Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,435)

Search Parameters:
Keywords = soil-water balance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 11555 KiB  
Article
Impacts of Land Use and Hydrological Regime on the Spatiotemporal Distribution of Ecosystem Services in a Large Yangtze River-Connected Lake Region
by Ying Huang, Xinsheng Chen, Ying Zhuo and Lianlian Zhu
Water 2025, 17(15), 2337; https://doi.org/10.3390/w17152337 - 6 Aug 2025
Abstract
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil [...] Read more.
In river-connected lake regions, both land use and hydrological regime changes may affect the ecosystem services; however, few studies have attempted to elucidate their complex influences. In this study, the spatiotemporal dynamics of eight ecosystem services (crop production, aquatic production, water yield, soil retention, flood regulation, water purification, net primary productivity, and habitat quality) were investigated through remote-sensing images and the InVEST model in the Dongting Lake Region during 2000–2020. Results revealed that crop and aquatic production increased significantly from 2000 to 2020, particularly in the northwestern and central regions, while soil retention and net primary productivity also improved. However, flood regulation, water purification, and habitat quality decreased, with the fastest decline in habitat quality occurring at the periphery of the Dongting Lake. Land-use types accounted for 63.3%, 53.8%, and 40.3% of spatial heterogeneity in habitat quality, flood regulation, and water purification, respectively. Land-use changes, particularly the expansion of construction land and the conversion of water bodies to cropland, led to a sharp decline in soil retention, flood regulation, water purification, net primary productivity, and habitat quality. In addition, crop production and aquatic production were higher in cultivated land and residential land, while the accompanying degradation of flood regulation, water purification, and habitat quality formed a “production-pollution-degradation” spatial coupling pattern. Furthermore, hydrological fluctuations further complicated these dynamics; wet years amplified agricultural outputs but intensified ecological degradation through spatial spillover effects. These findings underscore the need for integrated land-use and hydrological management strategies that balance human livelihoods with ecosystem resilience. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

23 pages, 7962 KiB  
Article
Predictive Analysis of Hydrological Variables in the Cahaba Watershed: Enhancing Forecasting Accuracy for Water Resource Management Using Time-Series and Machine Learning Models
by Sai Kumar Dasari, Pooja Preetha and Hari Manikanta Ghantasala
Earth 2025, 6(3), 89; https://doi.org/10.3390/earth6030089 (registering DOI) - 4 Aug 2025
Viewed by 151
Abstract
This study presents a hybrid approach to hydrological forecasting by integrating the physically based Soil and Water Assessment Tool (SWAT) model with Prophet time-series modeling and machine learning–based multi-output regression. Applied to the Cahaba watershed, the objective is to predict key environmental variables [...] Read more.
This study presents a hybrid approach to hydrological forecasting by integrating the physically based Soil and Water Assessment Tool (SWAT) model with Prophet time-series modeling and machine learning–based multi-output regression. Applied to the Cahaba watershed, the objective is to predict key environmental variables (precipitation, evapotranspiration (ET), potential evapotranspiration (PET), and snowmelt) and their influence on hydrological responses (surface runoff, groundwater flow, soil water, sediment yield, and water yield) under present (2010–2022) and future (2030–2042) climate scenarios. Using SWAT outputs for calibration, the integrated SWAT-Prophet-ML model predicted ET and PET with RMSE values between 10 and 20 mm. Performance was lower for high-variability events such as precipitation (RMSE = 30–50 mm). Under current climate conditions, R2 values of 0.75 (water yield) and 0.70 (surface runoff) were achieved. Groundwater and sediment yields were underpredicted, particularly during peak years. The model’s limitations relate to its dependence on historical trends and its limited representation of physical processes, which constrain its performance under future climate scenarios. Suggested improvements include scenario-based training and integration of physical constraints. The approach offers a scalable, data-driven method for enhancing monthly water balance prediction and supports applications in watershed planning. Full article
Show Figures

Figure 1

21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 261
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

