRef]
- Hayashi, R.; Ishikawa, Y.; Ito, M.; Kageyama, T.; Takashiba, K.; Fujioka, T.; Tsujikawa, M.; Miyoshi, H.; Yamato, M.; Nakamura, Y.; et al. Generation of Corneal Epithelial Cells from Induced Pluripotent Stem Cells Derived from Human Dermal Fibroblast and Corneal Limbal Epithelium. PLoS ONE 2012, 7, e45435. [Google Scholar] [CrossRef] [PubMed]
- Lwigale, P.Y. Corneal Development: Different Cells from a Common Progenitor. Prog. Mol. Biol. Transl. Sci. 2015, 134, 43–59. [Google Scholar] [CrossRef] [PubMed]
- Arkell, R.M.; Fossat, N.; Tam, P.P.L. Wnt Signalling in Mouse Gastrulation and Anterior Development: New Players in the Pathway and Signal Output. Curr. Opin. Genet. Dev. 2013, 23, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, M.; Hayashi, R.; Kageyama, T.; Yamato, M.; Nishida, K. Induction of Putative Stratified Epithelial Progenitor Cells in Vitro from Mouse-Induced Pluripotent Stem Cells. J. Artif. Organs 2011, 14, 58–66. [Google Scholar] [CrossRef]
- Casaroli-Marano, R.P.; Nieto-Nicolau, N.; Martínez-Conesa, E.M.; Edel, M.; Álvarez-Palomo, A.B. Potential Role of Induced Pluripotent Stem Cells (IPSCs) for Cell-Based Therapy of the Ocular Surface. J. Clin. Med. 2015, 4, 318–342. [Google Scholar] [CrossRef]
- Aberdam, E.; Petit, I.; Sangari, L.; Aberdam, D. Induced Pluripotent Stem Cell-Derived Limbal Epithelial Cells (LiPSC) as a Cellular Alternative for in Vitro Ocular Toxicity Testing. PLoS ONE 2017, 12, e0179913. [Google Scholar] [CrossRef]
- Hayashi, R.; Ishikawa, Y.; Sasamoto, Y.; Katori, R.; Nomura, N.; Ichikawa, T.; Araki, S.; Soma, T.; Kawasaki, S.; Sekiguchi, K.; et al. Co-Ordinated Ocular Development from Human iPS Cells and Recovery of Corneal Function. Nature 2016, 531, 376–380. [Google Scholar] [CrossRef]
- Hayashi, R.; Ishikawa, Y.; Katori, R.; Sasamoto, Y.; Taniwaki, Y.; Takayanagi, H.; Tsujikawa, M.; Sekiguchi, K.; Quantock, A.J.; Nishida, K. Coordinated Generation of Multiple Ocular-like Cell Lineages and Fabrication of Functional Corneal Epithelial Cell Sheets from Human iPS Cells. Nat. Protoc. 2017, 12, 683–696. [Google Scholar] [CrossRef]
- Hayashi, R.; Ishikawa, Y.; Katayama, T.; Quantock, A.J.; Nishida, K. CD200 Facilitates the Isolation of Corneal Epithelial Cells Derived from Human Pluripotent Stem Cells. Sci. Rep. 2018, 8, 16550. [Google Scholar] [CrossRef]
- Watanabe, S.; Hayashi, R.; Sasamoto, Y.; Tsujikawa, M.; Ksander, B.R.; Frank, M.H.; Quantock, A.J.; Frank, N.Y.; Nishida, K. Human iPS Cells Engender Corneal Epithelial Stem Cells with Holoclone-Forming Capabilities. iScience 2021, 24, 102688. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Hayashi, R.; Quantock, A.J.; Nishida, K. Generation of a TALEN-Mediated, P63 Knock-in in Human Induced Pluripotent Stem Cells. Stem Cell Res. 2017, 25, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S.; Hayashi, R.; Okubo, T.; Kudo, Y.; Katayama, T.; Ishikawa, Y.; Toga, J.; Yagi, E.; Honma, Y.; Quantock, A.J.; et al. Selective Laminin-Directed Differentiation of Human Induced Pluripotent Stem Cells into Distinct Ocular Lineages. Cell Rep. 2018, 25, 1668–1679.e5. [Google Scholar] [CrossRef]
- Joe, A.W.; Yeung, S.N. Concise Review: Identifying Limbal Stem Cells: Classical Concepts and New Challenges. Stem Cells Transl. Med. 2014, 3, 318–322. [Google Scholar] [CrossRef]
