Scenario Analysis in Intensively Irrigated Semi-Arid Watershed Using a Modified SWAT Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Model and Its Setup
- SWt = Final water content of the soil at any time t;
- SWo = Initial water content of the soil;
- Rday = Daily precipitation;
- Qsurf = Daily surface runoff;
- Ea = Daily evapotranspiration;
- Wseep = Daily percolation;
- Qgw = Daily return flow.
2.3. Modification of the SWAT Model
2.4. Calibration of the SWAT Model
2.5. Wet and Dry Period Analysis and Management Scenarios
3. Results and Discussions
3.1. Streamflow
3.2. Streamflow Components and Fluxes in Watershed
3.3. Wet and Dry Period Analysis
3.4. Management Scenarios
3.4.1. All-Canal Scenario
3.4.2. All-Sprinkler Scenario
3.4.3. Canal Sealing Scenarios
3.4.4. Scenario Analysis Results in Wet and Dry Years
4. Summary and Conclusions
- Over 90% of precipitation in all regions is lost to ET, with limited conversion to other flow components. The irrigated corridor receives the least precipitation (300 mm) but has the highest evapotranspiration (487 mm) and elevated values of surface runoff, soil water, groundwater return flow, groundwater recharge, and canal seepage attributed to irrigation diversions from the Arkansas River. In contrast, the subwatersheds of Fountain Creek, Huerfano, and Apishapa show relatively consistent ET (358–376 mm) and minimal contributions from surface runoff and groundwater return flow.
- The wet and dry year analysis reveals that ET in the irrigated corridor consistently exceeds precipitation, reaching 544 mm in the wet year 2004 despite only 410 mm of rainfall, highlighting the role of irrigation. In dry years like 2002, with just 121 mm of precipitation, surface runoff (90 mm) and groundwater return flow (109 mm) remained high, driven by continued flood irrigation using canals. Compared to the broader watershed, where groundwater return flow averaged only 15 mm across both the wet and dry periods, the irrigated corridor exhibited values almost seven times higher. ET also dropped significantly at the watershed scale from 431 mm in wet years to 279 mm in dry years, indicating drought-induced stress outside irrigated zones. These trends emphasize how irrigation sustains hydrological processes during dry periods and amplifies flow components beyond natural precipitation inputs.
- In the sprinkler irrigation scenario, significant changes in water fluxes occur mainly in the irrigated corridor, where surface runoff drops from 72 mm to 1 mm under sprinkler irrigation, increasing groundwater return flow’s share of streamflow from 58% to 99%, despite a slight decrease in its volume (100 mm to 96 mm). While both runoff and return flow decline, the high efficiency of sprinklers needs to divert less water in canals from the Arkansas River, maintaining downstream flow.
- Canal seepage along the irrigated corridor shows strong seasonal peaks driven by irrigation demand, with the highest seepage under the baseline (0% sealing) condition. As canal sealing increases from 20% to 80%, seepage rates drop proportionally, with the 80% sealing scenario showing the lowest losses. Groundwater return flow in the irrigated corridor decreases sharply from 100 mm in the baseline to 43 mm at 80% sealing—nearly a 60% reduction.