21 pages, 6618 KiB  
Article
Comparison of Deep Learning Models for LAI Simulation and Interpretable Hydrothermal Coupling in the Loess Plateau
by Junpo Yu, Yajun Si, Wen Zhao, Zeyu Zhou, Jiming Jin, Wenjun Yan, Xiangyu Shao, Zhixiang Xu and Junwei Gan
Plants 2025, 14(15), 2391; https://doi.org/10.3390/plants14152391 - 2 Aug 2025
Viewed by 225
Abstract
As the world’s largest loess deposit region, the Loess Plateau’s vegetation dynamics are crucial for its regional water–heat balance and ecosystem functioning. Leaf Area Index (LAI) serves as a key indicator bridging canopy architecture and plant physiological activities. Existing studies have made significant [...] Read more.
As the world’s largest loess deposit region, the Loess Plateau’s vegetation dynamics are crucial for its regional water–heat balance and ecosystem functioning. Leaf Area Index (LAI) serves as a key indicator bridging canopy architecture and plant physiological activities. Existing studies have made significant advancements in simulating LAI, yet accurate LAI simulation remains challenging. To address this challenge and gain deeper insights into the environmental controls of LAI, this study aims to accurately simulate LAI in the Loess Plateau using deep learning models and to elucidate the spatiotemporal influence of soil moisture and temperature on LAI dynamics. For this purpose, we used three deep learning models, namely Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), and Interpretable Multivariable (IMV)-LSTM, to simulate LAI in the Loess Plateau, only using soil moisture and temperature as inputs. Results indicated that our approach outperformed traditional models and effectively captured LAI variations across different vegetation types. The attention analysis revealed that soil moisture mainly influenced LAI in the arid northwest and temperature was the predominant effect in the humid southeast. Seasonally, soil moisture was crucial in spring and summer, notably in grasslands and croplands, whereas temperature dominated in autumn and winter. Notably, forests had the longest temperature-sensitive periods. As LAI increased, soil moisture became more influential, and at peak LAI, both factors exerted varying controls on different vegetation types. These findings demonstrated the strength of deep learning for simulating vegetation–climate interactions and provided insights into hydrothermal regulation mechanisms in semiarid regions. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

18 pages, 3354 KiB  
Article
Hydrological Modeling of the Chikugo River Basin Using SWAT: Insights into Water Balance and Seasonal Variability
by Francis Jhun Macalam, Kunyang Wang, Shin-ichi Onodera, Mitsuyo Saito, Yuko Nagano, Masatoshi Yamazaki and Yu War Nang
Sustainability 2025, 17(15), 7027; https://doi.org/10.3390/su17157027 - 2 Aug 2025
Viewed by 293
Abstract
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the [...] Read more.
Integrated hydrological modeling plays a crucial role in advancing sustainable water resource management, particularly in regions facing seasonal and extreme precipitation events. However, comprehensive studies that assess hydrological variability in temperate river basins remain limited. This study addresses this gap by evaluating the performance of the Soil and Water Assessment Tool (SWAT) in simulating streamflow, water balance, and seasonal hydrological dynamics in the Chikugo River Basin, Kyushu Island, Japan. The basin, originating from Mount Aso and draining into the Ariake Sea, is subject to frequent typhoons and intense rainfall, making it a critical case for sustainable water governance. Using the Sequential Uncertainty Fitting Version 2 (SUFI-2) approach, we calibrated the SWAT model over the period 2007–2021. Water balance analysis revealed that baseflow plays dominant roles in basin hydrology which is essential for agricultural and domestic water needs by providing a stable groundwater contribution despite increasing precipitation and varying water demand. These findings contribute to a deeper understanding of hydrological behavior in temperate catchments and offer a scientific foundation for sustainable water allocation, planning, and climate resilience strategies. Full article
Show Figures

