Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
Abstract
1. Introduction
2. Methodology for Data Collection
3. The History and Potential of Ecosystem Services
- Provisioning (renewable and nonrenewable energy, materials, water supply, natural medicines, food and drink);
- Regulating (clean air, carbon storage, flood management, erosion control, water purification, disease and natural pest control, pollination);
- Cultural (physical health and mental wellbeing, tourism, knowledge and learning, recreation, sense of place, inspiration, spiritual and religious connections);
- Supporting (healthy soils, photosynthesis, nutrient cycling, space for wildlife) [39].
4. Types of Covering
- Perennial/permanent covers: This method is commonly used, especially in humid climates. Permanent cover provides several benefits, such as reducing plant vigor, improving the microclimate and crop quality, preventing erosion, and allowing continuous access to the rows. The crop species can include perennial legumes (e.g., Lotus corniculatus, Trifolium fragiferum, Trifolium repens) or perennial grasses (e.g., Bromus carinatus, Dactylis glomerata, Elymus glaucus, Festuca arundinacea, Festuca idahoensis, Festuca ovina, Festuca rubra, Hordeum brachyantherum, Lolium perenne, Poa secunda) [45].
- Temporary covers: This type of covering is common in warmer, drier climates, as it helps reduce erosion, improve soil bearing capacity, and increase infiltration and fertility. The species used for covering can vary, influenced by the method of row maintenance, the dominant cover species, and other factors [45].
- Annual winter covers with tillage: The main benefits of this cover type are increasing soil fertility and reducing soil erosion. Suitable species include grasses (e.g., Avena sativa, Hordeum vulgare, Lolium multiflorum, Secale cereale, Triticum aestivum), legumes (e.g., Pisum sativum, Trifolium alexandrinum, Vicia faba, Vicia sativa, Vicia villosa, Vicia benghalensis), cruciferous vegetables (e.g., Brassica nigra, Brassica rapa, Raphanus sativus), and forbs (e.g., Brassica spp., Phacelia tanacetifolia) [45].
- Annual winter cover without tillage: This is a good practice for conserving soil throughout the year without competing with vines. It is crucial to select suitable plant species for the autumn and winter seasons. Appropriate species include legumes (e.g., Medicago polymorpha, Trifolium hirtum, T. incarnatum, T. subterraneum) and grasses (e.g., Bromus hordeaceus, Vulpia myuros var. hirsuta) [45].
- Summer covers with tillage: This method is rarely used due to the high competition with vines. Its primary purpose is to promote significant biomass production under high-fertility conditions. The selection of suitable species is limited and includes (e.g., Fagopyrum esculentum, Sorghum sudanense, Sorghum bicolor × Sorghum sudanense, Vigna unguiculata) [45].
5. The Impact of Cover Cropping on Regulating Ecosystem Services
5.1. Soil and Carbon Storage, Improved Nutrient Cycling
5.2. Accumulation of Substances
5.3. Water Management
5.4. Vine Production and Quality
5.5. Plant Protection
5.6. Biodiversity
6. Detailed Results of Key Studies on the Ecosystem Services Provided by Soil Cover
- Winter rye (Secale cereale), mowed and used as mulch
- Winter rye mixed with shredded vine prunings used as mulch
- Permanent native vegetation, mowed five to eight times
- Cover crop consisting of Digitaria ciliaris
- Straw mulch
- Control (tillage with machinery)
- Continuous tilling without cover cropping,
- Partial cover: permanent resident cover crop in interrows; however, the 100-cm-wide strip under the vines was tilled,
- Full coverage: no tilled strips under the vines.
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thurmond, D.L. From Vines to Wines in Classical Rome: A Handbook of Viticulture and Oenology in Rome and the Roman West; Brill: Buckinghamshire, UK, 2016; pp. 1–286. [Google Scholar] [CrossRef]
- International Organication of Vine and Wine: State of the World Vine and Wine Sector. Available online: https://www.oiv.int/sites/default/files/2025-04/OIV-State_of_the_World_Vine-and-Wine-Sector-in-2024.pdf (accessed on 25 May 2025).