- This study demonstrates that in semi-arid basins, where water resources are increasingly under pressure, improved irrigation management, such as transitioning from canal to sprinkler systems and sealing canals, can significantly reduce non-beneficial water losses while maintaining downstream flows. The substantial reductions in surface runoff and canal seepage under improved management scenarios suggest clear opportunities to decrease overall water demand. By incorporating wet and dry year analyses and evaluating multiple management strategies, this study provides a practical framework that can be applied to similar semi-arid basins worldwide to support sustainable water use under changing climate and resource constraints.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SWAT | Soil and Water Assessment Tool |
USGS | United States Geological Survey |
DEM | Digital Elevation Model |
SSURGO | Soil Survey Geographic Database |
USDA | United States Department of Agriculture |
NASS | National Agriculture Statistics Service |
PRISM | Parameter-elevation Regressions on Independent Slopes Model |
CFSR | Climate Forecast System Reanalysis |
CDSS | Colorado Decision Support System |
HRU | Hydrologic Response Unit |
SWAT-CUP-SUFI | SWAT Calibration and Uncertainty Procedures Sequential Uncertainty Fitting |
ET | Evapotranspiration |
PRECIP | Precipitation |
SNOMELT | Snowmelt |
PET | Potential Evapotranspiration |
SW | Soil Water |
LATQ | Lateral Discharge |
GWQ | Groundwater Discharge |
PERC | Percolation |
SURQ | Surface Runoff |
Appendix A
Year | Annual Precipitation | Anomaly (Precipitation Average) |
---|---|---|
1990 | 352.16 | 53.83 |
1991 | 306.77 | 8.447083333 |
1992 | 302.16 | 3.837083333 |
1993 | 320.3 | 21.97708333 |
1994 | 299.81 | 1.487083333 |
1995 | 313.61 | 15.28708333 |
1996 | 299.09 | 0.767083333 |
1997 | 385.26 | 86.93708333 |
1998 | 317.98 | 19.65708333 |
1999 | 372.9 | 74.57708333 |
2000 | 253.48 | −44.84291667 |
2001 | 230.37 | −67.95291667 |
2002 | 162.51 | −135.8129167 |
2003 | 293.16 | −5.162916667 |
2004 | 376.13 | 77.80708333 |
2005 | 312.08 | 13.75708333 |
2006 | 321.23 | 22.90708333 |
2007 | 328.35 | 30.02708333 |
2008 | 301.74 | 3.417083333 |
2009 | 318.51 | 20.18708333 |
2010 | 284.64 | −13.68291667 |
2011 | 256.44 | −41.88291667 |
2012 | 166.55 | −131.7729167 |
2013 | 284.52 | −13.80291667 |
Average | 294.38 mm | |
Standard Deviation | 57.45 |
Parameters | Calibrated Values Fountain Creek | Calibrated Values Huerfano | Calibrated Value Apishapa |
---|---|---|---|
CN2 | −29% | −18% | −18% |
ESCO | 0.76 | 0.55 | 0.55 |
OV_N | 0.15 | 0.17 | 0.17 |
CH_N2 | 0.15 | 0.16 | 0.16 |
CH_K2 | 1.9 | 15 | 17 |
SURLAG | 4 | 4 | 4 |
SHALLST | 7969 | 127 | 100 |
GW_DELAY | 7.5 | 49 | 25 |
GWQMN | 22.8 | 55 | 500 |
ALPHA_BF | 0.9 | 0.04 | 0.06 |
GW_REVAP | 0.9 | 1.0 | 0.99 |
REVAPMN | 25 | 500 | 0.001 |
SOL_AWC | +0.44% | −0.21 | +0.37 |
SOL_K | −0.23% | +0.3 | −0.49 |
TIMP | 1 | 1 | 1 |
SFTMP | 1 | 1 | 1 |
SMFMN | 4.5 | 4.5 | 4.5 |
SMFMX | 0.5 | 0.5 | 0.5 |
SMTMP | 4 | 4 | 4 |
References
- Qader, S.H.; Dash, J.; Alegana, V.A.; Khwarahm, N.R.; Tatem, A.J.; Atkinson, P.M. The Role of Earth Observation in Achieving Sustainable Agricultural Production in Arid and Semi-Arid Regions of the World. Remote Sens. 2021, 13, 3382. [Google Scholar] [CrossRef]
- Morante-Carballo, F.; Montalván-Burbano, N.; Quiñonez-Barzola, X.; Jaya-Montalvo, M.; Carrión-Mero, P. What Do We Know about Water Scarcity in Semi-Arid Zones? A Global Analysis and Research Trends. Water 2022, 14, 2685. [Google Scholar] [CrossRef]
