Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,009)

Search Parameters:
Keywords = solar radiation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2142 KB  
Article
Construction of a Nocturnal Low-Temperature Tolerance Index for Strawberry and Its Correlation with Yield
by Hongbo Cui, Qingyan Han, Yanni Liu, Qian Zhang, Jun Liu, Jianfeng Wang and Huanyu Zhang
Horticulturae 2026, 12(1), 81; https://doi.org/10.3390/horticulturae12010081 - 9 Jan 2026
Abstract
Strawberry is widely cultivated due to its short growth cycle, high yield, and significant profits. In high-latitude cold regions, the planting area of overwintering strawberry has expanded rapidly in recent years. However, although daytime temperatures inside solar greenhouses rise quickly with solar radiation, [...] Read more.
Strawberry is widely cultivated due to its short growth cycle, high yield, and significant profits. In high-latitude cold regions, the planting area of overwintering strawberry has expanded rapidly in recent years. However, although daytime temperatures inside solar greenhouses rise quickly with solar radiation, plants are frequently subjected to persistent nocturnal low-temperature stress (nocturnal temperature below 10 °C). This stress restricts photosynthesis, delays growth, and markedly reduces yield. Therefore, accurately evaluating the tolerance of strawberry varieties to low nocturnal temperatures is crucial for unheated overwintering production in cold regions. This study selected Snow White, Benihoppe, and Kaorino as experimental materials for overwintering cultivation trials in a typical cold-region solar greenhouse. We measured and analyzed growth and development, photosynthetic characteristics, phenological traits, and fruit yield. Based on photosynthetic physiology and phenotypic traits, we constructed the Photosynthesis–Fluorescence Index (PFI), the Production–Phenotype Index (PPI), and the Nocturnal Cold Tolerance Index (NCTI). The results showed that Kaorino exhibited significantly higher values in all three indices compared with Benihoppe and Snow White. After exposure to low night temperatures, Kaorino exhibited rapid photosynthetic induction, strong maintenance of PSII activity, vigorous growth, early maturation, and high yield. Moreover, all three composite indices were strongly and positively correlated with total yield (R2 > 0.97), demonstrating their effectiveness in distinguishing the nocturnal low-temperature tolerance of strawberry cultivars. These composite indices provide a scientifically robust method for selecting suitable cultivars for unheated overwinter strawberry production in high-latitude cold regions. Full article
(This article belongs to the Section Vegetable Production Systems)
25 pages, 5056 KB  
Article
Recycled Pavement Materials and Urban Microclimate: Albedo and Thermal Capacity Effects on Heat Island Mitigation
by Dimitra Tsirigoti and Konstantinos Gkyrtis
Solar 2026, 6(1), 5; https://doi.org/10.3390/solar6010005 - 9 Jan 2026
Abstract
In Mediterranean cities, high solar radiation combined with limited shading and vegetation intensifies the urban heat island (UHI) phenomenon. As the road network often covers a large portion of the cities’ surfaces and is mostly constructed using asphalt pavements, it can significantly affect [...] Read more.
In Mediterranean cities, high solar radiation combined with limited shading and vegetation intensifies the urban heat island (UHI) phenomenon. As the road network often covers a large portion of the cities’ surfaces and is mostly constructed using asphalt pavements, it can significantly affect the urban microclimate, leading to low thermal comfort and increased energy consumption. Recycled and waste materials are increasingly used in the construction of pavements in accordance with the principle of sustainability for minimizing waste and energy to produce new materials based on a circular economy. The scope of this study is to evaluate the effect of recycled or waste materials used in road pavements on the urban microclimate. The surface and ambient temperature of urban pavements constructed with conventional asphalt and recycled/waste-based mixtures are assessed through simulation. Two study areas comprising large street junctions near metro stations in the city of Thessaloniki, in Greece, are examined under three scenarios: a conventional hot mix asphalt, an asphalt mixture containing steel slag, and a high-albedo mixture. The results of the research suggest that the use of steel slag could reduce the air temperature by 0.9 °C at 15:00, east European summer time (EEST), while the high-albedo scenario could reduce the ambient temperature by 1.6 °C at 16:00. The research results are useful for promoting the use of recycled materials, not only as a means of sustainably using resources but also for the improvement of thermal comfort in urban areas, the mitigation of the UHI effect, and the reduction of heat stress for human health. Full article
(This article belongs to the Topic Sustainable Built Environment, 2nd Volume)
Show Figures