- Chen, Z.; Evans, W.H.; Pflugfelder, S.C.; Li, D.-Q. Gap Junction Protein Connexin 43 Serves as a Negative Marker for a Stem Cell-Containing Population of Human Limbal Epithelial Cells. Stem Cells 2006, 24, 1265–1273. [Google Scholar] [CrossRef]
- Li, D.-Q.; Wang, Z.; Yoon, K.-C.; Bian, F. Characterization, Isolation, Expansion and Clinical Therapy of Human Corneal Epithelial Stem/Progenitor Cells. J. Stem Cells 2014, 9, 79–91. [Google Scholar] [PubMed]
- Ramos, T.; Scott, D.; Ahmad, S. An Update on Ocular Surface Epithelial Stem Cells: Cornea and Conjunctiva. Stem Cells Int. 2015, 2015, 601731. [Google Scholar] [CrossRef]
- Pellegrini, G.; Dellambra, E.; Golisano, O.; Martinelli, E.; Fantozzi, I.; Bondanza, S.; Ponzin, D.; McKeon, F.; De Luca, M. P63 Identifies Keratinocyte Stem Cells. Proc. Natl. Acad. Sci. USA 2001, 98, 3156–3161. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ge, L.; Ren, B.; Zhang, X.; Yin, Z.; Liu, H.; Yang, Y.; Liu, Y.; Xu, H. De-Differentiation of Corneal Epithelial Cells Into Functional Limbal Epithelial Stem Cells After the Ablation of Innate Stem Cells. Investig. Ophthalmol. Vis. Sci. 2024, 65, 32. [Google Scholar] [CrossRef]
- Vattulainen, M.; Ilmarinen, T.; Viheriälä, T.; Jokinen, V.; Skottman, H. Corneal Epithelial Differentiation of Human Pluripotent Stem Cells Generates ABCB5+ and ∆Np63α+ Cells with Limbal Cell Characteristics and High Wound Healing Capacity. Stem Cell Res. Ther. 2021, 12, 609. [Google Scholar] [CrossRef]
- Grindley, J.C.; Davidson, D.R.; Hill, R.E. The Role of Pax-6 in Eye and Nasal Development. Development 1995, 121, 1433–1442. [Google Scholar] [CrossRef]
- Sasamoto, Y.; Hayashi, R.; Park, S.-J.; Saito-Adachi, M.; Suzuki, Y.; Kawasaki, S.; Quantock, A.J.; Nakai, K.; Tsujikawa, M.; Nishida, K. PAX6 Isoforms, along with Reprogramming Factors, Differentially Regulate the Induction of Cornea-Specific Genes. Sci. Rep. 2016, 6, 20807. [Google Scholar] [CrossRef] [PubMed]
- Ksander, B.R.; Kolovou, P.E.; Wilson, B.J.; Saab, K.R.; Guo, Q.; Ma, J.; McGuire, S.P.; Gregory, M.S.; Vincent, W.J.B.; Perez, V.L.; et al. ABCB5 Is a Limbal Stem Cell Gene Required for Corneal Development and Repair. Nature 2014, 511, 353–357. [Google Scholar] [CrossRef]
- Shalom-Feuerstein, R.; Serror, L.; Aberdam, E.; Müller, F.-J.; van Bokhoven, H.; Wiman, K.G.; Zhou, H.; Aberdam, D.; Petit, I. Impaired Epithelial Differentiation of Induced Pluripotent Stem Cells from Ectodermal Dysplasia-Related Patients Is Rescued by the Small Compound APR-246/PRIMA-1MET. Proc. Natl. Acad. Sci. USA 2013, 110, 2152–2156. [Google Scholar] [CrossRef]
- Zhang, C.; Du, L.; Pang, K.; Wu, X. Differentiation of Human Embryonic Stem Cells into Corneal Epithelial Progenitor Cells under Defined Conditions. PLoS ONE 2017, 12, e0183303. [Google Scholar] [CrossRef] [PubMed]
- Kolli, S.; Bojic, S.; Ghareeb, A.E.; Kurzawa-Akanbi, M.; Figueiredo, F.C.; Lako, M. The Role of Nerve Growth Factor in Maintaining Proliferative Capacity, Colony-Forming Efficiency, and the Limbal Stem Cell Phenotype. Stem Cells 2019, 37, 139–149. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Hirano, K.; Kojima, H.; Sumitomo, M.; Yamashita, H.; Ayaki, M.; Taniguchi, K.; Tanikawa, A.; Horiguchi, M. Cultured Human Corneal Epithelial Stem/Progenitor Cells Derived from the Corneal Limbus. Vitr. Cell. Dev. Biol. Anim. 2010, 46, 774–780. [Google Scholar] [CrossRef]