- Pontius, J.; McIntosh, A. Water Scarcity. In Environmental Problem Solving in an Age of Climate Change; Springer textbooks in earth sciences, geography and environment; Springer International Publishing: Cham, Switzerland, 2024; Volume 1, pp. 87–103. [Google Scholar]
- Mahmoud, M.I.; Gupta, H.V.; Rajagopal, S. Scenario development for water resources planning and watershed management: Methodology and semi-arid region case study. Environ. Model. Softw. 2011, 26, 873–885. [Google Scholar] [CrossRef]
- Batchelor, C.H.; Rama Mohan Rao, M.S.; Manohar Rao, S.; Batchelor, C.H.; Rama Mohan Rao, M.S.; Manohar Rao, S. Watershed development: A solution to water shortages in semi-arid India or part of the problem? Land Use Water Resour. Res. 2003, 3, 1–10. [Google Scholar]
- Dehghanisanij, H.; Oweis, T.; Qureshi, A.S. Agricultural water use and management in arid and semi-arid areas: Current situation and measures for improvement. Ann. Arid Zone 2006, 45, 355. [Google Scholar]
- López-Lambraño, A.A.; Martínez-Acosta, L.; Gámez-Balmaceda, E.; Medrano-Barboza, J.P.; Remolina López, J.F.; López-Ramos, A. Supply and Demand Analysis of Water Resources. Case Study: Irrigation Water Demand in a Semi-Arid Zone in Mexico. Agriculture 2020, 10, 333. [Google Scholar] [CrossRef]
- Fernández García, I.; Lecina, S.; Ruiz-Sánchez, M.C.; Vera, J.; Conejero, W.; Conesa, M.R.; Domínguez, A.; Pardo, J.J.; Léllis, B.C.; Montesinos, P. Trends and Challenges in Irrigation Scheduling in the Semi-Arid Area of Spain. Water 2020, 12, 785. [Google Scholar] [CrossRef]
- Lotfirad, M.; Mahmoudi, M.; Esmaeili-Gisavandani, H.; Adib, A. Allocation of water resources with management approaches and under climate change scenarios in an arid and semi-arid watershed (study area: Hablehroud watershed in Iran). Appl. Water Sci. 2025, 15, 74. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Sikka, A.K.; Alam, M.F.; Mandave, V. Agricultural water management practices to improve the climate resilience of irrigated agriculture in India. Irrig. Drain 2022, 71, 7–26. [Google Scholar] [CrossRef]
- Tedeschi, A.; Beltrán, A.; Aragüés, R. Irrigation management and hydrosalinity balance in a semi-arid area of the middle Ebro river basin (Spain). Agric. Water Manag. 2001, 49, 31–50. [Google Scholar] [CrossRef]
- Zanchi, C.; Cecchi, S. Soil Salinisation in the Grosseto Plain (Maremma, Italy): An Environmental and Socio-Economic Analysis of the Impact on the Agro-Ecosystem. In Coastal Water Bodies; Scapini, F., Ciampi, G., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 79–90. [Google Scholar]
- Minhas, P.S.; Ramos, T.B.; Ben-Gal, A.; Pereira, L.S. Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues. Agric. Water Manag. 2020, 227, 105832. [Google Scholar] [CrossRef]
- Wichelns, D.; Qadir, M. Achieving sustainable irrigation requires effective management of salts, soil salinity, and shallow groundwater. Agric. Water Manag. 2015, 157, 31–38. [Google Scholar] [CrossRef]
- Fernald, A.G.; Guldan, S.J. Surface water–groundwater interactions between irrigation ditches, alluvial aquifers, and streams. Rev. Fish. Sci. 2006, 14, 79–89. [Google Scholar] [CrossRef]
- Zhu, J.; Pohlmann, K. Effective approach to calculate groundwater return flow to a river from irrigation areas. J. Irrig. Drain. Eng. 2014, 140, 04013025. [Google Scholar] [CrossRef]
- Venn, B.J.; Johnson, D.W.; Pochop, L.O. Hydrologic Impacts due to Changes in Conveyance and Conversion from Flood to Sprinkler Irrigation Practices. J. Irrig. Drain Eng. 2004, 130, 192–200. [Google Scholar] [CrossRef]