Figure 1

22 pages, 2180 KiB  
Article
Regulated Deficit Irrigation Improves Yield Formation and Water and Nitrogen Use Efficiency of Winter Wheat at Different Soil Fertility Levels
by Xiaolei Wu, Zhongdong Huang, Chao Huang, Zhandong Liu, Junming Liu, Hui Cao and Yang Gao
Agronomy 2025, 15(8), 1874; https://doi.org/10.3390/agronomy15081874 - 1 Aug 2025
Viewed by 348
Abstract
Water scarcity and spatial variability in soil fertility are key constraints to stable grain production in the Huang-Huai-Hai Plain. However, the interaction mechanisms between regulated deficit irrigation and soil fertility influencing yield formation and water-nitrogen use efficiency in winter wheat remain unclear. In [...] Read more.
Water scarcity and spatial variability in soil fertility are key constraints to stable grain production in the Huang-Huai-Hai Plain. However, the interaction mechanisms between regulated deficit irrigation and soil fertility influencing yield formation and water-nitrogen use efficiency in winter wheat remain unclear. In this study, a two-year field experiment (2022–2024) was conducted to investigate the effects of two irrigation regimes—regulated deficit irrigation during the heading to grain filling stage (D) and full irrigation (W)—under four soil fertility levels: F1 (N: P: K = 201.84: 97.65: 199.05 kg ha−1), F2 (278.52: 135: 275.4 kg ha−1), F3 (348.15: 168.75: 344.25 kg ha−1), and CK (no fertilization). The results show that aboveground dry matter accumulation, total nitrogen content, pre-anthesis dry matter and nitrogen translocation, and post-anthesis accumulation significantly increased with fertility level (p < 0.05). Regulated deficit irrigation promoted the contribution of post-anthesis dry matter to grain yield under the CK and F1 treatments, but suppressed it under the F2 and F3 treatments. However, it consistently enhanced the contribution of post-anthesis nitrogen to grain yield (p < 0.05) across all fertility levels. Higher fertility levels prolonged the grain filling duration by 18.04% but reduced the mean grain filling rate by 15.05%, whereas regulated deficit irrigation shortened the grain filling duration by 3.28% and increased the mean grain filling rate by 12.83% (p < 0.05). Grain yield significantly increased with improved fertility level (p < 0.05), reaching a maximum of 9361.98 kg·ha−1 under the F3 treatment. Regulated deficit irrigation increased yield under the CK and F1 treatments but reduced it under the F2 and F3 treatments. Additionally, water use efficiency exhibited a parabolic response to fertility level and was significantly enhanced by regulated deficit irrigation. Nitrogen partial factor productivity (NPFP) declined with increasing fertility level (p < 0.05); Regulated deficit irrigation improved NPFP under the F1 treatment but reduced it under the F2 and F3 treatments. The highest NPFP (41.63 kg·kg−1) was achieved under the DF1 treatment, which was 54.81% higher than that under the F3 treatment. TOPSIS analysis showed that regulated deficit irrigation combined with the F1 fertility level provided the optimal balance among yield, WUE, and NPFP. Therefore, implementing regulated deficit irrigation during the heading–grain filling stage under moderate fertility (F1) is recommended as the most effective strategy for achieving high yield and efficient resource utilization in winter wheat production in this region. Full article
(This article belongs to the Special Issue Crop Management in Water-Limited Cropping Systems)
Show Figures

Figure 1

18 pages, 3738 KiB  
Article
Effect of Alternate Sprinkler Irrigation with Saline and Fresh Water on Soil Water–Salt Transport and Corn Growth
by Yue Jiang, Luya Wang, Yanfeng Li, Hao Li and Run Xue
Agronomy 2025, 15(8), 1854; https://doi.org/10.3390/agronomy15081854 - 31 Jul 2025
Viewed by 310
Abstract
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels [...] Read more.
To address freshwater scarcity and the underutilization of low-saline water in the North China Plain, a field study was conducted to evaluate the effects of alternating sprinkler irrigation using saline and fresh water on soil water–salt dynamics and corn growth. Two salinity levels (3 and 5 g·L−1, representing S1 and S2, respectively) and three irrigation strategies—saline–fresh–saline–fresh (F1), saline–fresh (F2), and mixed saline–fresh (F3)—were tested, resulting in six treatments: S1F1, S1F2, S1F3, S2F1, S2F2, and S2F3. S1F1 significantly improved soil water retention at a 30–50 cm depth and reduced surface electrical conductivity (EC) and Na+ concentration (p < 0.05). S1F1 also promoted more uniform Mg2+ distribution and limited Ca2+ loss. Under high salinity (5 g·L−1), surface salt accumulation and ion concentration (Na+, Mg2+, and Ca2+) increased, particularly in S2F3. Corn growth under alternating irrigation (F1/F2) outperformed the mixed mode (F3), with S1F1 achieving the highest plant height, leaf area, grain number, and 100-grain weight. The S1F1 yield surpassed others by 0.4–3.0% and maintained a better ion balance. These results suggest that alternating irrigation with low-salinity water (S1F1) effectively regulates root-zone salinity and improves crop productivity, offering a practical strategy for the sustainable use of low-saline water resources. Full article
Show Figures

Figure 1

30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Viewed by 246
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