- Willer, H.; Schlatter, B.; Trávníček, J. Statistics and Emerrging Trends: Druckerei Hachenburg PMS GmbH. In The World of Organic Agriculture; Research Institute of Organic Agriculture FiBL: Frick, Switzerland, 2023; ISBN 978-3-03736-456-7. [Google Scholar]
- Fayolle, E.; Follain, S.; Marchal, P.; Chéry, P.; Colin, F. Identification of Environmental Factors Controlling Wine Quality: A Case Study in Saint-Emilion Grand Cru Appellation, France. Sci. Total Environ. 2019, 694, 133718. [Google Scholar] [CrossRef] [PubMed]
- Griesser, M.; Steiner, M.; Pingel, M.; Uzman, D.; Preda, C.; Giffard, B.; Tolle, P.; Memedemin, D.; Forneck, A.; Reineke, A.; et al. General Trends of Different Inter-Row Vegetation Management Affecting Vine Vigor and Grape Quality across European Vineyards. Agric. Ecosyst. Environ. 2022, 338, 108073. [Google Scholar] [CrossRef]
- Albrizio, R.; Puig-Sirera, À.; Sellami, M.H.; Guida, G.; Basile, A.; Bonfante, A.; Gambuti, A.; Giorio, P. Water Stress, Yield, and Grape Quality in a Hilly Rainfed “Aglianico” Vineyard Grown in Two Different Soils along a Slope. Agric. Water Manag. 2023, 279, 108183. [Google Scholar] [CrossRef]
- Provost, C.; Pedneault, K. The Organic Vineyard as a Balanced Ecosystem: Improved Organic Grape Management and Impacts on Wine Quality. Sci. Hortic. 2016, 208, 43–56. [Google Scholar] [CrossRef]
- Mercenaro, L.; Nieddu, G.; Pulina, P.; Porqueddu, C. Sustainable Management of an Intercropped Mediterranean Vineyard. Agric. Ecosyst. Environ. 2014, 192, 95–104. [Google Scholar] [CrossRef]
- Guerra, B.; Steenwerth, K. Influence of floor management technique on grapevine growth, disease pressure, and juice and wine composition: A review. Am. J. Enol. Vitic. 2012, 63, 149–164. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Keizer, J.J.; Santos, L.M.B.; Serpa, D.; Silva, V.; Cerqueira, M.; Ferreira, A.J.D.; Abrantes, N. Runoff, sediment and nutrient exports from a Mediterranean vineyard under integrated production: An experiment at plot scale. Agric. Ecosyst. Environ. 2018, 256, 184–193. [Google Scholar] [CrossRef]
- Morvan, X.; Naisse, C.; Malam Issa, O.; Desprats, J.F.; Combaud, A.; Cerdan, O. Effect of Ground-Cover Type on Surface Runoff and Subsequent Soil Erosion in Champagne Vineyards in France. Soil Use Manag. 2014, 30, 372–381. [Google Scholar] [CrossRef]
- Gómez, J.A.; Llewellyn, C.; Basch, G.; Sutton, P.B.; Dyson, J.S.; Jones, C.A. The Effects of Cover Crops and Conventional Tillage on Soil and Runoff Loss in Vineyards and Olive Groves in Several Mediterranean Countries. Soil Use Manag. 2011, 27, 502–514. [Google Scholar] [CrossRef]
- Morlat, R.; Jacquet, A. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am. J. Enol. Vitic. 2003, 54, 1–7. [Google Scholar] [CrossRef]
- King, A.P.; Berry, A.M. Vineyard 15N, nitrogen and water status in perennial clover and bunch grass cover crop systems of California’s central valley. Agric. Ecosyst. Environ. 2005, 109, 262–272. [Google Scholar] [CrossRef]
- Pou, A.; Gulías, J.; Moreno, M.; Tomàs, M.; Medrano, H.; Cifre, J. Cover Cropping in Vitis vinifera; L. Cv. Manto Negro Vineyards under Mediterranean Conditions: Effects on Plant Vigour, Yield and Grape Quality. OENO One 2011, 45, 223. [Google Scholar] [CrossRef]
- Trigo-Córdoba, E.; Bouzas-Cid, Y.; Orriols-Fernández, I.; Díaz-Losada, E.; Mirás-Avalos, J.M. Influence of Cover Crop Treatments on the Performance of a Vineyard in a Humid Region. Span. J. Agric. Res. 2015, 13, e0907. [Google Scholar] [CrossRef]
- Horel, Á.; Bakacsi, Z.; Vass, C.; Zsigmond, T. Inter-Row Soil Management Affecting Soil Moisture in Non-Irrigated Vineyard Ecosystems: A Meta-Analysis. Soil Use Manag. 2024, 40, e13159. [Google Scholar] [CrossRef]
- Zahavi, T.; Reuveni, M.; Scheglov, D.; Lavee, S. Effect of Grapevine Training Systems on Development of Powdery Mildew. Eur. J. Plant Pathol. 2001, 107, 495–501. [Google Scholar] [CrossRef]
- Arnold, C.; Gillet, F.; Gobat, J.M. Situation de la vigne sauvage Vitis vinifera subsp. silvestris en Europe. Vitis 1998, 37, 159–170. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Energy dissipation in C3 plants under drought. Funct. Plant Biol. 2002, 29, 1209–1215. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.; Keller, M. Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate. In Proceedings of the GiESCO 2019, Thessaloniki, Greece, 23–28 June 2019. IVES Conference Series. [Google Scholar]
- Gomez-del-Campo, M.; Ruiz, C.; Lissarague, J.R. Effect of Water Stress on Leaf Area Development, Photosynthesis, and Productivity in Chardonnay and Airén Grapevines. Am. J. Enol. Vitic. 2002, 53, 138–143. [Google Scholar] [CrossRef]
- Smart, R.E. Aspects of water relations of the grapevine (Vitis vinifera). Am. J. Enol. Vitic. 1974, 25, p84–p91. [Google Scholar] [CrossRef]
- Smart, R.E.; Robinson, M. Sunlight into Wine. A Handbook for Winegrape Canopy Management; Winetitles: Adelaide, SA, Australia, 1991; ISBN 1875130101. [Google Scholar]
- Keller, M.; Viret, O.; Cole, F.M. Botrytis cinerea infection in grape flowers: Defense reaction, latency, and disease expression. Phytopathology 2003, 93, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Lazcano, C.; Decock, C.; Wilson, S.G. Defining and Managing for Healthy Vineyard Soils, Intersections With the Concept of Terroir. Front. Environ. Sci. 2020, 8, 68. [Google Scholar] [CrossRef]
- Gusenbauer, M. Beyond Google Scholar, Scopus, and Web of Science: An evaluation of the backward and forward citation coverage of 59 databases’ citation indices. Res. Synth. Methods 2024, 15, 802–817. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.; Bethel, A.; Briscoe, S. Resources for forwards citation searching for implementation studies in dementia care: A case study comparing Web of Science and Scopus. Res. Synth. Methods 2020, 11, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Westman, W.E. How Much are Nature’s Services Worth? Science 1977, 197, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, P.R.; Ehrlich, A.H. Extinction: The Causes and Consequences of the Disappearance of Species; Random House: New York, NY, USA, 1981. [Google Scholar]
- de Groot, R.S. Environmental Functions as a Unifying Concept for Ecology and Economics. Environmentalist 1987, 7, 105–109. [Google Scholar] [CrossRef]
- Costanza, R.; Daly, H.E. Natural Capital and Sustainable Development. Conserv. Biol. 1992, 6, 37–46. [Google Scholar] [CrossRef]
- Perrings, C.; Folke, C.; Maler, K.G. The Ecology and Economics of Biodiversity Loss: The Research Agenda. Ambio 1992, 21, 201–211. [Google Scholar]
- Postel, S.; Bawa, K.; Kaufman, L.; Peterson, C.H.; Carpenter, S.; Tillman, D.; Dayton, P.; Alexander, S.; Lagerquist, K.; Goulder, L.; et al. Nature’s Services: Societal Dependence on Natural Ecosystems; Daily, G.C., Ed.; Island Press: Washington, DC, USA, 1997; ISBN 9781559634762. [Google Scholar]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The Value of the World’s Ecosystem Services and Natural Capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- History of the Millennium Assessment. Available online: https://www.millenniumassessment.org/en/History.html (accessed on 31 March 2025).