- Mashaly, A.F.; Fernald, A.G. Identifying capabilities and potentials of system dynamics in hydrology and water resources as a promising modeling approach for water management. Water 2020, 12, 1432. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil & Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: Dallas, TX, USA, 2011. [Google Scholar]
- Akoko, G.; Le, T.H.; Gomi, T.; Kato, T. A review of SWAT model application in africa. Water 2021, 13, 1313. [Google Scholar] [CrossRef]
- Tan, M.L.; Gassman, P.W.; Srinivasan, R.; Arnold, J.G.; Yang, X. A review of SWAT studies in southeast asia: Applications, challenges and future directions. Water 2019, 11, 914. [Google Scholar] [CrossRef]
- Dubey, S.K.; Kim, J.; Her, Y.; Sharma, D.; Jeong, H. Hydroclimatic impact assessment using the SWAT model in india—State of the art review. Sustainability 2023, 15, 15779. [Google Scholar] [CrossRef]
- Ferraz, L.L.; Santana, G.M.; de Sousa, L.F.; da Silva Amorim, J.; Santos, C.A.S.; de Jesus, R.M. Databases and applications of the soil and water assessment tool (SWAT) model in brazilian river basins: A review. Environ. Model. Assess. 2025, 30, 349–367. [Google Scholar] [CrossRef]
- Mao, W.; Zhu, Y.; Wu, J.; Ye, M.; Yang, J. Evaluation of effects of limited irrigation on regional-scale water movement and salt accumulation in arid agricultural areas. Agric. Water Manag. 2022, 262, 107398. [Google Scholar] [CrossRef]
- Huang, S.; Krysanova, V.; Zhai, J.; Su, B. Impact of Intensive Irrigation Activities on River Discharge Under Agricultural Scenarios in the Semi-Arid Aksu River Basin, Northwest China. Water Resour. Manag. 2015, 29, 945–959. [Google Scholar] [CrossRef]
- Törnqvist, R.; Jarsjö, J. Water Savings Through Improved Irrigation Techniques: Basin-Scale Quantification in Semi-Arid Environments. Water Resour. Manage. 2012, 26, 949–962. [Google Scholar] [CrossRef]
- Bjorneberg, D.L.; King, B.A.; Koehn, A.C. Watershed water balance changes as furrow irrigation is converted to sprinkler irrigation in an arid region. J. Soil Water Conserv. 2020, 75, 254–262. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, J.; Wang, H.; Li, Y.; Zhong, B. Evaluation of irrigation water use efficiency using remote sensing in the middle reach of the Heihe river, in the semi-arid Northwestern China. Hydrol. Process. 2015, 29, 2243–2257. [Google Scholar] [CrossRef]
- Abbas, S.A.; Bailey, R.T.; Arnold, J.G.; White, M.J.; Mirchi, A. Modeling agro-hydrological surface-subsurface processes in a semi-arid, intensively irrigated river basin. J. Hydrol. Reg. Stud. 2025, 57, 102188. [Google Scholar] [CrossRef]
- Tian, Y.; Zheng, Y.; Wu, B.; Wu, X.; Liu, J.; Zheng, C. Modeling surface water-groundwater interaction in arid and semi-arid regions with intensive agriculture. Environ. Model. Softw. 2015, 63, 170–184. [Google Scholar] [CrossRef]
- Rahimpour, M.; Tajbakhsh, M.; Memarian, H.; Aghakhani Afshar, A. Impact assessment of climate change on hydro-climatic conditions of arid and semi-arid watersheds (case study: Zoshk-Abardeh watershed, Iran). J. Water Clim. Change 2021, 12, 580–595. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, L.; Wang, Z.; Hong, Y.; Zheng, H. Quantitative assessment of climate and human impacts on surface water resources in a typical semi-arid watershed in the middle reaches of the Yellow River from 1985 to 2006. Int. J. Climatol. 2015, 35, 97–113. [Google Scholar] [CrossRef]
- Wei, X.; Bailey, R.T.; Tasdighi, A. Using the SWAT model in intensively managed irrigated watersheds: Model modification and application. J. Hydrol. Eng. 2018, 23, 04018044. [Google Scholar] [CrossRef]
- Abbott, P.O. Description of water-systems operations in the Arkansas River Basin, Colorado. Water-Resour. Investig. Rep. 1985, 85, 4092. [Google Scholar]