23 pages, 3875 KiB  
Article
Soil Water-Soluble Ion Inversion via Hyperspectral Data Reconstruction and Multi-Scale Attention Mechanism: A Remote Sensing Case Study of Farmland Saline–Alkali Lands
by Meichen Liu, Shengwei Zhang, Jing Gao, Bo Wang, Kedi Fang, Lu Liu, Shengwei Lv and Qian Zhang
Agronomy 2025, 15(8), 1779; https://doi.org/10.3390/agronomy15081779 - 24 Jul 2025
Viewed by 613
Abstract
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral [...] Read more.
The salinization of agricultural soils is a serious threat to farming and ecological balance in arid and semi-arid regions. Accurate estimation of soil water-soluble ions (calcium, carbonate, magnesium, and sulfate) is necessary for correct monitoring of soil salinization and sustainable land management. Hyperspectral ground-based data are valuable in soil salinization monitoring, but the acquisition cost is high, and the coverage is small. Therefore, this study proposes a two-stage deep learning framework with multispectral remote-sensing images. First, the wavelet transform is used to enhance the Transformer and extract fine-grained spectral features to reconstruct the ground-based hyperspectral data. A comparison of ground-based hyperspectral data shows that the reconstructed spectra match the measured data in the 450–998 nm range, with R2 up to 0.98 and MSE = 0.31. This high similarity compensates for the low spectral resolution and weak feature expression of multispectral remote-sensing data. Subsequently, this enhanced spectral information was integrated and fed into a novel multiscale self-attentive Transformer model (MSATransformer) to invert four water-soluble ions. Compared with BPANN, MLP, and the standard Transformer model, our model remains robust across different spectra, achieving an R2 of up to 0.95 and reducing the average relative error by more than 30%. Among them, for the strongly responsive ions magnesium and sulfate, R2 reaches 0.92 and 0.95 (with RMSE of 0.13 and 0.29 g/kg, respectively). For the weakly responsive ions calcium and carbonate, R2 stays above 0.80 (RMSE is below 0.40 g/kg). The MSATransformer framework provides a low-cost and high-accuracy solution to monitor soil salinization at large scales and supports precision farmland management. Full article
(This article belongs to the Special Issue Water and Fertilizer Regulation Theory and Technology in Crops)
Show Figures

Figure 1

20 pages, 342 KiB  
Review
Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
by Mihály Zalai, Olimpia Bujtás, Miklós Sárospataki and Zita Dorner
Land 2025, 14(8), 1526; https://doi.org/10.3390/land14081526 - 24 Jul 2025
Viewed by 269
Abstract
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition [...] Read more.
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition with vines necessitates region-specific approaches. This review aims to analyze the effects of different cover crop types and interrow tillage methods on water management and regulating ecosystem services, focusing on main European vineyard areas. The research involved a two-stage literature review by Google Scholar and Scopus, resulting in the identification of 67 relevant scientific publications, with 11 offering experimental data from European contexts. Selected studies were evaluated based on climate conditions, soil properties, slope characteristics, and interrow treatments. Findings highlight that the appropriate selection of cover crop species, sowing and mowing timing, and mulching practices can optimize vineyard resilience under climate stress. Practical recommendations are offered to help winegrowers adopt cost-effective and environmentally adaptive strategies, especially on sloped or shallow soils, where partial cover cropping is often the most beneficial for both yield and ecological balance. Cover crops and mulching reduce erosion, enhance vineyard soil moisture, relieve water stress consequences, and, as a result, these cover cropping techniques can improve yield and nutritional values of grapes (e.g., Brix, pH, K concentration), but effects vary; careful, site-specific, long-term management is essential for best results. Full article
23 pages, 2364 KiB  
Review
A Comprehensive Review of Applications and Environmental Risks of Waste Plastics in Asphalt Pavements
by Ju Pan, Jue Li, Bailin Shan, Yongsheng Yao and Chao Huang
Materials 2025, 18(15), 3441; https://doi.org/10.3390/ma18153441 - 22 Jul 2025
Viewed by 252
Abstract
The global plastic crisis has generated significant interest in repurposing waste plastics as asphalt modifiers, presenting both environmental and engineering advantages. This study offers a comprehensive review of the applications of waste plastics in asphalt, focusing on their types, modification mechanisms, incorporation techniques, [...] Read more.
The global plastic crisis has generated significant interest in repurposing waste plastics as asphalt modifiers, presenting both environmental and engineering advantages. This study offers a comprehensive review of the applications of waste plastics in asphalt, focusing on their types, modification mechanisms, incorporation techniques, and environmental impacts, alongside proposed mitigation strategies. Commonly utilized plastics include polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET), each affecting asphalt performance differently—enhancing high-temperature stability and fatigue resistance while exhibiting varying levels of compatibility and environmental risks. The incorporation techniques, namely wet and dry processes, differ in terms of efficiency, cost, and environmental footprint: the wet process enhances durability but requires more energy, whereas the dry process is more cost-effective but may lead to uneven dispersion. Environmental concerns associated with these practices include toxic emissions (such as polycyclic aromatic hydrocarbons and volatile organic compounds) during production, microplastic generation through abrasion and weathering, and ecological contamination of soil and water. Mitigation strategies encompass optimizing plastic selection, improving pre-treatment and compatibilization methods, controlling high-temperature processing, and monitoring the spread of microplastics. This review highlights the need for balanced adoption of waste plastic-modified asphalt, emphasizing sustainable practices to maximize benefits while minimizing risks. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Graphical abstract