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef]
- Braat, L.C.; De Groot, R. The ecosystem services agenda:bridging the worlds of natural science and economics, conservation and development, and public and private policy. Ecosyst. Serv. 2012, 1, 4–15, ISSN 2212-0416. [Google Scholar] [CrossRef]
- Ecosystem Services—Nature’s Benefits. Available online: https://www.nature.scot/scotlands-biodiversity/scottish-biodiversity-strategy-and-cop15/ecosystem-approach/ecosystem-services-natures-benefits (accessed on 31 March 2025).
- Definition of Ecosystem Services and Typology—Cátedra UNESCO de Desarrollo Sostenible y Educación Ambiental. Available online: https://www.ehu.eus/cdsea/web/index.php/investigacion/ecosystem-services-basque-country/results/definition-of-ecosystem-services-and-typology (accessed on 31 March 2025).
- Sutherland, I.J.; Villamagna, A.M.; Dallaire, C.O.; Bennett, E.M.; Chin, A.T.M.; Yeung, A.C.Y.; Lamothe, K.A.; Tomscha, S.A.; Cormier, R. Undervalued and under Pressure: A Plea for Greater Attention toward Regulating Ecosystem Services. Ecol. Indic. 2018, 94, 23–32. [Google Scholar] [CrossRef]
- Pedda Ghouse Peera, S.K.; Debnath, S.; Maitra, S. Mulching: Materials, Advantages and Crop Production. In Protected Cultivation and Smart Agriculture; Maitra, S., Dinkar, J.G., Tanmoy, S., Eds.; New Delhi Publishers: New Delhi, India, 2020; pp. 55–66. ISBN 978-81-948993-2-7. [Google Scholar]
- Smith, R.; Lanini, W.; Gaskell, M.; Mitchell, J.; Koike, S. Weed Management for Organic Crops; University of California, Agriculture and Natural Resources: Oakland, CA, USA, 2000. [Google Scholar]
- Rifai, M.N.; Astatkie, T.; Lacko-Bartosova, M.; Gadus, J. Effect of Two Different Thermal Units and Three Types of Mulch on Weeds in Apple Orchards. J. Environ. Eng. Sci. 2002, 1, 331–338. [Google Scholar] [CrossRef]
- Ingels, C.A. Cover Cropping in Vineyards: A Grower’s Handbook; Ingels, C.A., Lyman-Bugg, R., McGourthy, G.T., Christensen, P., Eds.; University of California, Division of Agriculture and Natural Resources: Oakland, CA, USA, 1998; Volume 3338. [Google Scholar]
- van Eerd, L.L.; Chahal, I.; Peng, Y.; Awrey, J.C. Influence of Cover Crops at the Four Spheres: A Review of Ecosystem Services, Potential Barriers, and Future Directions for North America. Sci. Total Environ. 2023, 858, 159990. [Google Scholar] [CrossRef] [PubMed]
- Clark, A. Managing Cover Crops Profitably, 3rd ed.; Sustainable Agriculture Network (SAN): Beltsville, MD, USA, 2008. [Google Scholar]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The Superior Effect of Nature Based Solutions in Land Management for Enhancing Ecosystem Services. Sci. Total Environ. 2018, 610–611, 997–1009. [Google Scholar] [CrossRef] [PubMed]
- Celette, F.; Wery, J.; Chantelot, E.; Celette, J.; Gary, C. Belowground Interactions in a Vine (Vitis vinifera L.)-Tall Fescue (Festuca Arundinacea Shreb.) Intercropping System: Water Relations and Growth. Plant Soil 2005, 276, 205–217. [Google Scholar] [CrossRef]
- Marques, M.J.; García-Muñoz, S.; Muñoz-Organero, G.; Bienes, R. Soil Conservation beneath Grass Cover in Hillside Vineyards under Mediterranean Climatic Conditions (Madrid, Spain). Land Degrad. Dev. 2009, 21, 122–131. [Google Scholar] [CrossRef]
- Ruiz-Colmenero, M.; Bienes, R.; Marques, M.J. Soil and Water Conservation Dilemmas Associated with the Use of Green Cover in Steep Vineyards. Soil Tillage Res. 2011, 117, 211–223. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Biddoccu, M.; Ferraris, S.; Pitacco, A.; Cavallo, E. Temporal Variability of Soil Management Effects on Soil Hydrological Properties, Runoff and Erosion at the Field Scale in a Hillslope Vineyard, North-West Italy. Soil Tillage Res. 2017, 165, 46–58. [Google Scholar] [CrossRef]
- Ben-Salem, N.; Álvarez, S.; López-Vicente, M. Soil and Water Conservation in Rainfed Vineyards with Common Sainfoin and Spontaneous Vegetation under Different Ground Conditions. Water 2018, 10, 1058. [Google Scholar] [CrossRef]
- Winter, S.; Bauer, T.; Strauss, P.; Kratschmer, S.; Paredes, D.; Popescu, D.; Landa, B.; Guzmán, G.; Gómez, J.A.; Guernion, M.; et al. Effects of Vegetation Management Intensity on Biodiversity and Ecosystem Services in Vineyards: A Meta-Analysis. J. Appl. Ecol. 2018, 55, 2484–2495. [Google Scholar] [CrossRef] [PubMed]