Figure 1

33 pages, 3689 KB  
Article
Impact of Urban Morphology on Microclimate and Thermal Comfort in Arid Cities: A Comparative Study and Modeling in Béchar
by Fatima Zohra Benlahbib, Djamel Alkama, Naima Hadj Mohamed, Zouaoui R. Harrat, Saïd Bennaceur, Ercan Işık, Fatih Avcil, Nahla Hilal, Sheelan Mahmoud Hama and Marijana Hadzima-Nyarko
Sustainability 2026, 18(2), 659; https://doi.org/10.3390/su18020659 - 8 Jan 2026
Abstract
Urban morphology plays a decisive role in regulating microclimate and outdoor thermal comfort in arid cities, where extreme heat and intense solar radiation amplify thermal stress. This study examines the influence of four contrasting urban fabrics in Béchar (Algerian Sahara): the vernacular Ksar, [...] Read more.
Urban morphology plays a decisive role in regulating microclimate and outdoor thermal comfort in arid cities, where extreme heat and intense solar radiation amplify thermal stress. This study examines the influence of four contrasting urban fabrics in Béchar (Algerian Sahara): the vernacular Ksar, the regular-grid colonial fabric, a modern large-scale residential estate, and low-density detached housing, on local microclimatic conditions. An integrated methodological framework is adopted, combining qualitative morphological analysis, quantitative indicators including density, porosity, height-to-width ratio, and sky view factor, in situ microclimatic measurements, and high-resolution ENVI-met simulations performed for the hottest summer day. Results show that compact urban forms, characterized by low sky view factor values, markedly reduce radiative exposure and improve thermal performance. The vernacular Ksar, exhibiting the lowest SVF, records the lowest mean radiant temperature (approximately 45 °C) and the most favorable average comfort conditions (PMV = 3.77; UTCI = 38.37 °C), representing a reduction of about 3 °C, while its high-thermal-inertia earthen materials ensure effective nocturnal thermal recovery (PMV ≈ 1.06; UTCI = 27.8 °C at 06:00). In contrast, more open modern fabrics, including the colonial grid, large-scale estates, and low-density housing, experience higher thermal stress, reflecting vulnerability to solar exposure and limited thermal inertia. Validation against field measurements confirms model reliability. These findings highlight the continued relevance of vernacular bioclimatic principles for sustainable urban design in arid climates. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

23 pages, 9605 KB  
Article
Divergent Impacts of Climate Change and Human Activities on Vegetation Dynamics Across Land Use Types in Hunan Province, China
by Qing Peng, Cheng Li, Xiaohong Fang, Zijie Wu, Kwok Pan Chun and Thanti Octavianti
Sustainability 2026, 18(2), 621; https://doi.org/10.3390/su18020621 - 7 Jan 2026
Abstract
Terrestrial ecosystems in Hunan Province have undergone marked yet spatially heterogeneous vegetation changes under concurrent climate change and intensifying human activities. The aim of this study is to resolve how vegetation responses vary among land-use types by quantifying kernel Normalized Difference Vegetation Index [...] Read more.
Terrestrial ecosystems in Hunan Province have undergone marked yet spatially heterogeneous vegetation changes under concurrent climate change and intensifying human activities. The aim of this study is to resolve how vegetation responses vary among land-use types by quantifying kernel Normalized Difference Vegetation Index (kNDVI) dynamics during 2000–2023 using precipitation, temperature, and solar radiation, coupled with trend analysis and a partial-derivative-based attribution. Mean kNDVI increased overall at 0.0016 yr−1; vegetation improved over 76.30% of the area, whereas 5.72% of the area experienced degradation. Built-up land exhibited the largest degraded fraction (35.04%). Human activities and temperature emerged as the dominant drivers of kNDVI change, contributing 62.25% and 27.92%, respectively, while precipitation (3.08%) and solar radiation (6.77%) played comparatively minor roles. Spatially, human activities primarily controlled vegetation dynamics in plains and urban clusters (~78% of the area), whereas temperature constrained vegetation in high-elevation mountain ranges. Analysis along the human footprint (HFP) gradient reveals that driver composition remains steady in resilient ecosystems (farmland and forest), despite increasing anthropogenic pressure, whereas fragile ecosystems (grassland and bareland) exhibited pronounced volatility and heightened sensitivity to environmental constraints. These findings provide a quantitative basis for developing sustainable ecological security strategies, incorporating region-specific measures such as adaptive afforestation, sustainable agricultural management, and strict ecological protection, to enhance ecosystem resilience by prioritizing the climate resilience of mountain forests and the stability of fragile grassland systems. Full article
Show Figures