- Garcia, L.A.; Gates, T.K.; Labadie, J.W. Toward Optimal Water Management in Colorado’s Lower Arkansas River Valley: Monitoring and Modeling to Enhance Agriculture and Environment; Colorado Water Resources Research Institute: Fort Collins, CO, USA, 2006. [Google Scholar]
- Triana, E.; Labadie, J.W.; Gates, T.K. River GeoDSS for agroenvironmental enhancement of Colorado’s Lower Arkansas River Basin. I: Model development and calibration. J. Water Resour. Plan. Manag. 2010, 136, 177–189. [Google Scholar]
- Neupane, P.; Bailey, R.T.; Tavakoli-Kivi, S. Assessing controls on selenium fate and transport in watersheds using the SWAT model. Sci. Total Environ. 2020, 738, 140318. [Google Scholar] [CrossRef] [PubMed]
- Bern, C.R.; Holmberg, M.J.; Kisfalusi, Z.D. Salt flushing, salt storage, and controls on selenium and uranium: A 31-year mass-balance analysis of an irrigated, semiarid valley. J. Am. Water Resour. Assoc. 2020, 56, 647–668. [Google Scholar] [CrossRef]
- Koehn, W.J.; Tucker-Kulesza, S.E.; Steward, D.R. Conceptualizing Groundwater-Surface Water Interactions within the Ogallala Aquifer Region using Electrical Resistivity Imaging. JEEG 2019, 24, 185–199. [Google Scholar] [CrossRef]
- Rohmat, F.I.W.; Labadie, J.W.; Gates, T.K. Deep learning for compute-efficient modeling of BMP impacts on stream-aquifer exchange and water law compliance in an irrigated river basin. Environ. Model. Softw. 2019, 122, 104529. [Google Scholar] [CrossRef]
- Bailey, R.T.; Hunter, W.J.; Gates, T.K. The influence of nitrate on selenium in irrigated agricultural groundwater systems. J. Environ. Qual. 2012, 41, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.T.; Gates, T.K.; Halvorson, A.D. Simulating variably-saturated reactive transport of selenium and nitrogen in agricultural groundwater systems. J. Contam. Hydrol. 2013, 149, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.T.; Romero, E.C.; Gates, T.K. Assessing best management practices for remediation of selenium loading in groundwater to streams in an irrigated region. J. Hydrol. 2015, 521, 341–359. [Google Scholar] [CrossRef]
- Gates, T.K.; Cody, B.M.; Donnelly, J.P.; Herting, A.W.; Bailey, R.T.; Mueller Price, J. Assessing selenium contamination in the irrigated stream-aquifer system of the Arkansas River, Colorado. J. Environ. Qual. 2009, 38, 2344–2356. [Google Scholar] [CrossRef] [PubMed]
- Goff, K.; Lewis, M.E.; Person, M.A.; Konikowd, L.F. Simulated effects of irrigation on salinity in the arkansas river valley in colorado. Groundwater 1998, 36, 76–86. [Google Scholar] [CrossRef]
- Brown, A.J.; Andales, A.A.; Gates, T.K. Spatially refined salinity hazard analysis in gypsum-affected irrigated soils. Agrosyst. Geosci. Environ. 2024, 7, e20539. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part i: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Gates, T.K.; Garcia, L.A.; Hemphill, R.A.; Morway, E.D.; Alhaddad, A. Irrigation Practices, Water Consumption, & Return Flows in Colorado’s Lower Arkansas River Valley. Color. Water Inst. Tech. Comp. 2012, 221, 115. [Google Scholar]
- Susfalk, R.; Sada, D.; Martin, C.A.; Young, M.; Gates, T.K.; Rosamond, C.; Mihevc, T.; Arrowood, T.; Shanafield, M.; Epstein, B. Evaluation of Linear Anionic Polyacrylamide (LA-PAM) Application to Water Delivery Canals for Seepage Reduction; DHS Publication: Las Vegas, NV, USA, 2008; Volume 41245. [Google Scholar]
- Wallace, C.W.; Flanagan, D.C.; Engel, B.A. Evaluating the effects of watershed size on SWAT calibration. Water 2018, 10, 898. [Google Scholar] [CrossRef]