- Liebhard, G.; Guzmán, G.; Gómez, J.A.; Winter, S.; Zaller, J.G.; Bauer, T.; Nicolai, A.; Cluzeau, D.; Popescu, D.; Bunea, C.; et al. Vineyard Cover Crop Management Strategies and Their Effect on Soil Properties across Europe. Eur. J. Soil Sci. 2024, 75, e13573. [Google Scholar] [CrossRef]
- Strauss, P.; Strohmeier, S.; Toth, M.; Liebhard, G.C. Effects of Common Inter-Row Management Practices on Vineyard Soils in Four European Vineyard Regions. In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Seitz, D.; Fischer, L.M.; Dechow, R.; Wiesmeier, M.; Don, A. The Potential of Cover Crops to Increase Soil Organic Carbon Storage in German Croplands. Plant Soil 2022, 488, 157–173. [Google Scholar] [CrossRef]
- Novara, A.; Cerda, A.; Barone, E.; Gristina, L. Cover Crop Management and Water Conservation in Vineyard and Olive Orchards. Soil Tillage Res. 2021, 208, 104896. [Google Scholar] [CrossRef]
- Lopes, C.M. Cover Crops Competition for Water in Vineyards: Case Studies in Mediterranean Terroirs. In Proceedings of the 11th International Terroir Congress, McMinnville, OR, USA, 10–14 July 2016. [Google Scholar]
- Zheng, W.; Gong, Q.; Zhao, Z.; Liu, J.; Zhai, B.; Wang, Z.; Li, Z. Changes in the Soil Bacterial Community Structure and Enzyme Activities after Intercrop Mulch with Cover Crop for Eight Years in an Orchard. Eur. J. Soil Biol. 2018, 86, 34–41. [Google Scholar] [CrossRef]
- Moore, E.B. Challenges and Opportunities for Cover Crop Mediated Soil Water Use Efficiency Enhancements in Temperate Rain-Fed Cropping Systems: A Review. Land 2023, 12, 988. [Google Scholar] [CrossRef]
- Novara, A.; Catania, V.; Tolone, M.; Gristina, L.; Laudicina, V.A.; Quatrini, P. Cover Crop Impact on Soil Organic Carbon, Nitrogen Dynamics and Microbial Diversity in a Mediterranean Semiarid Vineyard. Sustainability 2020, 12, 3256. [Google Scholar] [CrossRef]
- Pisciotta, A.; Di Lorenzo, R.; Novara, A.; Laudicina, V.A.; Barone, E.; Santoro, A.; Gristina, L.; Barbagallo, M.G. Cover Crop and Pruning Residue Management to Reduce Nitrogen Mineral Fertilization in Mediterranean Vineyards. Agronomy 2021, 11, 164. [Google Scholar] [CrossRef]
- Schreefel, L.; Schulte, R.P.O.; de Boer, I.J.M.; Schrijver, A.P.; van Zanten, H.H.E. Regenerative Agriculture—The Soil Is the Base. Glob. Food Sec. 2020, 26, 100404. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An Agronomic Perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Abad, J.; Hermoso de Mendoza, I.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover Crops in Viticulture. A Systematic Review (1): Implications on Soil Characteristics and Biodiversity in Vineyard. OENO One 2021, 55, 295–312. [Google Scholar] [CrossRef]
- Abad, J.; Hermoso de Mendoza, I.; Marín, D.; Orcaray, L.; Santesteban, L.G. Cover Crops in Viticulture. A Systematic Review (2): Implications on Vineyard Agronomic Performance. OENO One 2021, 55, 1–27. [Google Scholar] [CrossRef]
- Monteiro, A.; Lopes, C.M. Influence of Cover Crop on Water Use and Performance of Vineyard in Mediterranean Portugal. Agric. Ecosyst. Environ. 2007, 121, 336–342. [Google Scholar] [CrossRef]
- Cerdan, O.; Govers, G.; Le Bissonnais, Y.; Van Oost, K.; Poesen, J.; Saby, N.; Gobin, A.; Vacca, A.; Quinton, J.; Auerswald, K.; et al. Rates and Spatial Variations of Soil Erosion in Europe: A Study Based on Erosion Plot Data. Geomorphology 2010, 122, 167–177. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J. Five Decades of Soil Erosion Research in “Terroir”. The State-of-the-Art. Earth Sci. Rev. 2018, 179, 436–447. [Google Scholar] [CrossRef]
- García-Ruiz, J.M. The Effects of Land Uses on Soil Erosion in Spain: A Review. Catena 2010, 81, 1–11. [Google Scholar] [CrossRef]
- Bourgeois, B.; Charles, A.; Van Eerd, L.L.; Tremblay, N.; Lynch, D.; Bourgeois, G.; Bastien, M.; Bélanger, V.; Landry, C.; Vanasse, A. Interactive Effects between Cover Crop Management and the Environment Modulate Benefits to Cash Crop Yields: A Meta-Analysis. Can. J. Plant Sci. 2022, 102, 656–678. [Google Scholar] [CrossRef]
- Roby, G.; Harbertson, J.F.; Adams, D.A.; Matthews, M.A. Berry Size and Vine Water Deficits as Factors in Winegrape Composition: Anthocyanins and Tannins. Aust. J. Grape Wine Res. 2004, 10, 100–107. [Google Scholar] [CrossRef]