Figure 1

18 pages, 18978 KB  
Article
The Gut Microbiome of the Goitered Gazelle Enables Plasticity by Responding to Environmental Factors in the Qaidam Basin
by Qing Zhao, Bin Li, Juan Ma, Jiaxin Wei and Wen Qin
Biology 2026, 15(2), 118; https://doi.org/10.3390/biology15020118 - 7 Jan 2026
Abstract
The Qaidam Basin on the Qinghai–Tibet Plateau is an extreme arid environment, posing severe survival challenges. The goitered gazelle (Gazella subgutturosa) is a keystone species in this fragile ecosystem, yet the ecological role of its gut microbiota and its associations with [...] Read more.
The Qaidam Basin on the Qinghai–Tibet Plateau is an extreme arid environment, posing severe survival challenges. The goitered gazelle (Gazella subgutturosa) is a keystone species in this fragile ecosystem, yet the ecological role of its gut microbiota and its associations with environmental drivers remain poorly understood. We collected fecal samples from gazelles across seven regions of the basin. Metagenomic sequencing was employed to characterize the gut microbiome. Statistical analyses (Mantel tests, multiple regression on matrices, co-occurrence networks) were used to link microbial composition and function with key environmental factors. The gut microbiota was dominated by fiber-degrading phyla (Firmicutes, Bacteroidota) and enriched in metabolic pathways, aligning with a high-fiber diet. Regarding environmental drivers of gut microbial composition variations, isothermality and soil organic carbon were significant predictors, likely via vegetation and environmental inoculation. Regarding environmental drivers of gut microbial function variations, winter solar radiation was uniquely associated with metabolic function without altering microbial composition, suggesting a functional plasticity—the capacity to shift metabolic profiles independently of taxonomic turnover—in response to environmental variation. The gut microbiota of the goitered gazelle exhibits a stable core composition alongside environmentally responsive functional modules. This suggests the microbiome may serve as a significant mediator of host resilience, highlighting adaptation as a dynamic interplay between host, microbiome, and environment. These insights are crucial for microbiome-assisted conservation. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