- Mahmood, N.; Suh, T.C.; Ali, K.M.; Sefat, E.; Jahan, U.M.; Huang, Y.; Gilger, B.C.; Gluck, J.M. Induced Pluripotent Stem Cell-Derived Corneal Cells: Current Status and Application. Stem Cell Rev. Rep. 2022, 18, 2817–2832. [Google Scholar] [CrossRef]
- Yoshinaga, Y.; Soma, T.; Azuma, S.; Maruyama, K.; Hashikawa, Y.; Katayama, T.; Sasamoto, Y.; Takayanagi, H.; Hosen, N.; Shiina, T.; et al. Long-Term Survival in Non-Human Primates of Stem Cell-Derived, MHC-Unmatched Corneal Epithelial Cell Sheets. Stem Cell Rep. 2022, 17, 1714–1729. [Google Scholar] [CrossRef]
- Komai, Y.; Ushiki, T. The Three-Dimensional Organization of Collagen Fibrils in the Human Cornea and Sclera. Investig. Ophthalmol. Vis. Sci. 1991, 32, 2244–2258. [Google Scholar]
- Funderburgh, J.L.; Mann, M.M.; Funderburgh, M.L. Keratocyte Phenotype Mediates Proteoglycan Structure: A Role for Fibroblasts in Corneal Fibrosis. J. Biol. Chem. 2003, 278, 45629–45637. [Google Scholar] [CrossRef]
- Carlson, E.C.; Liu, C.-Y.; Chikama, T.; Hayashi, Y.; Kao, C.W.-C.; Birk, D.E.; Funderburgh, J.L.; Jester, J.V.; Kao, W.W.-Y. Keratocan, a Cornea-Specific Keratan Sulfate Proteoglycan, Is Regulated by Lumican. J. Biol. Chem. 2005, 280, 25541–25547. [Google Scholar] [CrossRef]
- Kao, W.W.-Y.; Liu, C.-Y. Roles of Lumican and Keratocan on Corneal Transparency. Glycoconj. J. 2002, 19, 275–285. [Google Scholar] [CrossRef]
- Espana, E.M.; Birk, D.E. Composition, Structure and Function of the Corneal Stroma. Exp. Eye Res. 2020, 198, 108137. [Google Scholar] [CrossRef]
- Kim, W.J.; Rabinowitz, Y.S.; Meisler, D.M.; Wilson, S.E. Keratocyte Apoptosis Associated with Keratoconus. Exp. Eye Res. 1999, 69, 475–481. [Google Scholar] [CrossRef]
- Zadnik, K.; Barr, J.T.; Gordon, M.O.; Edrington, T.B. Biomicroscopic Signs and Disease Severity in Keratoconus. Collaborative Longitudinal Evaluation of Keratoconus (CLEK) Study Group. Cornea 1996, 15, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Stramer, B.M.; Zieske, J.D.; Jung, J.-C.; Austin, J.S.; Fini, M.E. Molecular Mechanisms Controlling the Fibrotic Repair Phenotype in Cornea: Implications for Surgical Outcomes. Investig. Ophthalmol. Vis. Sci. 2003, 44, 4237–4246. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ou, Q.; Liu, Y.; Cui, T.; Yang, H.; Tang, J.; Lu, L.; Xu, G.; Cui, H.; Jin, C.; et al. Embryoid Body-Based Differentiation of Human-Induced Pluripotent Stem Cells into Cells with a Corneal Stromal Keratocyte Phenotype. BMJ Open Ophthalmol. 2024, 9, e001828. [Google Scholar] [CrossRef] [PubMed]
- Lynch, A.P.; O’Sullivan, F.; Ahearne, M. The Effect of Growth Factor Supplementation on Corneal Stromal Cell Phenotype in Vitro Using a Serum-Free Media. Exp. Eye Res. 2016, 151, 26–37. [Google Scholar] [CrossRef]
- Kureshi, A.K.; Funderburgh, J.L.; Daniels, J.T. Human Corneal Stromal Stem Cells Exhibit Survival Capacity Following Isolation from Stored Organ-Culture Corneas. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7583–7588. [Google Scholar] [CrossRef]
- Jester, J.V.; Brown, D.; Pappa, A.; Vasiliou, V. Myofibroblast Differentiation Modulates Keratocyte Crystallin Protein Expression, Concentration, and Cellular Light Scattering. Investig. Ophthalmol. Vis. Sci. 2012, 53, 770–778. [Google Scholar] [CrossRef]