- Sweet, R.M.; Schreiner, R.P. Alleyway Cover Crops Have Little Influence on Pinot Noir Grapevines (Vitis vinifera L.) in Two Western Oregon Vineyards. Am. J. Enol. Vitic. 2010, 61, 240–252. [Google Scholar] [CrossRef]
- Novara, A.; Cerdà, A.; Gristina, L. Sustainable Vineyard Floor Management: An Equilibrium between Water Consumption and Soil Conservation. Curr. Opin. Environ. Sci. Health 2018, 5, 33–37. [Google Scholar] [CrossRef]
- Payen, F.T.; Sykes, A.; Aitkenhead, M.; Alexander, P.; Moran, D.; MacLeod, M. Soil organic carbon sequestration rates in vineyard agroecosystems under different soil management practices: A meta-analysis. J. Clean. Prod. 2021, 290, 125736. [Google Scholar] [CrossRef]
- Goldammer, T. Grape Growers Handbook: A Guide to Viticulture for Wine Production, 3rd ed.; Apex Publishers: Hylamore, VA, USA, 2018; pp. 379–393. [Google Scholar]
- Pornaro, C.; Meggio, F.; Tonon, F.; Mazzon, L.; Sartori, L.; Berti, A.; Macolino, S. Selection of Inter-Row Herbaceous Covers in a Sloping, Organic, Non-Irrigated Vineyard. PLoS ONE 2022, 17, e0279759. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, G.; Cabezas, J.M.; Sánchez-Cuesta, R.; Lora, Á.; Bauer, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Gómez, J.A. A Field Evaluation of the Impact of Temporary Cover Crops on Soil Properties and Vegetation Communities in Southern Spain Vineyards. Agric. Ecosyst. Environ. 2019, 272, 135–145. [Google Scholar] [CrossRef]
- Vicente Vicente, J. Soil Organic Carbon Sequestration in Andalusian Olive Groves: Effect of the Managements on Soil Organic Carbon Dynamics. Ph.D. Thesis, University of Jaen, Andalusia, Spain, 2016. [Google Scholar]
- Vázquez-Blanco, R.; Arias-Estévez, M.; Fernández-Calviño, D.; Arenas-Lago, D. Early Growth Assessment of Lolium perenne L. as a Cover Crop for Management of Copper Accumulation in Galician Vineyard Soils. Horticulturae 2023, 9, 1029. [Google Scholar] [CrossRef]
- Fernando, M.; Shrestha, A. The Potential of Cover Crops for Weed Management: A Sole Tool or Component of an Integrated Weed Management System? Plants 2023, 12, 752. [Google Scholar] [CrossRef] [PubMed]
- López-Vicente, M.; Calvo-Seas, E.; Álvarez, S.; Cerdà, A. Effectiveness of Cover Crops to Reduce Loss of Soil Organic Matter in a Rainfed Vineyard. Land 2020, 9, 230. [Google Scholar] [CrossRef]
- Hayes, P.; Graça, A.; de la Fuente, M.; Bois, B.; Andrag, A.; Savage, C.; Corbett-Milward, J.; Koundouras, S. Sustainable Use of Water in Wine Grape Vineyards; OIV-International Organisation of Vine and Wine: Paris, France, 2021. [Google Scholar]
- Celette, F.; Gaudin, R.; Gary, C. Spatial and Temporal Changes in the Water Regime of a Mediterranean Vineyard Due to the Adoption of Cover Cropping. Europ. J. Agron. 2008, 29, 153–162. [Google Scholar] [CrossRef]
- Linares Torres, R.; de la Fuente Lloreda, M.; Junquera-González, P.; Lissarrague García-Gutiérrez, R.; Baeza Trujillo, P. Effect of soil management strategies on the characteristics of the grapevine root system in irrigated vineyards under semi-arid conditions. Aus. J. Grape Wine Res. 2018, 24, 439–449. [Google Scholar] [CrossRef]
- Cattivelli, L.; Rizza, F.; Badeck, F.-W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Marè, C.; Tondelli, A.; Stanca, A.M. Drought Tolerance Improvement in Crop Plants: An Integrated View from Breeding to Genomics. Field Crops Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Morison, J.I.L.; Baker, N.R.; Mullineaux, P.M.; Davies, W.J. Improving Water Use in Crop Production. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 639–658. [Google Scholar] [CrossRef] [PubMed]
- Coniberti, A.; Ferrari, V.; Disegna, E.; Garcia Petillo, M.; Lakso, A.N. Under-Trellis Cover Crop and Planting Density to Achieve Vine Balance in a Humid Climate. Sci. Hortic. 2018, 227, 65–74. [Google Scholar] [CrossRef]
- Matthews, M.A.; Anderson, M.M. Fruit Ripening in Vitis vinifera L.: Responses to Seasonal Water Deficits. Am. J. Enol. Vitic. 1988, 39, 313–320. [Google Scholar] [CrossRef]
- Chaves, M.M.; Santos, T.P.; Souza, C.R.; Ortuño, M.F.; Rodrigues, M.L.; Lopes, C.M.; Maroco, J.P.; Pereira, J.S. Deficit Irrigation in Grapevine Improves Water-use Efficiency While Controlling Vigour and Production Quality. Ann. Appl. Biol. 2007, 150, 237–252. [Google Scholar] [CrossRef]
- Ruiz-Sanchez, M.C.; Domingo, R.; Castel, J.R. Deficit Irrigation in Fruit Trees and Vines in Spain. Span. J. Agric. Res. 2010, 8, 5–20. [Google Scholar] [CrossRef]