24 pages, 4846 KB  
Review
Analysis of Fuel Gasification Using Solar Technology: A Patent Review
by Mikhail Zhumagulov, Aizhan Omirbayeva and Davide Papurello
Gases 2026, 6(1), 3; https://doi.org/10.3390/gases6010003 - 7 Jan 2026
Abstract
Solar energy enhances the energy and environmental performance of coal gasification by lowering carbon emissions and increasing the yield and quality of synthesis gas. This patent review surveys recent global advances in solar thermochemical reactors for coal gasification, focusing on key innovations disclosed [...] Read more.
Solar energy enhances the energy and environmental performance of coal gasification by lowering carbon emissions and increasing the yield and quality of synthesis gas. This patent review surveys recent global advances in solar thermochemical reactors for coal gasification, focusing on key innovations disclosed in patent applications and grants, with particular attention to technologies that improve process efficiency and sustainability. The novelty of the review is that unlike most patent reviews that focus primarily on statistical indicators such as application counts, geography, and classification, this work integrates qualitative analysis of specific technical solutions alongside statistical evaluation. This combined approach enables a deeper assessment of technological maturity and practical applicability. Fifteen patents from different countries were reviewed. The largest number (8, 53%) belongs to the United States. China has the second place with 4 (27%). The remaining countries (the EU, Korea, and Russia) hold 1 patent (7% each). The present work emphasises the technological and engineering solutions associated with the integration of solar energy into gasification processes. The author’s design is free of the disadvantages of its counterparts and is a simplified design with a high degree of adaptability to various types of fuel, including brown coal, biomass, and other carbon-containing materials. Full article
(This article belongs to the Special Issue Bio-Energy: Biogas, Biomethane and Green-Hydrogen)
Show Figures

Figure 1

32 pages, 8817 KB  
Article
Geospatial Assessment and Modeling of Water–Energy–Food Nexus Optimization for Sustainable Paddy Cultivation in the Dry Zone of Sri Lanka: A Case Study in the North Central Province
by Awanthi Udeshika Iddawela, Jeong-Woo Son, Yeon-Kyu Sonn and Seung-Oh Hur
Water 2026, 18(2), 152; https://doi.org/10.3390/w18020152 - 6 Jan 2026
Viewed by 212
Abstract
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the [...] Read more.
This study presents a geospatial assessment and modeling of the water–energy–food (WEF) nexus to enrich the sustainable paddy cultivation of the North Central Province (NCP) of Sri Lanka in the Dry Zone. Increasing climatic variability and limited resources have raised concerns about the need for efficient resource management to restore food security globally. The study analyzed the three components of the WEF nexus for their synergies and trade-offs using GIS and remote sensing applications. The food productivity potential was derived using the Normalized Difference Vegetation Index (NDVI), Soil Organic Carbon (SOC), soil type, and land use, whereas water availability was assessed using the Normalized Difference Water Index (NDWI), Soil Moisture Index (SMI), and rainfall data. Energy potential was mapped using WorldClim 2.1 datasets on solar radiation and wind speed and the proximity to the national grid. Scenario modeling was conducted through raster overlay analysis to identify zones of WEF constraints and synergies such as low food–low water areas and high energy–low productivity areas. To ensure the accuracy of the created model, Pearson correlation analysis was used to internally validate between hotspot layers (representing extracted data) and scenario layers (representing modeled outputs). The results revealed a strong positive correlation (r = 0.737), a moderate positive correlation for energy (r = 0.582), and a positive correlation for food (r = 0.273). Those values were statistically significant at p > 0.001. These results confirm the internal validity and accuracy of the model. This study further calculated the total greenhouse gas (GHG) emissions from paddy cultivation in NCP as 1,070,800 tCO2eq yr−1, which results in an emission intensity of 5.35 tCO2eq ha−1 yr−1, with CH4 contributing around 89% and N2O 11%. This highlights the importance of sustainable cultivation in mitigating agricultural emissions that contribute to climate change. Overall, this study demonstrates a robust framework for identifying areas of resource stress or potential synergy under the WEF nexus for policy implementation, to promote climate resilience and sustainable paddy cultivation, to enhance the food security of the country. This model can be adapted to implement similar research work in the future as well. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