- Singh, V.; Barbosa, F.L.; Torricelli, A.A.M.; Santhiago, M.R.; Wilson, S.E. Transforming Growth Factor β and Platelet-Derived Growth Factor Modulation of Myofibroblast Development from Corneal Fibroblasts in Vitro. Exp. Eye Res. 2014, 120, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Naylor, R.W.; McGhee, C.N.J.; Cowan, C.A.; Davidson, A.J.; Holm, T.M.; Sherwin, T. Derivation of Corneal Keratocyte-Like Cells from Human Induced Pluripotent Stem Cells. PLoS ONE 2016, 11, e0165464. [Google Scholar] [CrossRef] [PubMed]
- Isaja, L.; Ferriol-Laffouillere, S.L.; Mucci, S.; Rodríguez-Varela, M.S.; Romorini, L. Embryoid Bodies-Based Multilineage Differentiation of Human Embryonic Stem Cells Grown on Feeder-Free Conditions. Methods Mol. Biol. 2022, 2520, 189–198. [Google Scholar] [CrossRef]
- Joseph, R.; Srivastava, O.P.; Pfister, R.R. Modeling Keratoconus Using Induced Pluripotent Stem Cells. Investig. Ophthalmol. Vis. Sci. 2016, 57, 3685–3697. [Google Scholar] [CrossRef]
- Long, C.J.; Roth, M.R.; Tasheva, E.S.; Funderburgh, M.; Smit, R.; Conrad, G.W.; Funderburgh, J.L. Fibroblast Growth Factor-2 Promotes Keratan Sulfate Proteoglycan Expression by Keratocytes in Vitro. J. Biol. Chem. 2000, 275, 13918–13923. [Google Scholar] [CrossRef] [PubMed]
- Foster, J.W.; Wahlin, K.; Adams, S.M.; Birk, D.E.; Zack, D.J.; Chakravarti, S. Cornea Organoids from Human Induced Pluripotent Stem Cells. Sci. Rep. 2017, 7, 41286. [Google Scholar] [CrossRef]
- Foster, J.W.; Wahlin, K.J.; Chakravarti, S. A Guide to the Development of Human CorneaOrganoids from Induced Pluripotent Stem Cells in Culture. Methods Mol. Biol. 2020, 2145, 51–58. [Google Scholar] [CrossRef]
- Lagali, N. Corneal Stromal Regeneration: Current Status and Future Therapeutic Potential. Curr. Eye Res. 2020, 45, 278–290. [Google Scholar] [CrossRef]
- Alió Del Barrio, J.L.; Alió, J.L. Cellular Therapy of the Corneal Stroma: A New Type of Corneal Surgery for Keratoconus and Corneal Dystrophies. Eye Vis. 2018, 5, 28. [Google Scholar] [CrossRef]
- Alió Del Barrio, J.L.; El Zarif, M.; de Miguel, M.P.; Azaar, A.; Makdissy, N.; Harb, W.; El Achkar, I.; Arnalich-Montiel, F.; Alió, J.L. Cellular Therapy With Human Autologous Adipose-Derived Adult Stem Cells for Advanced Keratoconus. Cornea 2017, 36, 952–960. [Google Scholar] [CrossRef]
- Alió Del Barrio, J.L.; Arnalich-Montiel, F.; De Miguel, M.P.; El Zarif, M.; Alió, J.L. Corneal Stroma Regeneration: Preclinical Studies. Exp. Eye Res. 2021, 202, 108314. [Google Scholar] [CrossRef] [PubMed]
- Alió, J.L.; Alió Del Barrio, J.L.; El Zarif, M.; Azaar, A.; Makdissy, N.; Khalil, C.; Harb, W.; El Achkar, I.; Jawad, Z.A.; De Miguel, M.P. Regenerative Surgery of the Corneal Stroma for Advanced Keratoconus: 1-Year Outcomes. Am. J. Ophthalmol. 2019, 203, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Bonanno, J.A. Identity and Regulation of Ion Transport Mechanisms in the Corneal Endothelium. Prog. Retin. Eye Res. 2003, 22, 69–94. [Google Scholar] [CrossRef] [PubMed]
- Van den Bogerd, B.; Dhubhghaill, S.N.; Koppen, C.; Tassignon, M.-J.; Zakaria, N. A Review of the Evidence for in Vivo Corneal Endothelial Regeneration. Surv. Ophthalmol. 2018, 63, 149–165. [Google Scholar] [CrossRef]
- Zavala, J.; López Jaime, G.R.; Rodríguez Barrientos, C.A.; Valdez-Garcia, J. Corneal Endothelium: Developmental Strategies for Regeneration. Eye 2013, 27, 579–588. [Google Scholar] [CrossRef]
- Wörner, C.H.; Olguín, A.; Ruíz-García, J.L.; Garzón-Jiménez, N. Cell Pattern in Adult Human Corneal Endothelium. PLoS ONE 2011, 6, e19483. [Google Scholar] [CrossRef]