- Ferencz, S.B.; Tidwell, V.C. Physical controls on irrigation return flow contributions to stream flow in irrigated alluvial valleys. Front. Water 2022, 4, 828099. [Google Scholar] [CrossRef]
- Ketchum, D.; Hoylman, Z.H.; Huntington, J.; Brinkerhoff, D.; Jencso, K.G. Irrigation intensification impacts sustainability of streamflow in the Western United States. Commun. Earth Environ. 2023, 4, 479. [Google Scholar] [CrossRef]
- Gordon, B.L.; Paige, G.B.; Miller, S.N.; Claes, N.; Parsekian, A.D. Field scale quantification indicates potential for variability in return flows from flood irrigation in the high altitude western US. Agric. Water Manag. 2020, 232, 106062. [Google Scholar] [CrossRef]
- Lund, A.A.R.; Gates, T.K.; Scalia, J. Characterization and control of irrigation canal seepage losses: A review and perspective focused on field data. Agric. Water Manag. 2023, 289, 108516. [Google Scholar] [CrossRef]
- Ahmadzadeh, H.; Morid, S.; Delavar, M.; Srinivasan, R. Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment. Agric. Water Manag. 2016, 175, 15–28. [Google Scholar] [CrossRef]
- Wei, X.; Bailey, R.T. Assessment of System Responses in Intensively Irrigated Stream–Aquifer Systems Using SWAT-MODFLOW. Water 2019, 11, 1576. [Google Scholar] [CrossRef]
Data | Source | Data Type |
---|---|---|
Digital Elevation Model DEM | The National Map viewer, USGS DEM, 2010 | 10 m Grid |
Soil Map | Soil Survey Geographic Database (SSURGO), USDA, 2009 | Shapefile |
Land-use Map | National Agricultural Statistics Service (NASS) USA, 2010 | 30 m Grid |
Precipitation | PRISM database (https://prism.oregonstate.edu/) (5 June 2025) | January 1990–July 2014, Daily |
Max-Min Temperature | PRISM database (https://prism.oregonstate.edu/) (5 June 2025) | January 1990–July 2014, Daily |
Solar Radiation, Wind Speed, Relative Humidity | CFSR database | January 1990–July 2014, Daily |
Streamflow | Colorado Decision Support System (CDSS), USA | Daily Mean observed flow |
Canal Diversion | Colorado Decision Support System (CDSS), USA | Daily surface water diversion |
Parameters | Definition | Range of Values | Calibrated Values Irrigated Corridor | |
---|---|---|---|---|
Minimum | Maximum | |||
CN2 | SCS runoff curve number for moisture condition II | −30% | +30% | −5.7% |
ESCO | Soil evaporation compensation factor | 0.01 | 1.0 | 0.15 |
OV_N | Manning’s n value for overland flow | 0.005 | 0.8 | 0.39 |
CH_N2 | Manning’s n for main channel | 0.016 | 0.15 | 0.12 |
CH_K2 | Effective hydraulic conductivity of channel (mm/hr) | 0.025 | 140 | 86.3 |
SHALLST | Initial depth of water in the shallow aquifer (mm) | 0 | 10,000 | 843 |
GW_DELAY | Delay time for aquifer recharge (days) | 0.001 | 100 | 24 |
GWQMN | Threshold depth of water level in shallow aquifer for return base flow to occur (mm) | 0.01 | 100 | 0.01 |
ALPHA_BF | Base flow recession constant (days) | 0.1 | 1.0 | 0.75 |
GW_REVAP | Groundwater ‘revap’ coefficient | 0.01 | 1.0 | 0.2 |
REVAPMN | Threshold depth of water level in shallow aquifer for ‘revap’ to occur (mm) | 0 | 1000 | 1000 |
SOL_AWC | Available water capacity | −0.5 | 0.5 | −0.06% |
SOL_K | Saturated hydraulic conductivity | −0.5 | 0.5 | 0% |
TIMP | Snowpack temperature lag factor | 0.5 | 1 | 1 |
SFTMP | Snowfall temperature (deg C) | −10 | 5 | 1 |
SMFMN | Melt factor for snow on 21 June (mm/deg C-day) | 1.4 | 6.9 | 4.5 |
SMFMX | Melt factor for snow on 21 December (mm/deg C-day) | 1.4 | 6.9 | 4.5 |
SMTMP | Snow melt base temperature (deg C) | −5 | 5 | 0.5 |
SURLAG | Surface runoff lag time | 0.01 | 12 | 4 |