- Wery, J. Differential Effects of Soil Water Deficit on the Basic Plant Functions and Their Significance to Analyze Crop Responses to Water Deficit in Indeterminate Plants. Aust. J. Agric. Res. 2005, 56, 1201–1209. [Google Scholar] [CrossRef]
- Döll, P.; Siebert, S. Global Modeling of Irrigation Water Requirements. Water Resour. Res. 2002, 38, 8-1–8-10. [Google Scholar] [CrossRef]
- Delpuech, X.; Metay, A. Adapting Cover Crop Soil Coverage to Soil Depth to Limit Competition for Water in a Mediterranean Vineyard. Eur. J. Agron. 2018, 97, 60–69. [Google Scholar] [CrossRef]
- Tesic, D.; Keller, M.; Hutton, R.J. Influence of Vineyard Floor Management Practices on Grapevine Vegetative Growth, Yield, and Fruit Composition. Am. J. Enol. Vitic. 2007, 58, 1–11. [Google Scholar] [CrossRef]
- Shackelford, G.E.; Kelsey, R.; Dicks, L. V Effects of Cover Crops on Multiple Ecosystem Services: Ten Meta-Analyses of Data from Arable Farmland in California and the Mediterranean. Land Use Policy 2019, 88, 104204. [Google Scholar] [CrossRef]
- Cataldo, E.; Salvi, L.; Sbraci, S.; Storchi, P.; Mattii, G.B. Sustainable Viticulture: Effects of Soil Management in Vitis Vinifera. Agronomy 2020, 10, 1949. [Google Scholar] [CrossRef]
- Schütte, R.; Bergmann, H. The Attitudes of French and Spanish Winegrowers towards the Use of Cover Crops in Vineyards. J. Wine Res. 2019, 30, 107–121. [Google Scholar] [CrossRef]
- Wang, K.-H.; McSorley, R.; Marshall, A.; Gallaher, R.N. Influence of Organic Crotalaria Juncea Hay and Ammonium Nitrate Fertilizers on Soil Nematode Communities. Appl. Soil Ecol. 2006, 31, 186–198. [Google Scholar] [CrossRef]
- Fiera, C.; Ulrich, W.; Popescu, D.; Bunea, C.-I.; Manu, M.; Nae, I.; Stan, M.; Markó, B.; Urák, I.; Giurginca, A.; et al. Effects of Vineyard Inter-Row Management on the Diversity and Abundance of Plants and Surface-Dwelling Invertebrates in Central Romania. J. Insect Conserv. 2020, 24, 175–185. [Google Scholar] [CrossRef] [PubMed]
- Reiff, J.M.; Kolb, S.; Entling, M.H.; Herndl, T.; Möth, S.; Walzer, A.; Kropf, M.; Hoffmann, C.; Winter, S. Organic Farming and Cover-Crop Management Reduce Pest Predation in Austrian Vineyards. Insects 2021, 12, 220. [Google Scholar] [CrossRef] [PubMed]
- Magni, S.; Sportelli, M.; Grossi, N.; Volterrani, M.; Minelli, A.; Pirchio, M.; Fontanelli, M.; Frasconi, C.; Gaetani, M.; Martelloni, L.; et al. Autonomous Mowing and Turf-Type Bermudagrass as Innovations for An Environment-Friendly Floor Management of a Vineyard in Coastal Tuscany. Agriculture 2020, 10, 189. [Google Scholar] [CrossRef]
- Sportelli, M.; Frasconi, C.; Fontanelli, M.; Pirchio, M.; Raffaelli, M.; Magni, S.; Caturegli, L.; Volterrani, M.; Mainardi, M.; Peruzzi, A. Autonomous Mowing and Complete Floor Cover for Weed Control in Vineyards. Agronomy 2021, 11, 538. [Google Scholar] [CrossRef]
- Germani, G.; Plenchette, C. Potential of Crotalaria Species as Green Manure Crops for the Management of Pathogenic Nematodes and Beneficial Mycorrhizal Fungi. Plant Soil 2005, 266, 333–342. [Google Scholar] [CrossRef]
- Wang, K.-H.; Sipes, B.S.; Schmitt, D.P. Crotalaria as a Cover Crop for Nematode Management: A Review. Nematropica 2002, 32, 35–58. [Google Scholar]
- Gómez-Rodríguez, O.; Zavaleta-Mejía, E.; González-Hernández, V.A.; Livera-Muñoz, M.; Cárdenas-Soriano, E. Allelopathy and Microclimatic Modification of Intercropping with Marigold on Tomato Early Blight Disease Development. Field Crops Res. 2003, 83, 27–34. [Google Scholar] [CrossRef]
- Richards, A.; Estaki, M.; Úrbez-Torres, J.R.; Bowen, P.; Lowery, T.; Hart, M. Cover Crop Diversity as a Tool to Mitigate Vine Decline and Reduce Pathogens in Vineyard Soils. Diversity 2020, 12, 128. [Google Scholar] [CrossRef]
- Angelini, L.; Lazzeri, L.; Galletti, S.; Cozzani, A.; Macchia, M.; Palmieri, S. Antigerminative Activity of Three Glucosinolate-Derived Products Generated by Myrosinase Hydrolysis. Seed Sci. Technol. 1998, 26, 771–780. [Google Scholar]
- Duke, S.O.; Dayan, F.E.; Romagni, J.G.; Rimando, A.M. Natural Products as Sources of Herbicides: Current Status and Future Trends. Weed Res. 2000, 40, 99–111. [Google Scholar] [CrossRef]
- Smith, M.W.; Wolf, M.E.; Cheary, B.S.; Carroll, B.L. Allelopathy of Bermudagrass, Tall Fescue, Redroot Pigweed, and Cutleaf Evening Primrose on Pecan. HortScience 2001, 36, 1047–1048. [Google Scholar] [CrossRef]