- Bourne, W.M. Clinical Estimation of Corneal Endothelial Pump Function. Trans. Am. Ophthalmol. Soc. 1998, 96, 229–242, discussion 239–242. [Google Scholar]
- Peh, G.S.L.; Beuerman, R.W.; Colman, A.; Tan, D.T.; Mehta, J.S. Human Corneal Endothelial Cell Expansion for Corneal Endothelium Transplantation: An Overview. Transplantation 2011, 91, 811–819. [Google Scholar] [CrossRef]
- de Bruyn, B.; Ní Dhubhghaill, S.; Claerhout, I.; Claes, K.; Deconinck, A.; Delbeke, H.; Huizing, M.; Krolo, I.; Muijzer, M.; Oellerich, S.; et al. Belgian Endothelial Surgical Transplant of the Cornea (BEST Cornea) Protocol: Clinical and Patient-Reported Outcomes of Ultra-Thin Descemet Stripping Automated Endothelial Keratoplasty (UT-DSAEK) versus Descemet Membrane Endothelial Keratoplasty (DMEK)—A Multicentric, Randomised, Parallel Group Pragmatic Trial in Corneal Endothelial Decompensation. BMJ Open 2023, 13, e072333. [Google Scholar] [CrossRef]
- Kinoshita, S.; Koizumi, N.; Ueno, M.; Okumura, N.; Imai, K.; Tanaka, H.; Yamamoto, Y.; Nakamura, T.; Inatomi, T.; Bush, J.; et al. Injection of Cultured Cells with a ROCK Inhibitor for Bullous Keratopathy. N. Engl. J. Med. 2018, 378, 995–1003. [Google Scholar] [CrossRef]
- Zou, D.; Wang, T.; Li, W.; Wang, X.; Ma, B.; Hu, X.; Zhou, Q.; Li, Z.; Shi, W.; Duan, H. Nicotinamide Promotes the Differentiation of Functional Corneal Endothelial Cells from Human Embryonic Stem Cells. Exp. Eye Res. 2024, 242, 109883. [Google Scholar] [CrossRef] [PubMed]
- Hsueh, Y.-J.; Chen, H.-C.; Pan, Y.-Y.; Hsiao, F.-C.; Yang, S.-J.; Liu, M.-C.; Lai, W.-Y.; Li, G.; Hui-Kang Ma, D.; James Meir, Y.-J. The hiPSC-Derived Corneal Endothelial Progenitor-like Cell Recovers the Rabbit Model of Corneal Endothelial Dystrophy. J. Adv. Res. 2025, 70, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Bikkuzin, T.; Li, X.; Shi, Y.; Zhang, H. Human-Induced Pluripotent Stem Cells-Derived Corneal Endothelial-Like Cells Promote Corneal Transparency in a Rabbit Model of Bullous Keratopathy. Stem Cells Dev. 2021, 30, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ou, Q.; Wang, Z.; Liu, Y.; Hu, S.; Liu, Y.; Tian, H.; Xu, J.; Gao, F.; Lu, L.; et al. Small-Molecule Induction Promotes Corneal Endothelial Cell Differentiation From Human iPS Cells. Front. Bioeng. Biotechnol. 2021, 9, 788987. [Google Scholar] [CrossRef]
- Ng, X.Y.; Peh, G.S.L.; Yam, G.H.-F.; Tay, H.G.; Mehta, J.S. Corneal Endothelial-like Cells Derived from Induced Pluripotent Stem Cells for Cell Therapy. Int. J. Mol. Sci. 2023, 24, 12433. [Google Scholar] [CrossRef]
- Chambers, S.M.; Fasano, C.A.; Papapetrou, E.P.; Tomishima, M.; Sadelain, M.; Studer, L. Highly Efficient Neural Conversion of Human ES and iPS Cells by Dual Inhibition of SMAD Signaling. Nat. Biotechnol. 2009, 27, 275–280. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, Z.; Duan, H. iPSC-Derived Corneal Endothelial Cells. Handb. Exp. Pharmacol. 2023, 281, 257–276. [Google Scholar] [CrossRef]
- Chen, P.; Chen, J.-Z.; Shao, C.-Y.; Li, C.-Y.; Zhang, Y.-D.; Lu, W.-J.; Fu, Y.; Gu, P.; Fan, X. Treatment with Retinoic Acid and Lens Epithelial Cell-Conditioned Medium in Vitro Directed the Differentiation of Pluripotent Stem Cells towards Corneal Endothelial Cell-like Cells. Exp. Ther. Med. 2015, 9, 351–360. [Google Scholar] [CrossRef]