27 pages, 12369 KB  
Article
Design and Validation of a Solar-Powered LoRa Weather Station for Environmental Monitoring and Agricultural Decision Support
by Uriel E. Alcalá-Rodríguez, Héctor A. Guerrero-Osuna, Fabián García-Vázquez, Jesús A. Nava-Pintor, Luis F. Luque-Vega, Emmanuel Lopez-Neri, Salvador Castro-Tapia, Luis O. Solís-Sánchez and Ma. del Rosario Martínez-Blanco
Technologies 2026, 14(1), 32; https://doi.org/10.3390/technologies14010032 - 5 Jan 2026
Viewed by 159
Abstract
Due to changing weather conditions, productivity needs to be enhanced and resources must be used more efficiently in agriculture. Precision agriculture relies on systems that can gather real-time environmental data to address these issues. However, the high cost of commercial weather stations often [...] Read more.
Due to changing weather conditions, productivity needs to be enhanced and resources must be used more efficiently in agriculture. Precision agriculture relies on systems that can gather real-time environmental data to address these issues. However, the high cost of commercial weather stations often limits their adoption in rural areas. This study introduces a low-cost weather station designed for precision agriculture applications. The system consists of three main modules. The first module is the weather station, which gathers data on temperature, relative humidity, barometric pressure, solar radiation, wind speed and direction, and precipitation. It then transmits this data via LoRa communication to the local console module. This console receives the data, displays it on a screen, and sends it through Wi-Fi to the cloud server module. The cloud server presents the information via an interactive interface and is responsible for storing, processing, and analyzing the data records collected. The system was installed in the municipality of Ojocaliente, Zacatecas, Mexico, where performance and validation tests were conducted over a one-month period using sensors and reference measurements to evaluate the accuracy and stability of the data. The results showed high operational reliability and a strong correlation between the recorded values and the reference data. This confirms that the proposed solution provides a scalable, low-cost, and reliable alternative for environmental monitoring in precision agriculture. Full article
Show Figures

Figure 1

24 pages, 13069 KB  
Article
China’s Seasonal Precipitation: Quantitative Attribution of Ocean-Atmosphere Teleconnections and Near-Surface Forcing
by Chang Lu, Long Ma, Bolin Sun, Xing Huang and Tingxi Liu
Hydrology 2026, 13(1), 19; https://doi.org/10.3390/hydrology13010019 - 4 Jan 2026
Viewed by 248
Abstract
Under concurrent global warming and multi-scale climate anomalies, regional precipitation has become more uneven and less stable, and extreme events occur more frequently, amplifying water scarcity and ecological risk. Focusing on mainland China, we analyze nearly 70 years of monthly station precipitation records [...] Read more.
Under concurrent global warming and multi-scale climate anomalies, regional precipitation has become more uneven and less stable, and extreme events occur more frequently, amplifying water scarcity and ecological risk. Focusing on mainland China, we analyze nearly 70 years of monthly station precipitation records together with eight climate drivers—the Pacific Decadal Oscillation (PDO), Atlantic Multidecadal Oscillation (AMO), Multivariate ENSO Index (MEI), Arctic Oscillation (AO), surface air pressure (AP), wind speed (WS), relative humidity (RH), and surface solar radiation (SR)—and precipitation outputs from eight CMIP6 models. Using wavelet analysis and partial redundancy analysis, we systematically evaluate the qualitative relationships between climate drivers and precipitation and quantify the contribution of each driver. The results show that seasonal precipitation decreases stepwise from the southeast toward the northwest, and that stability is markedly lower in the northern arid and semi-arid regions than in the humid south, with widespread declines near the boundary between the second and third topographic steps of China. During the cold season, and in the northern arid and semi-arid zones and along the margins of the Tibetan Plateau, precipitation varies mainly with interdecadal swings of North Atlantic sea surface temperature and with the strength of polar and midlatitude circulation, and it is further amplified by variability in near-surface winds; the combined contribution reaches about 32% across the Northeast Plain, the Junggar Basin, and areas north of the Loess Plateau. During the warm season, and in the eastern and southern monsoon regions, precipitation is modulated primarily by tropical Pacific sea surface temperature and convection anomalies and by related changes in the position and strength of the subtropical high, moisture transport pathways, and relative humidity; the combined contribution is about 22% south of the Yangtze River and in adjacent areas. Our findings reveal the spatiotemporal variability of precipitation in China and its responses to multiple climate drivers and their relative contributions, providing a quantitative basis for water allocation and disaster risk management under climate change. Full article
Show Figures