- Eberle, C.A.; Thom, M.D.; Nemec, K.T.; Forcella, F.; Lundgren, J.G.; Gesch, R.W.; Riedell, W.E.; Papiernik, S.K.; Wagner, A.; Peterson, D.H.; et al. Using Pennycress, Camelina, and Canola Cash Cover Crops to Provision Pollinators. Ind. Crops Prod. 2015, 75, 20–25. [Google Scholar] [CrossRef]
- Sapkota, T.B.; Mazzoncini, M.; Bàrberi, P.; Antichi, D.; Silvestri, N. Fifteen Years of No till Increase Soil Organic Matter, Microbial Biomass and Arthropod Diversity in Cover Crop-Based Arable Cropping Systems. Agron. Sustain. Dev. 2012, 32, 853–863. [Google Scholar] [CrossRef]
- Gulick, S.H.; Grimes, D.W.; Munk, D.S.; Goldhamer, D.A. Cover-Crop-Enhanced Water Infiltration of a Slowly Permeable Fine Sandy Loam. Soil Sci. Soc. Am. J. 1994, 58, 1539–1546. [Google Scholar] [CrossRef]
- Némethy, L. Alternative Soil Management for Study Vineyards. Acta Hortic. 2004, 640, 119–125. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Hart, M. Effects of Living Mulch on Young Vine Growth and Soil in a Semi-Arid Vineyard. Vitis 2019, 58, 113–122. [Google Scholar] [CrossRef]
- Lopes, C.M.; Santos, T.P.; Monteiro, A.; Rodrigues, M.L.; Costa, J.M.; Chaves, M.M. Combining Cover Cropping with Deficit Irrigation in a Mediterranean Low Vigor Vineyard. Sci. Hortic. 2011, 129, 603–612. [Google Scholar] [CrossRef]
- Marques, F.; Pedroso, V.; Rodrigues, P.; Gouveia, J.P.; Monteiro, A.; Lopes, C.M. Effect of Vineyard Floor Management Practices on Water Use: A Case Study at a Terroir of the “Dão” Winegrowing Region in Portugal. In Proceedings of the 11th International Terroir Congress, McMinnville, OR, USA, 10–14 July 2016; Jones, G., Doran, N., Eds.; Southern Oregon University: Ashland, OR, USA, 2016; pp. 224–229. [Google Scholar]
- Muscas, E.; Cocco, A.; Mercenaro, L.; Cabras, M.; Lentini, A.; Porqueddu, C.; Nieddu, G. Effects of Vineyard Floor Cover Crops on Grapevine Vigor, Yield, and Fruit Quality, and the Development of the Vine Mealybug under a Mediterranean Climate. Agric. Ecosyst. Environ. 2017, 237, 203–212. [Google Scholar] [CrossRef]
- Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water 2022, 14, 554. [Google Scholar] [CrossRef]
- Sáenz-Romo, M.G.; Veas-Bernal, A.; Martínez-García, H.; Campos-Herrera, R.; Ibáñez-Pascual, S.; Martínez-Villar, E.; Pérez-Moreno, I.; Marco-Mancebón, V.S. Ground Cover Management in a Mediterranean Vineyard: Impact on Insect Abundance and Diversity. Agric. Ecosyst. Environ. 2019, 283, 106571. [Google Scholar] [CrossRef]
- Blum, U.; King, L.D.; Gerig, T.M.; Lehman, M.E.; Worsham, A.D. Effects of Clover and Small Grain Cover Crops and Tillage Techniques on Seedling Emergence of Some Dicotyledonous Weed Species. Am. J. Altern. Agric. 1997, 12, 146–161. [Google Scholar] [CrossRef]
- Horel, Á.; Zsigmond, T. Plant Growth and Soil Water Content Changes under Different Inter-Row Soil Management Methods in a Sloping Vineyard. Plants 2023, 12, 1549. [Google Scholar] [CrossRef] [PubMed]
- Magdić, I.; Safner, T.; Rubinić, V.; Rutić, F.; Husnjak, S.; Filipović, V. Effect of Slope Position on Soil Properties and Soil Moisture Regime of Stagnosol in the Vineyard. J. Hydrol. Hydromech. 2022, 70, 62–73. [Google Scholar] [CrossRef]
- Caspari, H.W.; Neal, S.; Naylor, A. Cover Crop Management in Vineyards to Enhance Deficit Irrigation in a Humid Climate. Acta Hortic. 1997, 449, 313–320. [Google Scholar] [CrossRef]
- Saayman, D.; Van Huyssteen, L. Preliminary Studies on the Effect of a Permanent Cover Crop and Root Pruning on an Irrigated Colombar Vineyard. S. Afr. J. Enol. Vitic. 1983, 4, 1. [Google Scholar] [CrossRef]
- Van Huyssteen, L.; Van Zyl, J.L.; Koen, A.P. The Effect of Cover Crop Management on Soil Conditions and Weed 6control in a Colombar Vineyard in Oudtshoorn. S. Afr. J. Enol. Vitic. 1984, 5, 7–17. [Google Scholar] [CrossRef]
- Longhi, F.; Pardini, A.; Orlandini, S.; Moriondo, M. Cover Crop to Improve Vineyard Ecology. In Proceedings of the 5th International IFSA Symposium, Florence, Italy, 8–11 April 2002; pp. 455–463. [Google Scholar]
- McGourty, G. Cover Cropping Systems for Organically Farmed Vineyards; Practical Winery & Vineyard: San Rafael, CA, USA, 2004; pp. 1–7. Available online: https://ucanr.edu/sites/default/files/2010-06/17082.pdf (accessed on 18 July 2025).