- Van den Bogerd, B.; Zakaria, N.; Adam, B.; Matthyssen, S.; Koppen, C.; Ní Dhubhghaill, S. Corneal Endothelial Cells Over the Past Decade: Are We Missing the Mark(Er)? Transl. Vis. Sci. Technol. 2019, 8, 13. [Google Scholar] [CrossRef]
- Takayanagi, H.; Hayashi, R. Status and Prospects for the Development of Regenerative Therapies for Corneal and Ocular Diseases. Regen. Ther. 2024, 26, 819–825. [Google Scholar] [CrossRef]
- Teng, L.; Mundell, N.A.; Frist, A.Y.; Wang, Q.; Labosky, P.A. Requirement for Foxd3 in the Maintenance of Neural Crest Progenitors. Development 2008, 135, 1615–1624. [Google Scholar] [CrossRef]
- Zhao, J.J.; Afshari, N.A. Generation of Human Corneal Endothelial Cells via In Vitro Ocular Lineage Restriction of Pluripotent Stem Cells. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6878–6884. [Google Scholar] [CrossRef]
- Hatou, S.; Sayano, T.; Higa, K.; Inagaki, E.; Okano, Y.; Sato, Y.; Okano, H.; Tsubota, K.; Shimmura, S. Transplantation of iPSC-Derived Corneal Endothelial Substitutes in a Monkey Corneal Edema Model. Stem Cell Res. 2021, 55, 102497. [Google Scholar] [CrossRef] [PubMed]
- Grönroos, P.; Ilmarinen, T.; Skottman, H. Directed Differentiation of Human Pluripotent Stem Cells towards Corneal Endothelial-Like Cells under Defined Conditions. Cells 2021, 10, 331. [Google Scholar] [CrossRef] [PubMed]
- Maurizi, E.; Merra, A.; Macaluso, C.; Schiroli, D.; Pellegrini, G. GSK-3 Inhibition Reverts Mesenchymal Transition in Primary Human Corneal Endothelial Cells. Eur. J. Cell Biol. 2023, 102, 151302. [Google Scholar] [CrossRef] [PubMed]
- Grönroos, P.; Mörö, A.; Puistola, P.; Hopia, K.; Huuskonen, M.; Viheriälä, T.; Ilmarinen, T.; Skottman, H. Bioprinting of Human Pluripotent Stem Cell Derived Corneal Endothelial Cells with Hydrazone Crosslinked Hyaluronic Acid Bioink. Stem Cell Res. Ther. 2024, 15, 81. [Google Scholar] [CrossRef]
- Arnalich-Montiel, F.; Moratilla, A.; Fuentes-Julián, S.; Aparicio, V.; Cadenas Martin, M.; Peh, G.; Mehta, J.S.; Adnan, K.; Porrua, L.; Pérez-Sarriegui, A.; et al. Treatment of Corneal Endothelial Damage in a Rabbit Model with a Bioengineered Graft Using Human Decellularized Corneal Lamina and Cultured Human Corneal Endothelium. PLoS ONE 2019, 14, e0225480. [Google Scholar] [CrossRef]
- Chi, J.; Wang, S.; Ju, R.; Li, S.; Liu, C.; Zou, M.; Xu, T.; Wang, Y.; Jiang, Z.; Yang, C.; et al. Repair Effects of Thermosensitive Hydrogels Combined with iPSC-Derived Corneal Endothelial Cells on Rabbit Corneal Endothelial Dysfunction. Acta Biomater. 2025, 191, 216–232. [Google Scholar] [CrossRef]
- Li, Z.; Duan, H.; Jia, Y.; Zhao, C.; Li, W.; Wang, X.; Gong, Y.; Dong, C.; Ma, B.; Dou, S.; et al. Long-term corneal recovery by simultaneous delivery of hPSC-derived corneal endothelial precursors and nicotinamide. J. Clin. Investig. 2022, 132, e146658. [Google Scholar] [CrossRef]
- Garber, K. RIKEN Suspends First Clinical Trial Involving Induced Pluripotent Stem Cells. Nat. Biotechnol. 2015, 33, 890–891. [Google Scholar] [CrossRef]
- Miura, K.; Okada, Y.; Aoi, T.; Okada, A.; Takahashi, K.; Okita, K.; Nakagawa, M.; Koyanagi, M.; Tanabe, K.; Ohnuki, M.; et al. Variation in the Safety of Induced Pluripotent Stem Cell Lines. Nat. Biotechnol. 2009, 27, 743–745. [Google Scholar] [CrossRef]