20 pages, 10098 KiB  
Article
Alkali-Activated Dredged-Sediment-Based Fluidized Solidified Soil: Early-Age Engineering Performance and Microstructural Mechanisms
by Qunchao Ma, Kangyu Wang, Qiang Li and Yuting Zhang
Materials 2025, 18(14), 3408; https://doi.org/10.3390/ma18143408 - 21 Jul 2025
Viewed by 286
Abstract
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement [...] Read more.
Fluidized solidified soil (FSS) has emerged as a promising material for marine pile scour remediation, yet its limited construction window and vulnerability to hydraulic erosion before sufficient curing constrain its broader application. This study systematically evaluates FSS formulations based on dredged sediment, cement partially replaced by silica fume (i.e., 0%, 4%, 8%, and 12%), and quicklime activation under three water–solid ratios (WSR, i.e., 0.525, 0.55, and 0.575). Experimental assessments included flowability tests, unconfined compressive strength, direct shear tests, and microstructural analysis via XRD and SEM. The results indicate that SF substitution significantly mitigates flowability loss during the 90–120 min interval, thereby extending the operational period. Moreover, the greatest enhancement in mechanical performance was achieved at an 8% SF replacement: at WSR = 0.55, the 3-day UCS increased by 22.78%, while the 7-day cohesion and internal friction angle rose by 13.97% and 2.59%, respectively. Microscopic analyses also confirmed that SF’s pozzolanic reaction generated additional C-S-H gel. However, the SF substitution exhibits a pronounced threshold effect, with levels above 8% introducing unreacted particles that disrupt the cementitious network. These results underscore the critical balance between flowability and early-age strength for stable marine pile scour repair, with WSR = 0.525 and 8% SF substitution identified as the optimal mix. Full article
Show Figures

Figure 1

23 pages, 4385 KiB  
Article
Melatonin Enhances Tomato Salt Tolerance by Improving Water Use Efficiency, Photosynthesis, and Redox Homeostasis
by Chen Ru, Yuxuan Liu, Xingjiao Yu, Chuanliu Xie and Xiaotao Hu
Agronomy 2025, 15(7), 1746; https://doi.org/10.3390/agronomy15071746 - 20 Jul 2025
Viewed by 285
Abstract
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance [...] Read more.
Salinity stress is a primary abiotic constraint limiting global crop productivity, with progressive soil salinization inducing growth inhibition and physiological dysfunction in plants. Although melatonin (MT) has been extensively documented to enhance stress adaptation, the underlying mechanisms through which it mediates salt tolerance by integrating physiological processes remain unclear. This study investigated the effects of varying MT concentrations on photosynthetic performance, plant water relations, water-use efficiency, and stress-responsive physiological parameters in tomatoes, aiming to identify the key physiological pathways for MT-mediated salt stress mitigation. The results showed that salt stress significantly reduced the leaf relative water content and root hydraulic conductivity, suppressed the photosynthetic rate, and ultimately caused significant reductions in the aboveground and root biomass. MT spraying effectively improved leaf water status and root water uptake capacity, enhancing the photosynthetic rate and water-use efficiency, thereby providing material and energy support for plant growth. Furthermore, MT spraying increased the total antioxidant capacity in leaves and promoted the synthesis of phenolic and flavonoid compounds, thereby reducing oxidative damage. Simultaneously, it stimulated the accumulation of osmolytes to enhance cellular osmotic adjustment capacity and optimized ion uptake to maintain cellular ion homeostasis. Among the tested concentrations, 100 μM MT showed the most significant alleviative effects. This concentration comprehensively enhanced the salt tolerance and growth performance of tomato plants by synergistically optimizing water use, photosynthetic function, antioxidant defense, and ion balance. In conclusion, these findings provide experimental evidence for elucidating the physiological mechanisms underlying MT-mediated salt tolerance in tomatoes and offer theoretical references for the rational application of MT in crop production under saline conditions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