Figure 1

18 pages, 5654 KB  
Article
Thermal Deformation Correction for the FY-4A LMI
by Yuansheng Zhang, Xiushu Qie, Dongjie Cao, Shanfeng Yuan, Dongfang Wang, Hongbo Zhang, Dongxia Liu, Zhuling Sun, Mingyuan Liu, Kexin Zhu, Rubin Jiang and Jing Yang
Remote Sens. 2026, 18(1), 163; https://doi.org/10.3390/rs18010163 - 4 Jan 2026
Viewed by 71
Abstract
Affected by solar radiation in space, the FY-4A Lightning Mapping Imager (LMI) detection array exhibits daily periodic thermal expansion and contraction, leading to deviations in lightning positioning accuracy. While LMI’s detection efficiency is higher at night, the dual edge matching algorithm, which relies [...] Read more.
Affected by solar radiation in space, the FY-4A Lightning Mapping Imager (LMI) detection array exhibits daily periodic thermal expansion and contraction, leading to deviations in lightning positioning accuracy. While LMI’s detection efficiency is higher at night, the dual edge matching algorithm, which relies on surface features for correction, does not perform well during nighttime (around 3 pixels). Analysis shows that most of the lightning data corrected by this method exhibit significant deviations from the actual lightning locations in practical applications. Therefore, this paper proposes a new correction method based on high precision ground-based lightning location data from the 2019 summer World Wide Lightning Location Network (WWLLN) and the Beijing Broadband Lightning Network (BLNET). Using these datasets as reference standards, the periodic deviation of LMI is determined, and a correction curve is derived using a weighted Gaussian fitting approach. This method further improves the nighttime lightning location accuracy of LMI on the basis of the current operational algorithm. The results demonstrate that the corrected LMI data significantly reduces the positioning errors, with an accuracy within ±1 pixel in the Beijing area, as an example. Full article
(This article belongs to the Special Issue Application of Satellite Data for Lightning Mapping)
Show Figures

Figure 1

39 pages, 1754 KB  
Review
Eco-Physiological and Molecular Roles of Zinc Oxide Nanoparticles (ZnO-NPs) in Mitigating Abiotic Stress: A Comprehensive Review
by Erick H. Ochoa-Chaparro, Luis U. Castruita-Esparza and Esteban Sánchez
Plants 2026, 15(1), 147; https://doi.org/10.3390/plants15010147 - 4 Jan 2026
Viewed by 99
Abstract
Mitigation of abiotic stress of crops is currently one of the primary issues for modern agriculture to secure food supply. On that point, it is acknowledged that climate change is leading to an increase in temperature and solar radiation, while also contributing to [...] Read more.
Mitigation of abiotic stress of crops is currently one of the primary issues for modern agriculture to secure food supply. On that point, it is acknowledged that climate change is leading to an increase in temperature and solar radiation, while also contributing to prolonged drought events. In contrast, saline soil and heavy metal pollution have been globally problematic, affecting a large part of crops. In this review, we have provided an overview of the eco-physiological and molecular aspects of zinc oxide nanoparticles (ZnO-NPs) as a novel technology for alleviating abiotic stress in plants. It is reported that the presence of ZnO-NPs has positive benefits in physiological processes, such as photosynthetic efficiency, osmotic regulation, ionic homeostasis, and the activation of antioxidant defense systems through gene modifications and the regulation of genes that are regulated under stress conditions. These are positive results for yields, nutrition, and resistance levels in cereals, legumes, and horticultural crops. Furthermore, essential details are reported, suggesting that the addition of ZnO-NPs to crops may be involved in regulating plant metabolism. Nonetheless, we recognize that this technology poses significant challenges for validation on a large scale, particularly in uncontrolled environments. Full article
Show Figures