Keyword Combinations A | 2020–2025 | 2015–2019 | 2010–2014 | 2005–2009 | 2000–2004 | –1999 | Year of 1st Record | |
---|---|---|---|---|---|---|---|---|
Number of Documents | ||||||||
‘vineyard’ or ‘viticulture’ | ‘inter row’ | 166 | 97 | 41 | 34 | 10 | 3 | 1997 |
‘sward’ | 7 | 3 | 7 | 6 | 2 | 2 | 1990 | |
‘mulch’ | 57 | 27 | 24 | 17 | 7 | 11 | 1985 | |
‘cover crop’ | 200 | 137 | 102 | 41 | 23 | 17 | 1984 | |
‘grazing’ or ‘grassing’ | 48 | 25 | 14 | 9 | 7 | 17 | 1980 | |
‘slope’ or ‘sloping’ | 241 | 183 | 129 | 79 | 33 | 69 | 1960 | |
‘weed cover’ or ‘weed vegetation’ | 10 | 8 | 0 | 2 | 4 | 1 | 1998 | |
‘ecosystem service’ | 168 | 90 | 28 | 7 | 0 | 0 | 2007 | |
‘ecosystem service’ | 33,836 | 18,279 | 8679 | 2111 | 381 | 109 | 1984 | |
‘regulating ecosystem service’ | 243 | 173 | 35 | 4 | 0 | 0 | 2006 |
Location | Climate | Average Annual Precipitation | Soil Properties | Experimental Period | Slope Angle | Soil Management | Reference |
---|---|---|---|---|---|---|---|
California | N/D | irrigated | fine sandy loam | 1989–1990 | N/D |
| [115] |
Hungary | N/D | N/D | sandy | N/D | N/D |
| [116] |
Central Portugal | mediterranean | N/D | sandy clay loam | 3 years | 7% | N/D | [69] |
N/D |
| N/D | N/D | 4 seasons | N/D | N/D | [97] |
Portugal, France | mediterranean | 487–866 mm |
| 3–4 years | 4.5–12% | N/D | [12] |
Portugal | N/D | N/D |
| 1 season (3–4 years after cover crop establishment) | N/D |
| [60] |
North-West Italy | sublitoranean | 905 mm (2000–2014) |
| 2 years | average 15% | N/D | [53] |
Carignano (Italy) | mediterranean | 560 mm + drip irrigated 3 timer per year (700 m3 ha−1 year−1) | sand 51.0%, clay 24.9%, silt 24.1% | 3 years | N/D |
| [120] |
Spain | continental mediterranean | 446 mm (2009–2017) |
| 15 months | average 9.8% |
| [54] |
Italy | sublitoranean | 965 mm | clay to clay-loam | 2016–2019 | average 15% |
| [121] |
Portugal | dry sub-humid | 669 mm | sandy loam | 2018–2020 | N/D | spontaneous grass with soil tillage + drip irrigated | [121] |
Austria | N/D | 600 mm |
| 2015–2016 | N/D |
| [56] |
France | N/D | 610 mm |
| 2015–2016 | N/D |
| [56] |
Romania | N/D | 660 mm |
| 2015–2016 | N/D |
| [56] |
Spain | N/D | 600 mm |
| 2015–2016 | N/D |
| [56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalai, M.; Bujtás, O.; Sárospataki, M.; Dorner, Z. Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services. Land 2025, 14, 1526. https://doi.org/10.3390/land14081526
Zalai M, Bujtás O, Sárospataki M, Dorner Z. Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services. Land. 2025; 14(8):1526. https://doi.org/10.3390/land14081526
Chicago/Turabian StyleZalai, Mihály, Olimpia Bujtás, Miklós Sárospataki, and Zita Dorner. 2025. "Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services" Land 14, no. 8: 1526. https://doi.org/10.3390/land14081526
APA StyleZalai, M., Bujtás, O., Sárospataki, M., & Dorner, Z. (2025). Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services. Land, 14(8), 1526. https://doi.org/10.3390/land14081526