- Okano, H.; Yamanaka, S. iPS Cell Technologies: Significance and Applications to CNS Regeneration and Disease. Mol. Brain 2014, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Mandai, M.; Watanabe, A.; Kurimoto, Y.; Hirami, Y.; Morinaga, C.; Daimon, T.; Fujihara, M.; Akimaru, H.; Sakai, N.; Shibata, Y.; et al. Autologous Induced Stem-Cell-Derived Retinal Cells for Macular Degeneration. N. Engl. J. Med. 2017, 376, 1038–1046. [Google Scholar] [CrossRef]
- Martins, F.; Ribeiro, M.H.L. Quality and Regulatory Requirements for the Manufacture of Master Cell Banks of Clinical Grade iPSCs: The EU and USA Perspectives. Stem Cell Rev. Rep. 2025, 21, 645–679. [Google Scholar] [CrossRef] [PubMed]
- Hirai, T.; Yasuda, S.; Umezawa, A.; Sato, Y. Country-Specific Regulation and International Standardization of Cell-Based Therapeutic Products Derived from Pluripotent Stem Cells. Stem Cell Rep. 2023, 18, 1573–1591. [Google Scholar] [CrossRef]
- Scheiner, Z.S.; Talib, S.; Feigal, E.G. The Potential for Immunogenicity of Autologous Induced Pluripotent Stem Cell-Derived Therapies. J. Biol. Chem. 2014, 289, 4571–4577. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.; Pitossi, F.; Rao, M.S. Banking on iPSC—Is It Doable and Is It Worthwhile. Stem Cell Rev. Rep. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Turner, M.; Leslie, S.; Martin, N.G.; Peschanski, M.; Rao, M.; Taylor, C.J.; Trounson, A.; Turner, D.; Yamanaka, S.; Wilmut, I. Toward the Development of a Global Induced Pluripotent Stem Cell Library. Cell Stem Cell 2013, 13, 382–384. [Google Scholar] [CrossRef]
- de Rham, C.; Villard, J. Potential and Limitation of HLA-Based Banking of Human Pluripotent Stem Cells for Cell Therapy. J. Immunol. Res. 2014, 2014, 518135. [Google Scholar] [CrossRef]
- Vasiliauskaite, I.; Kocaba, V.; van Dijk, K.; Baydoun, L.; Lanser, C.; Lee, D.; Jager, M.J.; Melles, G.R.J.; Oellerich, S. Long-Term Outcomes of Descemet Membrane Endothelial Keratoplasty: Effect of Surgical Indication and Disease Severity. Cornea 2023, 42, 1229–1239. [Google Scholar] [CrossRef]
- Song, S.J.; Nam, Y.; Rim, Y.A.; Ju, J.H.; Sohn, Y. Comparative Analysis of Regulations and Studies on Stem Cell Therapies: Focusing on Induced Pluripotent Stem Cell (iPSC)-Based Treatments. Stem Cell Res. Ther. 2024, 15, 447. [Google Scholar] [CrossRef] [PubMed]
Biomarker | Category | Function | Key References |
---|---|---|---|
CK3, CK12 | Differentiation markers | Specific terminal differentiation marker of CECs. Limbal epithelial basal layer lacks the expression of these markers | Joe et al., 2014 [53] Mikhailova et al., 2014 [37] Hayashi et al., 2012 [41] |
Connexin 43 | Negative marker | Involved in cell–cell contact; not expressed during early CEC proliferation | Chen et al., 2006 [54] Li et al., 2014 [55] |
CK4, CK13 | Negative marker | Conjunctival epithelial markers; not expressed in mature corneal epithelium; markers of non-keratinized epithelium | Ramos et al., 2015 [56] |
CK15 | Progenitor marker | Expressed in limbal basal layer; marker of corneal progenitor status | Mikhailova et al., 2014 [37] |
p63/ΔNp63α | Stem cell marker | Expressed in limbal basal cells; ΔNp63α is a key indicator of regenerative/stem-like capacity | Pellegrini et al., 2001 [57] Mikhailova et al., 2014 [37] Hanson et al., 2013 [40] Soma et al., 2024 [14] Li et al., 2024 [58] Vattulainen et al., 2021 [59] |
PAX6 | Lineage transcription factor | Master regulator of eye development; activates CK12 and CK3 expression during iPSC corneal lineage commitment; necessary for early development of eyes | Grindley et al., 1995 [60] Sasamoto et al., 2016 [61] Hayashi et al., 2012 [41] Cieślar-Pobuda et al., 2016 [34] |