Figure 1

21 pages, 4969 KB  
Article
Analysis of Temporal Changes in the Floating Vegetation and Algae Surface of the Water Bodies of Kis-Balaton Based on Aerial Image Classification and Meteorological Data
by Kristóf Kozma-Bognár, Angéla Anda, Ariel Tóth, Veronika Kozma-Bognár and József Berke
Geomatics 2026, 6(1), 3; https://doi.org/10.3390/geomatics6010003 - 3 Jan 2026
Viewed by 156
Abstract
Climate change and related weather extremes are increasingly having an impact on all aspects of life. The main objective of the research was to analyze the impact of the most important meteorological elements and the image data of various water bodies of the [...] Read more.
Climate change and related weather extremes are increasingly having an impact on all aspects of life. The main objective of the research was to analyze the impact of the most important meteorological elements and the image data of various water bodies of the Kis-Balaton wetland, Hungary. The primary question was which meteorological elements have a positive or negative influence on vegetational surface cover. Drones have facilitated the visual surveying and monitoring of challenging-to-reach water bodies in the area, including a lake and multiple channels. The individual channels had different flow conditions. Aerial surveys were conducted monthly, based on pre-prepared flight plans. Images captured by a Mavic 3 drone flying at an altitude of 150 m and equipped with a multispectral sensor were processed. The time-series images were aligned and assembled into orthophotos. The image details relevant to the research were segregated and classified using Maximum Likelihood classification algorithm. The reliability of the image data used was checked by Shannon entropy and spectral fractal dimension measurements. The results of the classification were compared with the meteorological data collected by a QLC-50 automatic climate station of Keszthely. The investigations revealed that the surface cover of the examined water bodies was different in the two years but showed a kind of periodicity during the year. In those periods, where photosynthetic organisms multiplied in a higher proportion in the water body, higher monthly average air temperatures and higher monthly global solar radiation sums were observed. Full article
Show Figures

Figure 1

18 pages, 3247 KB  
Article
Effects of Photovoltaic-Integrated Tea Plantation on Tea Field Productivity and Tea Leaf Quality
by Xin-Qiang Zheng, Xue-Han Zhang, Jian-Gao Zhang, Rong-Jin Zheng, Jian-Liang Lu, Jian-Hui Ye and Yue-Rong Liang
Agriculture 2026, 16(1), 125; https://doi.org/10.3390/agriculture16010125 - 3 Jan 2026
Viewed by 224
Abstract
Agrivoltaics integrates photovoltaic (PV) power generation with agricultural practices, enabling dual land-use and mitigating land-use competition between agriculture and energy production. China has 3.43 million hectares of tea fields, offering significant potential for PV-integrated tea plantations (PVtea) to address land scarcity in clean [...] Read more.
Agrivoltaics integrates photovoltaic (PV) power generation with agricultural practices, enabling dual land-use and mitigating land-use competition between agriculture and energy production. China has 3.43 million hectares of tea fields, offering significant potential for PV-integrated tea plantations (PVtea) to address land scarcity in clean energy development. This study aimed to investigate the impact of PV modules above tea bushes in PVtea on the yield and quality of tea, as well as tea plant resistance to environmental stresses. The PV system uses a single-axis tracking system with a horizontal north–south axis and ±45° tilt. It includes 70 UL-270P-60 polycrystalline solar panels (270 Wp each), arranged in 5 columns of 14 panels, spaced 4500 mm apart, covering 280 m2. The panels are mounted 2400 mm above the ground, with a total capacity of 18.90 kWp (656 kWp/ha). Tea yield, quality-related components, leaf photosystem II (PSII) activity, and plant resistance to environmental stresses were investigated in comparison to an adjacent open-field tea plantation (control). The mean photosynthetic active radiation (PAR) reaching the plucking table of PVtea was 52.9% of the control, with 32.0% of the control on a sunny day and 49.0% on a cloudy day, accompanied by an increase in ambient relative humidity. These changes alleviated the midday depression of leaf PSII activity caused by high light, resulting in a 9.3–15.3% increase in leaf yield. Moreover, PVtea summer tea exhibited higher levels of amino acids and total catechins, resulting in tea quality improvement. Additionally, PVtea enhanced the resistance of tea plants to frost damage in spring and heat stress in summer. PVtea integrates photovoltaic power generation with tea cultivation practices, which not only facilitates clean energy production—an average annual generation of 697,878.5 kWh per hectare—but also increases tea productivity by 9.3–15.3% and the land-use equivalence ratio (LER) by 70%. Full article
(This article belongs to the Special Issue Advanced Cultivation Technologies for Horticultural Crops Production)
Show Figures