Watershed | PRECIP (mm) | ET (mm) | SURQ (mm) | GWQ (mm) | LATQ (mm) | IRR (mm) | GW Rch (mm) |
---|---|---|---|---|---|---|---|
Fountain Creek | 392 | 376 | 9 | 19 | 18 | 1 | 22 |
Huerfano | 393 | 358 | 1 | 0 | 23 | 0 | 18 |
Apishapa | 382 | 377 | 2 | 2 | 10 | 1 | 12 |
Irrigated Corridor | 300 | 487 | 72 | 100 | 1 | 224 | 108 |
Watershed Scale | 359 | 369 | 7 | 14 | 16 | 2 | 25 |
Years | PRECIP (mm) | PET (mm) | ET (mm) | SURQ (mm) | GWQ (mm) | LATQ (mm) | IRR (mm) | GW Rch (mm) |
---|---|---|---|---|---|---|---|---|
1997 | 364 | 1347 | 486 | 70 | 103 | 1 | 218 | 111 |
1999 | 356 | 1507 | 505 | 68 | 109 | 1 | 210 | 118 |
2004 | 410 | 1477 | 544 | 68 | 109 | 1 | 211 | 117 |
2001 | 287 | 1637 | 512 | 78 | 108 | 1 | 246 | 116 |
2002 | 121 | 1733 | 369 | 90 | 109 | 1 | 284 | 117 |
2012 | 161 | 1620 | 408 | 81 | 109 | 0 | 254 | 115 |
Years | PRECIP (mm) | PET (mm) | ET (mm) | SURQ (mm) | GWQ (mm) | LATQ (mm) | IRR (mm) | GW Rch (mm) |
---|---|---|---|---|---|---|---|---|
1997 | 506 | 1264 | 402 | 7 | 15 | 19 | 2 | 23 |
1999 | 496 | 1477 | 451 | 11 | 18 | 22 | 2 | 42 |
2004 | 483 | 1463 | 440 | 7 | 15 | 21 | 2 | 25 |
2001 | 339 | 1534 | 357 | 7 | 15 | 11 | 3 | 26 |
2002 | 203 | 1615 | 220 | 7 | 15 | 6 | 3 | 23 |
2012 | 216 | 1501 | 261 | 7 | 15 | 10 | 3 | 24 |
Parameter | Baseline | All Sprinkler | All Canal | 20% Canal Sealing | 80% Canal Sealing |
---|---|---|---|---|---|
Lateral Flow (mm) | 1 | 0 | 1 | 1 | 1 |
Groundwater Flow (mm) | 100 | 96 | 100 | 85 | 43 |
Precipitation (mm) | 300 | 300 | 300 | 300 | 300 |
Surface Runoff (mm) | 72 | 1 | 72 | 72 | 72 |
Evapotranspiration (mm) | 487 | 486 | 487 | 487 | 487 |
Groundwater Recharge (mm) | 108 | 41 | 108 | 93 | 46 |
Irrigation (mm) | 224 | 216 | 224 | 224 | 224 |
Parameter | Baseline | All Sprinkler | All Canal | 20% Canal Sealing | 80% Canal Sealing |
---|---|---|---|---|---|
Lateral Flow (mm) | 16 | 16 | 16 | 16 | 16 |
Groundwater Flow (mm) | 14 | 14 | 14 | 13 | 7 |
Precipitation (mm) | 359 | 359 | 359 | 359 | 359 |
Surface Runoff (mm) | 7 | 2 | 7 | 7 | 7 |
Evapotranspiration (mm) | 369 | 370 | 369 | 369 | 369 |
Groundwater Recharge (mm) | 25 | 24 | 25 | 22 | 14 |
Irrigation (mm) | 3 | 3 | 3 | 3 | 3 |
Years | Canal Sealing 80% | Canal Sealing 20% | Sprinkler Scenario | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GW_RCH | SURQ | LATQ | GWQ | GW_RCH | SURQ | LATQ | GWQ | GW_RCH | SURQ | LATQ | GWQ | |
1997 | 46 | 70 | 1 | 43 | 95 | 70 | 1 | 88 | 108 | 1 | 0 | 100 |
1999 | 53 | 68 | 1 | 49 | 102 | 68 | 1 | 93 | 113 | 1 | 1 | 103 |
2004 | 52 | 68 | 1 | 49 | 101 | 68 | 1 | 94 | 113 | 1 | 1 | 105 |
2001 | 51 | 78 | 1 | 49 | 100 | 78 | 1 | 93 | 111 | 1 | 0 | 103 |
2002 | 52 | 90 | 1 | 50 | 101 | 90 | 1 | 94 | 113 | 0 | 0 | 105 |
2012 | 49 | 81 | 0 | 47 | 98 | 81 | 0 | 91 | 111 | 0 | 0 | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neupane, P.; Bailey, R.T. Scenario Analysis in Intensively Irrigated Semi-Arid Watershed Using a Modified SWAT Model. Geosciences 2025, 15, 272. https://doi.org/10.3390/geosciences15070272
Neupane P, Bailey RT. Scenario Analysis in Intensively Irrigated Semi-Arid Watershed Using a Modified SWAT Model. Geosciences. 2025; 15(7):272. https://doi.org/10.3390/geosciences15070272
Chicago/Turabian StyleNeupane, Pratikshya, and Ryan T. Bailey. 2025. "Scenario Analysis in Intensively Irrigated Semi-Arid Watershed Using a Modified SWAT Model" Geosciences 15, no. 7: 272. https://doi.org/10.3390/geosciences15070272
APA StyleNeupane, P., & Bailey, R. T. (2025). Scenario Analysis in Intensively Irrigated Semi-Arid Watershed Using a Modified SWAT Model. Geosciences, 15(7), 272. https://doi.org/10.3390/geosciences15070272