ABCB5 | Limbal stem cell marker | A potential role in limbal epithelial stem cell quiescence and wound healing; ATP-binding transporter expressed in true limbal epithelial stem cells | Ksander et al., 2014 [62] Vattulainen et al., 2021 [59] |
ABCG2 | Stem/progenitor marker | Transiently expressed in early limbal progenitors | Li et al., 2014 [55] Cieślar-Pobuda et al., 2016 [34] |
CK14 | Basal epithelial marker | Expressed in basal progenitor layer of limbal and conjunctival epithelium; seen in early iPSC-CEC differentiation | Shalom-Feuerstein et al., 2013 [63] Zhang et al., 2017 [64] Cieślar-Pobuda et al., 2016 [34] Li et al., 2024 [58] |
MUCIN-16 | Surface mucin protein | Important for corneal epithelial barrier function | Soma et al., 2024 [14] |
p75NTR (CD271) | Limbal stem cells marker | Downregulated upon differentiation; involved in NGF-mediated support of limbal stem cell phenotype | Kolli et al., 2019 [65] Yamamoto et al., 2010 [66] |
Method Type | Specific Markers | Platform | Target Cell Type | Enrichment Logic | Key References |
---|---|---|---|---|---|
Surface Marker-Based Sorting | SSEA-4+/ITGB4+/TRA-1-60− | FACS | Enriched cell type | Positive selection for surface ectodermal markers; negative for undifferentiated iPSCs | Hayashi et al., 2018 [49] |
Surface Marker-Based Sorting | CD200− | MACS/FACS | Enriched cell type | Removes undifferentiated iPSCs and non-CE cells expressing CD200 | Hayashi et al., 2018 [49] |
Functional Clonal Assay | ABCB5+ | FACS + Holoclone assay | Corneal epithelial stem cells | ABCB5+ population forms holoclones; shows high ΔNp63 expression | Watanabe et al., 2021 [50] |
Genetic Reporter System | p63-EGFP knock-in | Live imaging/FACS | p63+ epithelial progenitor cells | EGFP signal indicates active p63 promoter in stem/progenitor population | Kobayashi et al., 2017 [51] |
Matrix Adhesion Selection | LN332E8 matrix | Selective adhesion | CECs | CECs prefer LN332E8 over LN211E8; allows selective attachment and expansion | Shibata et al., 2018 [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luan, Y.; Musayeva, A.; Kim, J.; Le Blon, D.; van den Bogerd, B.; Dickman, M.M.; LaPointe, V.L.S.; Ni Dhubhghaill, S.; Oellerich, S. Clinical Applications of Corneal Cells Derived from Induced Pluripotent Stem Cells. Biomolecules 2025, 15, 1139. https://doi.org/10.3390/biom15081139
Luan Y, Musayeva A, Kim J, Le Blon D, van den Bogerd B, Dickman MM, LaPointe VLS, Ni Dhubhghaill S, Oellerich S. Clinical Applications of Corneal Cells Derived from Induced Pluripotent Stem Cells. Biomolecules. 2025; 15(8):1139. https://doi.org/10.3390/biom15081139
Chicago/Turabian StyleLuan, Yixin, Aytan Musayeva, Jina Kim, Debbie Le Blon, Bert van den Bogerd, Mor M. Dickman, Vanessa L. S. LaPointe, Sorcha Ni Dhubhghaill, and Silke Oellerich. 2025. "Clinical Applications of Corneal Cells Derived from Induced Pluripotent Stem Cells" Biomolecules 15, no. 8: 1139. https://doi.org/10.3390/biom15081139
APA StyleLuan, Y., Musayeva, A., Kim, J., Le Blon, D., van den Bogerd, B., Dickman, M. M., LaPointe, V. L. S., Ni Dhubhghaill, S., & Oellerich, S. (2025). Clinical Applications of Corneal Cells Derived from Induced Pluripotent Stem Cells. Biomolecules, 15(8), 1139. https://doi.org/10.3390/biom15081139