25 pages, 5096 KiB  
Article
Scenario Analysis in Intensively Irrigated Semi-Arid Watershed Using a Modified SWAT Model
by Pratikshya Neupane and Ryan T. Bailey
Geosciences 2025, 15(7), 272; https://doi.org/10.3390/geosciences15070272 - 20 Jul 2025
Viewed by 277
Abstract
Intensive irrigation in arid and semi-arid regions can cause significant environmental issues, including salinity, waterlogging, and water quality deterioration. Watershed modeling helps us understand essential water balance components in these areas. This study implemented a modified SWAT (Soil and Water Assessment Tool) model [...] Read more.
Intensive irrigation in arid and semi-arid regions can cause significant environmental issues, including salinity, waterlogging, and water quality deterioration. Watershed modeling helps us understand essential water balance components in these areas. This study implemented a modified SWAT (Soil and Water Assessment Tool) model tailored to capture irrigation practices within a 15,900 km2 area of the Arkansas River Basin from 1990 to 2014. The model analyzed key water balance elements: surface runoff, evapotranspiration, soil moisture, lateral flow, and groundwater return flow, distinguishing between wet and dry years. Over 90% of precipitation is consumed by evapotranspiration. The average watershed water yield comprises 19% surface runoff, 39% groundwater return flow, and 42% lateral flow. Various irrigation scenarios were simulated, revealing that transitioning from flood to sprinkler irrigation reduced surface runoff by over 90% without affecting crop water availability in the intensively irrigated region of the watershed. Canal sealing scenarios showed substantial groundwater return flow reductions: approximately 15% with 20% sealing and around 57% with 80% sealing. Scenario-based analyses like these provide valuable insights for optimizing water resource management in intensively irrigated watersheds. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

26 pages, 3919 KiB  
Article
Impacts of Various Straw Mulching Strategies on Soil Water, Nutrients, Thermal Regimes, and Yield in Wheat–Soybean Rotation Systems
by Chaoyu Liao, Min Tang, Chao Zhang, Meihua Deng, Yan Li and Shaoyuan Feng
Plants 2025, 14(14), 2233; https://doi.org/10.3390/plants14142233 - 19 Jul 2025
Viewed by 339
Abstract
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In [...] Read more.
Straw mulching is an important strategy for regulating soil moisture, nutrient availability, and thermal conditions in agricultural systems. However, the mechanisms by which the mulching period, thickness, and planting density interact to influence yield formation in wheat–soybean rotation systems remain insufficiently understood. In this study, we systematically examined the combined effects of straw mulching at the seedling and jointing stages of winter wheat, as well as varying mulching thicknesses and soybean planting densities, on soil properties and crop yields through field experiments. The experimental design included straw mulching treatments during the seedling stage (T1) and the jointing stage (T2) of winter wheat, with soybean planting densities classified as low (D1, 1.8 × 105 plants·ha−1) and high (D2, 3.6 × 105 plants·ha−1). Mulching thicknesses were set at low (S1, 2830.19 kg·ha−1), medium (S2, 8490.57 kg·ha−1), and high (S3, 14,150.95 kg·ha−1), in addition to a no-mulch control (CK) for each treatment. The results demonstrated that (1) straw mulching significantly increased soil water content in the order S3 > S2 > S1 > CK and exerted a temperature-buffering effect. This resulted in increases in soil organic carbon, available phosphorus, and available potassium by 1.88−71.95%, 1.36−165.8%, and 1.92−36.34%, respectively, while decreasing available nitrogen content by 1.42−17.98%. (2) The T1 treatments increased wheat yields by 1.22% compared to the control, while the T2 treatments resulted in a 23.83% yield increase. Soybean yields increased by 23.99% under D1 and by 36.22% under D2 treatments. (3) Structural equation modeling indicated that straw mulching influenced yields by modifying interactions among soil organic carbon, available nitrogen, available phosphorus, available potassium, bulk density, soil temperature, and soil water content. Wheat yields were primarily regulated by the synergistic effects of soil temperature, water content, and available potassium, whereas soybean yields were determined by the dynamic balance between organic carbon and available potassium. This study provides empirical evidence to inform the optimization of straw return practices in wheat–soybean rotation systems. Full article
Show Figures

Figure 1

Back to TopTop