Graphical abstract

20 pages, 1883 KB  
Article
Agrivoltaics in the Tropics: Soybean Yield Stability and Microclimate Buffering Across Wet and Dry Seasons
by Sung Yoon, MinKyoung Kim, SeungYeun Han and Jai-Young Lee
Agronomy 2026, 16(1), 116; https://doi.org/10.3390/agronomy16010116 - 1 Jan 2026
Viewed by 344
Abstract
Agrivoltaics (APV) offers a promising dual land-use solution for food and energy production, yet empirical data regarding its impact on leguminous crops in tropical monsoon climates remain limited. This study evaluated the microclimate, growth, and yield of soybean (Glycine max) under an APV [...] Read more.
Agrivoltaics (APV) offers a promising dual land-use solution for food and energy production, yet empirical data regarding its impact on leguminous crops in tropical monsoon climates remain limited. This study evaluated the microclimate, growth, and yield of soybean (Glycine max) under an APV system compared to an open-field control during the wet and dry seasons in Bogor, Indonesia. The APV structure reduced incident solar radiation by approximately 35%, significantly lowering soil temperatures and maintaining higher soil moisture across both seasons. In the wet season, the APV treatment significantly increased grain yield (3528.8 vs. 1708.3 kg ha−1, +106%) relative to the open field by mitigating excessive heat and radiative loads, which enhanced pod retention. In the dry season, APV maintained a yield advantage (2025.6 vs. 1724.4 kg ha−1, +17%), driven by improved water conservation and a higher harvest index. Notably, shading did not delay phenological development or hinder vegetative growth in either season. These findings demonstrate that APV systems can contribute to sustainably higher yields and stability in tropical environments by buffering against season-specific environmental stresses, suggesting a viable pathway for sustainable agricultural intensification in equatorial regions. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

8 pages, 724 KB  
Hypothesis
The Wrong Assumptions of the Effects of Climate Change on Marine Turtle Nests with Temperature-Dependent Sex Determination
by Marc Girondot
Animals 2026, 16(1), 97; https://doi.org/10.3390/ani16010097 - 29 Dec 2025
Viewed by 241
Abstract
Contemporary climate change, driven by anthropogenic greenhouse gas (GHG) emissions, has raised global temperatures by over 1 °C above pre-industrial levels, profoundly altering Earth’s energy balance. In marine turtles, which exhibit temperature-dependent sex determination (TSD), embryonic sex ratios are highly sensitive to nest [...] Read more.
Contemporary climate change, driven by anthropogenic greenhouse gas (GHG) emissions, has raised global temperatures by over 1 °C above pre-industrial levels, profoundly altering Earth’s energy balance. In marine turtles, which exhibit temperature-dependent sex determination (TSD), embryonic sex ratios are highly sensitive to nest temperature. Most studies predicting the effects of climate change on turtle sex ratios have used air temperature or sea surface temperature (SST) as proxies for nest temperature, despite limited empirical validation of this assumption. I question the validity of this approach by examining the physical mechanisms of heat transfer within beach soils, including conduction, convection, and radiation, and how they are modulated by factors such as soil texture, moisture, and solar radiation. The analysis highlights that while GHGs increase air temperature through the greenhouse effect, they do not directly alter incoming solar radiation, the principal driver of subsurface temperature. Furthermore, increased air temperature enhances evaporation and soil drying, reducing thermal conductivity and potentially lowering heat penetration into nesting depths. Consequently, air or SST proxies can misrepresent the actual thermal environment of marine turtle nests, leading to inaccurate or even reverse projections of sex ratios under climate change. A mechanistic approach integrating soil heat dynamics and solar radiation is therefore essential for realistic assessments of TSD responses and conservation planning in a warming world. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

Back to TopTop